Published or in press

  1. On the nodal structure of nonlinear stationary waves on star graphs
    R. Band, S. Gnutzmann, A. J. Krueger
    Symmetry, Volume 11(2) (2019).
  2. Lyndon word decompositions and pseudo orbits on q-nary graphs
    R. Band, J. M. Harrison, M. Sepansky
    Journal of Mathematical Analysis and Applications 470 (2019) p. 135–144.
  3. Quantum Graphs via Exercises
    R. Band, S. Gnutzmann
    AMS Contemporary Mathematics, 720: Spectral theory and applications (2018) p. 187–203.
  4. Nonlinear Sturm Oscillation: from the interval to a star
    R. Band, A. J. Krueger
    AMS Contemporary Mathematics, 717: Mathematical problems in quantum physics (2018) p. 129–154.
  5. Nodal Statistics on Quantum Graphs
    L. Alon, R. Band, G. Berkolaiko
    Communications in Mathematical Physics 362 (2018) p. 909-948.
  6. Quantum graphs which optimize the spectral gap
    R. Band, G. Lévy
    Annales Henri Poincaré, Volume 18 (2017), p. 3269-3323.
  7. Courant-sharp Eigenvalues of Neumann 2-Rep-tiles
    R. Band, M. Bersudsky, D. Fajman
    Letters in Mathematical Physics. Volume 107 (2017) p. 821-859.
  8. Universality of the frequency spectrum of laminates
    G. Shmuel, R. Band,
    Journal of the Mechanics and Physics of Solids 92 (2016) p. 127.
  9. Topological Properties of Neumann Domains
    R. Band, D. Fajman,
    Annales Henri Poincaré, Volume 17, Issue 9 (2016) p. 2379.
  10. Anomalous nodal count and singularities in the dispersion relation of honeycomb graphs
    R. Band, G. Berkolaiko, T. Weyand,
    J. Math. Phys. 56 (2015) p. 122111. Chosen as Featured Article of the issue.
  11. The Nodal Count {0,1,2,3,…} Implies the Graph is a Tree
    R. Band,
    Phil. Trans. R. Soc. A 28 vol. 372 no. 2007 (2014) p. 20120504.
  12. Universality of the momentum band density of periodic networks
    R. Band, G. Berkolaiko,
    Phys. Rev. Lett. 111 (2013) p. 130404. Chosen as Editor’s selection.
  13. Finite pseudo orbit expansions for spectral quantities of quantum graphs
    R. Band, J. M. Harrison, C. H. Joyner,
    J. Phys. A: Math. Theor. 45 (2012) p. 325204.
  14. Isospectral graphs with identical nodal counts
    I. Oren, R. Band,
    J. Phys. A: Math. Theor. 45 (2012) p. 135203.
  15. Nodal domains of a non-separable problem – the right angled isosceles triangle
    A. Aronovitch, R. Band, D. Fajman, S. Gnutzmann,
    J. Phys. A: Math. Theor. 45 (2012) p. 085209. Featured article of the issue.
  16. The Number of Nodal Domains on Quantum Graphs as a Stability Index of Graph Partitions
    R. Band, G. Berkolaiko, H. Raz, U. Smilansky,
    Communications in Mathematical Physics 311 (2012) p. 815.
  17. Note on the Role of Symmetry in Scattering from Isospectral Graphs and Drums
    R. Band, A. Sawicki, U. Smilansky,
    Acta Physica Polonica A, Vol. 120 (2011), Proceedings of the 5th Workshop on Quantum Chaos and Localisation Phenomena.
  18. Dynamics of Nodal Points and the Nodal Count on a Family of Quantum Graphs
    R. Band, G. Berkolaiko, U. Smilansky,
    Annales Henri Poincaré 13 (2011) p. 145.
  19. Scattering from isospectral quantum graphs
    R. Band, A. Sawicki, U. Smilansky,
    J. Phys. A: Math. Theor. 43 (2010) p. 415201.
  20. Linear Representations and Isospectrality with Boundary Conditions
    O. Parzanchevski, R. Band,
    Journal of Geometric Analysis 20, 2 (2010) p. 439-471.
  21. The Isospectral Fruits of Representation Theory: Quantum Graphs and Drums
    R. Band, O. Parzanchevski, G. Ben-Shach,
    J. Phys. A: Math. Theor. 42 (2009) p. 175202. Best paper prize of the Journal of Physics A’.
  22. Nodal domains on graphs – how to count them and why?
    R. Band, I. Oren, U. Smilansky,
    Analysis on Graphs and its applications Proc. Symp. Pure Math. (Providence, RI: American Mathematical Society) (2008) p. 5-28.
  23. Resolving the isospectrality of the dihedral graphs by counting nodal domains
    R. Band, U. Smilansky,
    Eur. Phys. J. Special Topics 145 (2007) p. 171-179.
  24. Nodal domains on isospectral quantum graphs: the resolution of isospectrality
    R. Band, T. Shapira, U. Smilansky,
    J. Phys. A: Math. Gen. 39 (2006) p. 13999-14014.


The papers listed above are made available as a scientific resource for the private use of individual scholars. None of the material may be used commercially, or for financial gain. Some of it is protected by copyright. Requests for permission to make public use of any of the papers, or material therein, should be sought from the original publisher. It is the responsibility of anyone making use of this material to ensure that they are not breaking copyright.