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Abstract We present a review of the work (Raymond in a constructive gap labelling 
for the discrete Schrödinger operator on a quasiperiodic chain (1995), [39], Raymond 
in Etude algébrique de milieux quasipériodiques (1995), [40]). The review aims at 
making this work more accessible and offers adaptations of some statements and 
proofs. In addition, this review forms an applicable framework for the complete 
solution of the Dry Ten Martini Problem for Sturmian Hamiltonians as appears in 
Band, Beckus and Loewy (Dry Ten Martini Problem for Sturmian Hamiltonians, 
[3]). A Sturmian Hamiltonian is a one-dimensional Schrödinger operator whose 
potential is a Sturmian sequence multiplied by a coupling constant, .V ∈ R.  The  
spectrum of such an operator is commonly approximated by the spectra of designated 
periodic operators. I f.V > 4, then the spectral bands of the periodic operators exhibit a 
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particular combinatorial structure. This structure provides a formula for the integrated 
density of states. Employing this, it is shown that if .V > 4, then all the gaps, as 
predicted by the gap labeling theorem, are there. 

Keywords Sturmian Hamiltonian · Spectral gap labels · Spectral tree 

1 Introduction 

1.1 The Motivation for this Review 

The starting point of this paper is the unpublished work of Raymond, [39]  and  
his PhD thesis [40]  (see  also [41]). The first two authors became aware of [39] 
via a private communication with Damanik. Band and Beckus were influenced by 
[39] in their joint work with Loewy [3] and found it beneficial to refer to parts of 
[39]  in  [3]. Indeed, [39] is a very stimulating work, contains some foundational 
results, and is referred to numerous times (see, e.g., the surveys [12–14, 26]  and  
references within), in spite of being unpublished. We started to write the current 
review with three goals in mind. First, it might be worthwhile to elaborate on some of 
the proofs and fill in some gaps. Second, by adapting some notations and conventions, 
we create a unified framework toward providing the complete solution for the Dry 
Ten Martini Problem for Sturmian Hamiltonians, [2, 3]. Finally, we felt that the 
whole community might benefit from having a published version of Raymond’s 
work upon reaching its thirtieth anniversary. Hence, we joined forces to produce the 
current review, with Raymond joining as well after this review was already initiated. 
While this review was in final stages of preparation, we became aware that a similar 
publication is planned in [38], as part of the book series initiated by Baake and 
Grimm [6, 7]. 

In this review, we make the connection to [39] as transparent as possible. In 
particular, throughout the review we clarify as much as possible where we merely 
rephrase statements from [39] and where we elaborate or bring new statements and 
terminology. When writing the current review, we were trying to provide an appro-
priate balance between two objectives. On the one hand, our desire is to reflect the 
original work [39] with no substantial changes. On the other hand, at times we felt 
that the exposition may profit by including adaptations based on later papers and 
recent progress in the field. 

We should emphasize that the current review covers only the first five sections 
of [39] that form the starting point for resolving the Dry Ten Martini Problem for 
Sturmian Hamiltonians in [3]. We do not treat here the last section of [39] about the 
Hausdorff dimension of the Fibonacci Hamiltonian. This part in [39] led to further 
progress in the study of the fractal dimensions of the spectrum of Sturmian Hamilto-
nians, see, e.g., [15, 20, 24, 28, 34]. Reviewing this part of [39] is not included here 
since the focus is on the study of the integrated of states and the gap labels.
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1.2 A Short Historical Review 

Let us start by introducing the model. We consider bounded linear operators. Hα,V :
2(Z) → 2(Z),  given  b  y

.(Hα,Vψ)(n) := ψ(n + 1) + ψ(n − 1) + Vχ[1−α,1)(nα mod 1) ψ(n), (1.1) 

where.V ∈ R is the coupling constant and.χ[1−α,1) is the characteristic function of the 
interval.[1 − α, 1). Whenever.α ∈ R\Q, the operator.Hα,V is aperiodic (in the sense 
that its potential sequence is not periodic) and it is known as a Sturmian Hamiltonian. 

We provide a short summary on the developments for the spectral theory of Stur-
mian Hamiltonians and refer the reader to the surveys [12–14, 26] and references 
therein for more details. This class of operators serves as the guiding example for one-
dimensional quasicrystals and was introduced in [29, 37]. This model is also called 
Kohmoto model and a plot of the associated spectra, as they vary with. α—called the 
Kohmoto butterfly—can be found in Fig. 1. 

A first mathematical analysis of the so-called Fibonacci Hamiltonian .Hα,V with 

.α =
√
5−1
2 was developed in [10]. Shortly after it was proven that the Fibonacci 

Hamiltonian has Cantor spectrum of Lebesgue measure zero and the spectral measure 
is purely singular continuous, [44, 45]. For all Sturmian Hamiltonians (i.e., all. α /∈ Q
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Fig. 1 The Kohmoto butterfly for.V = 2
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and.V 0), Cantor spectrum of Lebesgue measure zero was proven in [8]. This result 
was generalized in [30] to a large class of one-dimensional dynamical systems. The 
absence of point spectrum and upper bounds on the growth of solutions for Sturmian 
Hamiltonians were thoroughly studied as well [21–23]. 

Influenced by these results, one may ask whether all the spectral gaps that are 
predicted by the gap labeling theorem [1, 4] appear. This is the so-called Dry Ten 
Martini Problem for Sturmian Hamiltonians. Such a question was originally asked 
by Kac in 1981 for the almost Mathieu operator (“are all gaps there ?”), see [42]. 
For large enough coupling constant, .V > 4, it was proven in [39] that all gaps are 
there, and this is reviewed in the current paper. For the Fibonacci Hamiltonian and 
small enough coupling . V , it was proven in [18] that all spectral gaps are there. 
This result was extended in [35]  fo  r.α ∈ [0, 1]\Qwith eventually periodic continued 
fraction expansion and small enough coupling constant. In a remarkable study of the 
Fibonacci Hamiltonian [20], it was proven that all gaps are there for all .V 0 and 
.α =

√
5−1
2 . Finally, a complete solution of the Dry Ten Martini Problem for Sturmian 

Hamiltonians for all .α ∈ [0, 1]\Q and all .V 0 is provided in [3]. Moreover, the 
hierarchical structure of the periodic approximations spectra (initiated in [39]) was 
extended in [3]  to  al  l .V 0. 

This hierarchical structure also laid the ground to estimate the Hausdorff dimen-
sion for the Fibonacci Hamiltonian in [39]. It influenced the study of the fractal 
dimension and the transport exponent for Sturmian Hamiltonians during the last 
decades, see, e.g., [11, 15, 19, 20, 24, 28, 33, 34]. 

Organization of the paper. The paper is structured as follows. Section 2 discusses 
the Sturmian sequences and their periodic mechanical words. In addition, we intro-
duce there a designated space of finite continued fraction expansions following the 
lines of [3]. In Sect. 3, we present the standard Floquet–Bloch theory via transfer 
matrices and the discriminant. Various useful identities of the discriminants are pre-
sented there. Section 4 describes the spectra of the periodic approximations and their 
special combinatorial structure—first in general and then specializing for the case 
.V > 4. Section 5 applies the aforementioned combinatorial structure for the study 
of the integrated density of states and the gap labeling for .V > 4. 

Acknowledgments. We are grateful for David Damanik and Michael Baake for 
connecting some of the authors. First, in 2018, David Damanik introduced RB and 
SB to the original work of LR, encouraging to further explore it, and suggesting 
useful references along the way. Then, on December 2023, Michael Baake made the 
physical connection and kindly hosted four of the authors in Bielefeld. We thank our 
colleague Raphael Loewy who provided us with a critical and constructive viewpoint 
on this work. 

We thank Israel Institute of Technology and the University of Potsdam for provid-
ing excellent working conditions during our mutual visits. This work was partially 
supported by the Deutsche Forschungsgemeinschaft [BE 6789/1-1 to S.B.] and the 
Maria-Weber Grant 2022 offered by the Hans Böckler Stiftung. RB was supported 
by the Israel Science Foundation (ISF Grant No. 844/19).
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2 The Sturmian Potential 

This section is dedicated to studying the Sturmian sequence .χ[1−α,1)(nα mod 1), 
which serves as the potential of the Sturmian Hamiltonian (1.1). In particular, we 
will consider rational values of. α, which give rise to periodic sequences and periodic 
Hamiltonians. Most of the content of this section does not appear in [39] and our 
main motivation for including it here is to use already in the current review some 
tools and notations which are essential for [3]. 

2.1 The Space . C of Finite Continued Fraction Expansions 

Every irrational number.α ∈ R\Qhas a unique continued fraction expansion [27], i.e.: 

. α = c0 + 1

c1 + 1
c2+ 1

...

,

where .c0 ∈ Z and .ck ∈ N for .k ≥ 1 and the sequence .(c0, c1, c2, . . .) is unique. If 
.α ∈ Q, then there is a finite sequence.(c0, c1, . . . , ck) such that 

. α = c0 + 1

c1 + 1

. ..+ 1
ck

,

and we refer to .(c0, c1, . . . , ck) as a finite continued fraction expansion of . α.  How-
ever, the sequence.(c0, c1, . . . , ck) is not unique for a rational. α,  see  [27, Chap I.4] and 
Remark 2.1. Since we are only interested in.α ∈ [0, 1],  we  always  hav  e.c0 = 0.  In  the  
current paper, we modify the conventional notation of continued fraction expansions 
in two asp ects:

• We add an artificial digit .c−1 = 0 to each finite continued fraction expansion 
.(0, c1, . . . , ck) and represent it by the string of “digits”.[0, 0, c1, . . . , ck]. 

• We allow the last digit .ck of a string .[0, 0, c1, . . . , ck] to attain also the values . 0
and .−1, namely, .ck ∈ N−1 := N ∪ {−1, 0}. 

Summarizing the above, we defined the formal space of finite continued fraction 
expansions to be 

.C := {[0], [0, 0]} ∪
k∈N

{[0, 0, c1, . . . , ck] : c1, . . . , ck−1 ∈ N, ck ∈ N−1} .
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The purpose of these deviations from the conventional notation is mainly to describe 
the different types of the spectral bands in Sect. 4.2. These types depend on the 
particular choice of.c ∈ C and not only on the rational number which is represented by 
the continued fraction (more details appear in Sect. 4.2 and in [3, Proposition 2.10]). 

For .c = [0, c0, c1, . . . , ck] ∈ C and.m ∈ N−1, we will use the notation 

. [c,m] := [0, c0, c1, . . . , ck,m] ∈ C,

whenever it is defined. We use frequently in this work the condition.[c,m] ∈ C.  The  
constraints this condition imposes are: if .c = [0],  the  n .m = 0 and if .k ∈ N,  the  n
.ck ≥ 1. 

We connect the set of continued fractions with rational numbers by introducing 
the evaluation map.ϕ : C → R ∪ {∞}. It is defined for all.c ∈ C\ {[0], [0, 0,−1]} by 

. ϕ([0, c0, c1, . . . , ck]) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ([0, c0, c1 . . . , ck−2, ck−1 − 1]), k ≥ 2 and ck = −1,

ϕ([0, c0, c1 . . . , ck−2]), k ∈ N and ck = 0,

c0 + 1
c1+ 1

...+ 1
ck

, otherwise.

(2.1) 
In addition to that we set .ϕ([0]) := ∞ and.ϕ([0, 0,−1]) = −1. The first line in the 
right-hand side of (2.1) is equivalent to substituting.ck = −1 in the continued fraction 
expansion. The second line is more delicate; if one allows taking.ck ∈ R then one gets 

. lim
ck→0

⎛

⎜⎜⎜⎝c0 + 1

c1 + 1

.. .+ 1
ck

⎞

⎟⎟⎟⎠ = c0 + 1

c1 + 1

. ..+ 1
ck−2

,

which is the rationale standing behind the definition . ϕ([0, c0, c1 . . . , ck−2,

ck−1, 0]) := ϕ([0, c0, c1 . . . , ck−2]) in (2.1). 
Remark 2.1 From the definition of the map . ϕ,  we  ge  t . Im(ϕ) ⊆ (Q ∩ [0, 1]) ∪
{−1} ∪ {∞}. A basic yet important observation is that the map . ϕ is not injective. 
This may be seen already from its definition in (2.1). In addition, 

. ϕ([0, c0, c1 . . . , ck−2, ck−1, ck, 1]) = ϕ([0, c0, c1 . . . , ck−2, ck−1, ck + 1]),

which is a common dual representation within continued fraction expansions 
[27, Chap I.4]. Furthermore, one can check that 

.ϕ(c) = ∞ ⇔ c ∈ {[0], [0, 0, 0], [0, 0, 1,−1]} .



A Review of a Work by L. Raymond: Sturmian Hamiltonians … 7

The motivation behind using continued fraction expansions is for approximating 
irrational .α ∈ [0, 1] \Q by rational values, which allows to approximate aperiodic 
Hamiltonians (1.1) by periodic ones. Specifically, given .α ∈ [0, 1] \Q with 

.α = c0 + 1

c1 + 1
c2+ 1

...

, (2.2) 

we define for each .k ∈ N, 

. ck := [0, 0, c1, . . . , ck] and αk := ϕ(ck).

The values .αk offer an optimal way to approximate. α in the sense .limk→∞ αk = α, 
and thus we refer to .αk as the .k-th convergent of . α [27, Chap. I.3]. 

We further denote . pkqk := αk ,  wher  e .pk, qk ∈ N are chosen to be coprime. It is 
useful to extend this notation so that it includes also the values .k ∈ {−1, 0}.  This  is  
done by se tting

. α−1 := ϕ([0]) = ∞, p−1 = 1, q−1 = 0,

α0 := ϕ([0, 0]) = 0, p0 = 0, q0 = 1.

Note that for.k = −1, we adopt the formal convention,.α−1 = p−1

q−1
= ∞. The reason 

for introducing .p−1, p0,q−1 and .q0 is given by the following recursive formulas 
[27, Theorem 1]: for . k ∈ N0

.pk+1 = ck+1 pk + pk−1 and qk+1 = ck+1qk + qk−1. (2.3) 

Remark 2.2 It is beneficial to make the analogy between the notations introduced 
above and the notations in [39]. The notation.(k, p), appearing first in [39, Proposi-
tion 2.2], is replaced in this review by .[0, 0, c1, . . . , ck−1, p] = [ck−1, p].  We  do  so,  
since  we  find in [3] that it is essential to keep track of all numbers in the continued 
fraction expansion simultaneously and consider values of.c ∈ C which correspond to 
different.α /∈ Q. This matter is not raised in [39], where it is sufficient to fix a single 
.α /∈ Q and for that the notation .(k, p) is adequate. 

2.2 Sturmian Words and Mechanical Words 

We present here a brief introduction to Sturmian words and mechanical words. For 
elaborate surveys, see [5, 31]. 

We start by denoting for .α ∈ [0, 1] and . n ∈ Z,

.ωα(n) := χ[1−α,1)(nα mod 1). (2.4)
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Another equivalent representation of the sequence.ωα ∈ {0, 1}Z is the following. 

Lemma 2.3 ([8, 39], Lemma 1, Definition 2.1) Let .α ∈ [0, 1] and .n ∈ Z.  The  n

.ωα(n) (n + 1)α nα , (2.5) 

where . is the floor function. 

Proof First, observe that . α(n + 1) αn 0, 1},  for  al  l .n ∈ Z. Using that the 
claim follows from 

. ωα(n) = 1 ⇐⇒ nα mod 1 ∈ [1 − α, 1)

⇐⇒ ∃m ∈ Z : nα ∈ [m + 1 − α,m + 1)

α(n + 1) αn 1.

We use the notation .ωα for both rational and irrational values of . α. The infinite 
words defined by. α(n + 1) αn are also called (lower) mechanical words (with 
slope . α) [31, Sect. 2.1.2]. If .α = p

q ∈ [0, 1] ∩ Q, then it is elementary to see that . ωα

is .q-periodic, i.e., .ωα(n + q) = ωα(n) for all .n ∈ Z.  I  f .α /∈ Q then .ωα is called a 
Sturmian sequence, which is not a periodic word. In this case, it is useful to study 
the (.qk-)periodic words .ωαk as approximations of .ωα where .αk = pk

qk
are the . kth 

convergents of . α and .pk, qk are coprime. 
We have seen in (2.3) that there is a recursive formula which connects the period 

lengths, . qk , for three subsequent. k values. We show next that the periods themselves 
(i.e., the finite sub-words of length . qk) are also connected via a recursive relation. 
We denote these periods by .Wk ∈ {0, 1}qk , setting 

.Wk(i) := ωαk (i), 0 ≤ i ≤ qk − 1 (2.6) 

and claiming the following. 

Lemma 2.4 The periods of the mechanical words satisfy the following: 

. W0 = 0, W1 = 0 . . . 0
c1−1

1.

If .k ≥ 2 then 

. Wk = Wk−2W
ck
k−1, k ≡ 0 mod 2,

Wck
k−1Wk−2, k ≡ 1 mod 2,

where the power means a concatenation of words. 
In addition, for .k ≥ 1, these periods appear as the prefix of the infinite Sturmian 

word .ωα in the following sense: 

• If .k ≡ 0 mod 2 then .ωα(i) = Wk(i) for all .0 ≤ i ≤ qk − 1. 
• If .k ≡ 1 mod 2 then .ωα(i) = Wk(i) for all .0 ≤ i ≤ qk − 2.
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In fact, it will be shown in the following sections that we care of the words . Wk

only up to a cyclic shift. In this sense, the expressions .Wk−2W
ck
k−1 and . Wck

k−1Wk−2

are the same. Therefore, in the literature (and, in particular, in [39, Eq. (2)]) only 
the expression.Wck

k−1Wk−2 is used. Indeed, .Wk equals to .Wck
k−1Wk−2 up to a possible 

cyclic shift is proven and used in various works, see, e.g., [8], [22, Proposition 2.2] 
and [12, Theorem 2.15]. Another difference between the common viewpoint and 
ours is that usually the periods.Wk of the mechanical words.ωαk are compared to the 
Sturmian sequence.ωα, whereas we wish to compare between the various periods to 
themselves, .Wk , .Wk−1,  an  d .Wk−2. 

We decided to supplement the discussion in the current review by treating the 
precise sub-word .Wk ,  as  it  is  defined  in (2.6), and not only up to cyclic shift. We 
employ this exact representation in Sect. 7 when defining the finite-dimensional 
Hamiltonian matrices (7.1) for the Floquet–Bloch theory. These matrices also play a 
substantial role in [3]. For these reasons we have Lemma 2.4 as written here (and not 
only up to a cyclic shift) and its proof. Statements which are similar to Lemma 2.4 
can be also found in [32, Eq. (2.8)] and [31, Problem 2.2.10]. 

The reader is referred to Sect. 6 for the proof of Lemma 2.4 and related results. 

3 Transfer Matrices and the Discriminant 

In this section, we study the spectrum of the operator .Hα,V (1.1) while our main 
focus lies on rational.α ∈ [0, 1]. In this work, we use the rational approximations. αk

to study the spectrum of.Hα,V for.α ∈ [0, 1]\Q.  I  f.α = p
q ∈ [0, 1] is rational, then. ωα

is .q−periodic. Hence, the spectrum of.Hα,V is given by Floquet–Bloch theory using 
transfer matrices and the discriminant, as is described in the following. We note that 
there is an equivalent approach to Floquet–Bloch theory by employing.q × q Hamil-
tonian matrices which depend on the Bloch parameter. This equivalent approach (and 
its connections to transfer matrices) is described in Sect. 7 and extensively used in [3]. 

3.1 The Spectrum of Periodic Operators Via Transfer 
Matrices and the Discriminant 

We briefly present here some basic Floquet–Bloch theory using the transfer matrix 
formalism. We keep the exposition as short as possible and mainly intend to set the 
notation and the tools to be used in the sequel. Two good sources for a more thorough 
introduction to the one-dimensional discrete Floquet–Bloch theory are [43,  Chap  5]  
and [46, Chap. 7]. 

Let .V ∈ R and .α ∈ [0, 1]. The difference equations associated to .Hα,V are 

.Eu(n) = u(n − 1) + u(n + 1) + Vωα(n)u(n), E ∈ R, n ∈ Z. (3.1)
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Solutions of this equation are studied via the so-called one-step transfer matrices 

. Aα(n)(E, V ) := E − Vωα(n) −1
1 0

, E ∈ R, n ∈ Z.

Writing the difference equations in a matrix form, we obtain the following. 

Lemma 3.1 Let .V ∈ R, .α ∈ [0, 1], .u : Z → C and .E ∈ R be such that Eqs. (3.1) 
are satisfied for all .n ∈ Z. Then we have for all . n ∈ Z

. Aα(n)(E, V )
u(n)

u(n − 1)
= u(n + 1)

u(n)
and det (Aα(n)(E, V )) = 1.

Proof This follows by a short computation. 

Let.c ∈ C with.
p
q := ϕ(c) ∈ [0, 1]with.p, q coprime. We observed in the previous 

section that the potential.ωα is.q-periodic for rational.α = p
q . Thus, it is advantageous 

to define the (.q-step) transfer matrix 

.Mc := A p
q
(q − 1) · A p

q
(q − 2) . . . A p

q
(1) · A p

q
(0) (3.2) 

and get the following immediate implication. 

Lemma 3.2 Let .V ∈ R, .c ∈ C with .
p
q := ϕ(c) ∈ [0, 1]. Then 

. Mc(E, V )
u(0)
u(−1)

= u(q)

u(q − 1)

holds for all .u : Z → C and .E ∈ R satisfying (3.1). In addition, .detMc = 1. 

Proof This is an immediate consequence of Lemma 3.1. 

Lemma 3.2 extends to .c = [0, 0,−1] for which .ϕ(c) = −1.  To  do  so,  we  s  et
.
p
q = −1

1 and apply the definition of the mechanical word from Lemma 2.3 to get for 
all . n ∈ Z,

. ω−1(n) := (n + 1)(−1) − n(−1) = −1,

and 

.A−1(n)(E, V ) = E + V −1
1 0

= M[0,0,−1](E, V ). (3.3) 

We continue by using the recursive structure of the Sturmian words, as expressed in 
Lemma 2.4, in order to provide the recursive relations between the transfer matrices.
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Lemma 3.3 Let .E ∈ R and .V ∈ R. Denote 

. M[0](E, V ) := 1 −V
0 1

,

and let .c = [0, 0, c1, . . . , ck] ∈ C with .ϕ(c) ∈ [0, 1] ∪ {−1}. 
(a) If .c = [0, 0],  the  n

. M[0,0](E, V ) = E −1
1 0

.

(b) If .k ∈ N and .ck ∈ N0,  the  n

. Mc(E, V ) = M[0,0,c1 ,...,ck−1](E, V )ck · M[0,0,c1 ...,ck−2](E, V ), k ≡ 0 mod 2,

M[0,0,c1 ...,ck−2 ](E, V ) · M[0,0,c1 ,...,ck−1](E, V )ck , k ≡ 1 mod 2.
(3.4) 

(c) If .k ∈ N and .ck ∈ N−1,  the  n

.tr (Mc) = tr M[0,0,c1 ...,ck−2] · M[0,0,c1 ,...,ck−1 ]
ck . (3.5) 

Remark 

(a) We clarify the lower recursive relations in Lemma 3.3 by explicitly writing 

. M[0,0,c1 ] = M[0] · M[0,0]c1 and M[0,0,c1 ,c2] = M[0,0,c1 ]
c2 · M[0,0](E, V ).

(b) In addition, we note that (3.4) does not hold for .ck = −1 (or rather, should be 
appropriately modified), whereas (3.5) does hold also for all .ck ∈ N−1.  This  
property of the trace is important and will be used in the next subsecti on.

Proof For .k = 0,  we  ge  t .c = [0, 0] and since .ωϕ([0,0]) = ω0 = 0∞ we have . q0 = 1
and 

. M[0,0] = A p0
q0

(0) = E −1
1 0

,

proving (a). 
Next, we prove (b). If .k = 1,  the  n.c = [0, 0, c1] with.c1 ∈ N, as otherwise (i.e., if 

.c1 = 0) .ϕ(c) = ∞. Hence, .ϕ(c) = 1
c1
and Lemma 2.4 implies 

.ω 1
c1

(0)ω 1
c1

(1) . . .ω 1
c1

(c1 − 2)ωc(c1 − 1) = 00 . . . 01.
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Using the definition of the transfer matrix, (3.2), we get 

. M[0,0,c1 ] = A 1
c1

(c1 − 1) · A 1
c1

(c1 − 2) . . . A 1
c1

(1) · A 1
c1

(0)

= E − V −1
1 0

E −1
1 0

c1−1

= 1 −V
0 1

E −1
1 0

E −1
1 0

c1−1

= M[0] · M[0,0]c1 ,

which verifies the statement for .k = 1 and .ck ∈ N. Note that the case .k = 1 and 
.ck = 0 results in.c = [0, 0, 0] satisfying.ϕ(c) = ∞which  is  excluded  by  assumptio  n.
If .k ≥ 2 and.ck /∈ {−1, 0}, then (b) follows from Lemma 2.4. 

Now, let.k ≥ 2 and.ck = 0.  We  ha  ve.c = [0, 0, c1, . . . , ck−2, ck−1, 0] and  by  defini-
tion of the evaluation map, we get.ϕ(c) = ϕ([0, 0, c1, . . . , ck−2]). Thus,. Mc(E, V ) =
M[0,0,c1 ...,ck−2](E, V ) follows since .Mc only depends on the evaluation .ϕ(c).  In  par-
ticular , (3.4) holds also for .ck = 0 (regardless of the parity of . k). 

It is left to prove (3.5). As a matter of fact, the cyclic property of the trace yields 
that (3.5) is a direct consequence of (3.4)  i  f .ck = −1. 

If .ck = −1 we have .c = [0, 0, c1, . . . , ck−1,−1] and . ϕ(c) = ϕ([0, 0, c1, . . . ,
ck−1 − 1]) and by definition.Mc = M[0,0,c1 ,...,ck−1−1].  I  f .k ≥ 2 we get 

. tr (Mc) = tr M[0,0,c1 ,...,ck−1−1]
= tr M[0,0,c1 ...,ck−3] · M[0,0,c1 ,...,ck−2 ]

ck−1−1

= tr M[0,0,c1 ...,ck−3 ] · M[0,0,c1 ,...,ck−2]
ck−1 · M[0,0,c1 ,...,ck−2]

−1

= tr M[0,0,c1 ...,ck−1] · M[0,0,c1 ,...,ck−2 ]
−1

= tr M[0,0,c1 ...,ck−2] · M[0,0,c1 ,...,ck−1]
−1 ,

where in the second and fourth equalities we used (3.4) together with the cyclic 
property of the trace (which allows not to distinguish between even and odd. k’s) and 
in the last equality we used that .tr(M) = tr(M−1) whenever .detM = 1 (and this 
holds for transfer matrices by Lemma 3.1). All is left is to check the case .k = 1 and 
.ck = −1. In this case,.c = [0, 0,−1],.ϕ(c) = −1 and a straightforward computation 
invoking (3.3)  give  s

.tr M[0]M−1
[0,0] = V + E = tr M[0,0,−1] .
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By standard Floquet–Bloch theory (applied to one-dimensional Jacobi operators), 
the spectrum of.H p

q ,V (for. pq = ϕ(c)) may be described by the trace of.Mc. Therefore, 
define the discriminant . tc for .c ∈ C by 

. tc(E, V ) := tr(Mc(E, V ))

and 
. σc(V ) := tc(·, V )−1([−2, 2]).

Example 3.4 Observe that if.ϕ(c) = ∞,  the  n.tc(E, V ) = 2 and so.σc(V ) = R hold. 
If .ϕ(c) = −1,  then (3.3) leads to .t[0,0,−1](E, V ) = E + V and so . σ[0,0,−1](V ) =
[−2 − V , 2 − V ] for all .V ∈ R. 

If.ϕ(c) = ∞, we bring here a summary of useful properties which may be found, 
for example, in [43, Sect. 5.4], [46, Sect. 7.1]. 

Proposition 3.5 Let .c ∈ C with .ϕ(c) /∈ {−1,∞} and .V ∈ R. 
Then the following properties hold: 

(a) . σc(V ) = σ Hϕ(c),V .

(b) Denoting .
p
q = ϕ(c),  the  se  t .tc(·, V )−1((−2, 2)) consists of exactly . q open inter-

vals. 
(c) The discriminant .tc is monotone on each connected component of 

.tc(·, V )−1((−2, 2)). 

The connected components.tc(·, V )−1((−2, 2)) mentioned in Proposition 3.5 are 
the interior of the so-called spectral bands of .σc(V ). The spectral bands are closed 
intervals whose edge points are given by.tc(·, V )−1 ({−2, 2}). In general, it is possible 
that different spectral bands overlap at their endpoint. However, this is not the case 
for the approximations of the Sturmian Hamiltonian if .V 0, see Proposition 4.1. 

Remark We were trying to keep the notation here close to the one in [39] and, in 
particular, use the notations .M and . t for the transfer matrix and its trace (discrim-
inant). Nevertheless, we deviate in the subscript notation, using .Mc instead of . Mk

and . tc instead of .t(k,p). The reasons for this change are exactly the ones which are 
specified in Remark 2.2. 

3.2 Algebraic Identities of the Transfer Matrices and Their 
Traces 

In this subsection, we develop some identities for the traces . tc. These identities 
will be used in the following sections to derive spectral properties of the periodic 
operators.Hϕ(c),V . Some of these identities can be found in [8, 39]. However, we use 
here a slightly different notation (to fit [3]) and, in particular, use the mechanical 
word sequences .ωϕ(c) for all values of .c ∈ C, rather than a single fixed Sturmian
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sequence .ωα which is the approach used in [8, 39]. For the sake of a self-contained 
presentation, we provide here complete proofs of all the relevant identities. 

We start by noting a basic property of the discriminant .tc = tr(Mc): even though 
it is a function of . c, it depends only on the value .ϕ(c). This fundamental property 
deserves an explicit mention here, as it is substantially used in the sequel. 

Lemma 3.6 Let .c, c ∈ C be such that .ϕ(c) = ϕ(c),  the  n

. tc(·, V ) = tc(·, V ) and σc(V ) = σc(V ) for all V ∈ R.

Proof This property is immediate from the definition of .Mc,  (3.2), which depends 
purely on the value of.ϕ(c),  i  f.ϕ(c) = ∞.  Fo  r.ϕ(c) = ∞, the matrix.Mc does depend 
on.c ∈ {[0], [0, 0, 0], [0, 0, 1 − 1]}. However, a short computation gives. tc(E, V ) =
2 if .ϕ(c) = ∞. The statement .σc(V ) = σc(V ) follows directly from the equality of 
the traces. 

For the sake of representation, we write . tc instead of .tc(E, V ). As an immediate 
corollary, we get 

Corollary 3.7 Let .[0, c0, c1, . . . , ck] ∈ C with .ck ∈ N. Then the following identities 
hold: 

. t[0,c0,...,ck−1,ck ,0] = t[0,c0,...,ck−1]
t[0,c0,...,ck−1,ck ,−1] = t[0,c0,...,ck−1,ck−1]
t[0,c0,...,ck−1,ck ,1] = t[0,c0,...,ck−1,ck+1].

Proof This is an implication of Lemma 3.6 together with the identities 

. ϕ([c, 0]) = ϕ([0, c0, . . . , ck−1]), ϕ([c,−1]) = ϕ([0, c0, . . . , ck−1, ck − 1]),

and .ϕ([c, 1]) = ϕ([0, c0, . . . , ck−1, ck + 1]) for .c = [0, c0, . . . , ck]. 
Lemma 3.8 ([39, Proposition 2.2]) Let.c ∈ C and.m ∈ N0 such that.[c,m] ∈ C.  The  n

. t[c,m+1] = tct[c,m] − t[c,m−1].

Proof Let.c ∈ C and.ck ∈ N0 be such that.c = [c , ck]. Observe that. A2 = tr(A)A −
det(A)12 for complex .2 × 2 matrices (this is actually a special case of Cayley– 
Hamilton theorem). In particular, we will use this identity for the transfer matrices, 
for which .det (Mc) = 1 by Lemma 3.1. With this at hand we get
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. t[c,m+1] = t[c ,ck ,m+1] = tr(M[c ,ck ,m+1])

= tr(Mc M
m+1
c )

= tr(Mc M
m−1
c M2

c )

= tr(Mc M
m−1
c [tr(Mc)Mc − det(Mc)12])

= tr(Mc)tr(Mc M
m
c ) − tr(Mc M

m−1
c )

= tr(Mc)tr(M[c,m]) − tr(M[c,m−1])
= tct[c,m] − t[c,m−1],

where in the second and sixth lines we used (3.5) of Lemma 3.3. 

Next, we aim at generalizing Lemma 3.8. To do so, we introduce the dilated 
Chebyshev polynomials of the second kind.Sl : R → R (see [36, Eq. (18.1.3)]). These 
polynomials are inductively defined by 

.S−1(x) := 0, S0(x) := 1, Sl(x) = xSl−1(x) − Sl−2(x). (3.6) 

Section 8 contains an elaborate account on these polynomials, their connection to 
the “usual” Chebyshev polynomials of the second kind and various useful identities 
which are used in this review as well as in [3]. 

Lemma 3.9 ([39, Proposition 2.2]) Let .c ∈ C and.m ≥ l ≥ −1 such that.[c,m] ∈ C, 
then 

. t[c,m+1] = Sl+1(tc)t[c,m−l] − Sl(tc)t[c,m−l−1].

Proof We fix .m ∈ N−1 and prove the statement by induction over .l ∈ N−1.  Fo  r
.l = −1, we use Lemma 3.8 to get 

. S0(tc)t[c,m−l] − S−1(tc)t[c,m−l−1] = 1 · t[c,m+1] + 0 · t[c,m] = t[c,m+1].

Now assume the statement is correct for .m > l ≥ −1.  We  then  ge  t

. t[c,m+1] = Sl+1(tc)t[c,m−l] − Sl(tc)t[c,m−l−1]
= Sl+1(tc) tct[c,m−l−1] − t[c,m−l−2] − Sl(tc)t[c,m−l−1]
= tcSl+1(tc) − Sl(tc) t[c,m−l−1] − Sl+1(tc)t[c,m−l−2]
= Sl+2(tc)t[c,m−(l+1)] − Sl+1(tc)t[c,m−(l+1)−1],

where we used Lemma 3.8 in the second equality, and the Chebyshev polynomial 
recursion in the last equality. 

In the following, an extra parameter. ∈ {−1, 0} is introduced. Later in this review 
so-called spectral bands .Ic in .σc of backward type .A and .B are introduced that are 
defined by adding to . c the digit . 0 if .Ic is backward type . A and .−1 if .Ic is backward 
type . B , see Definition 4.10.
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Corollary 3.10 Let .c ∈ C and .m ∈ N be such that .[c,m] ∈ C.  Fo  r . ∈ {−1, 0},  we  
have

. t[c,m] = Sm− −1(tc)t[c,1+ ] − Sm− −2(tc)t[c ].

Proof This is a direct consequence of Lemma 3.9. 

We proceed to apply this corollary to get another useful identity involving Cheby-
shev polynomials and the traces. 

Lemma 3.11 Let .c ∈ C and .m ∈ N be such that .[c,m] ∈ C. For any .ξ ∈ {0, 1} and 
. ∈ {−1, 0}, we have 

. Sm−1− (tc) t[c,m−1] + (−1)ξt[c,1+ ] = Sm−2− (tc) + (−1)ξ t[c,m] + (−1)ξt[c ] .

Proof First, we use twice the recursion relation for the Chebyshev polynomials to 
get 

. Sl(x)Sl−2(x) − Sl−1(x)2 = x Sl−1(x)Sl−2(x) − Sl−1(x)2 − Sl−2(x)2

= Sl−1(x)Sl−3(x) − Sl−2(x)2.

In particular, we get that this expression is independent of . l and therefore 

. Sl(x)Sl−2(x) − Sl−1(x)2 = S1(x)S−1(x) − S0(x)2 = −1.

Using this identity, Lemma 3.9 and Corollary 3.10, the lemma follows by straight-
forward computation. For example, for . = −1, 

. Sm(tc) t[c,m−1] + (−1)ξt[c,0]
= Sm(tc) Sm−1(tc)t[c,0] − Sm−2(tc)t[c,−1] + (−1)ξt[c,0]
= Sm(tc)Sm−1(tc)t[c,0] − Sm(tc)Sm−2(tc)t[c,−1] + (−1)ξSm(tc)t[c,0]
= Sm(tc)Sm−1(tc)t[c,0] − S2m−1(tc) − 1 t[c,−1] + (−1)ξSm(tc)t[c,0]
= Sm(tc)t[c,0] Sm−1(tc) + (−1)ξ − S2m−1(tc) − 1 t[c,−1]
= Sm−1(tc) + (−1)ξ Sm(tc)t[c,0] − Sm−1(tc) + (−1)ξ+1 t[c,−1]
= Sm−1(tc) + (−1)ξ Sm(tc)t[c,0] − Sm−1(tc)t[c,−1] + (−1)ξt[c,−1]
= Sm−1(tc) + (−1)ξ t[c,m] + (−1)ξt[c,−1] .

The statement for . = 0 follows the same lines except that the case .m = 1 needs 
to be treated separately (since we used Corollary 3.10 moving from the first to the 
second line, which cannot applied if . = 0 and.m = 1).
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3.3 The Fricke–Vogt Invariant 

The Fircke–Vogt invariant serves an important role in the spectral analysis of Stur-
mian Hamiltonians. We review here this well-known part of the theory, and rephrase 
it according to our convention to use the space . C. 

Denote by .[·, ·] the matrix commutator .[A, B] := AB − BA. Note that 
.tr ([A, B]) = 0, as . tr is linear and .tr(AB) = tr(BA). 

Lemma 3.12 ([39, Proposition 2.3]) Let .V ∈ R, .c = [c−1, c0, . . . , ck] ∈ C with . k ∈
N−1 and .[c,m, n] ∈ C with .m ∈ N0 and .n ∈ N−1.  The  n

. M[c,m], McM
n
[c,m]

2 = V 212,

where .12 is the .2 × 2 identity matrix. 

Proof Denote.A := M[c,m], McMn
[c,m] . As for each.2 × 2 matrix (e.g., as a special 

case of Cayley–Hamilton theorem) we have 

. A2 = tr(A)A − det(A)12 = − det(A)12,

where in the second equality we used that.tr (A) = 0. Hence, to validate the statement 
we need to show.det(A) = −V 2. Computing the determinant gives 

. det(A) = det M[c,m]McM
n
[c,m] − McM

n
[c,m]M[c,m]

= det M[c,m]Mc − McM[c,m] det(M[c,m])n

= det M[c,m], Mc ,

where we used that the determinant of a transfer matrix is one by Lemma 3.2.  To  
finish the proof, we use induction ove r .k ∈ N−1 to show. det M[c,m], Mc = −V 2

(for any.[c,m] ∈ C and .c = [c−1, c0, . . . , ck]). For the induction base, we observe 

. M[0,0], M[0] = E −1
1 0

1 −V
0 1

− 1 −V
0 1

E −1
1 0

= E −V E − 1
1 −V

− E − V −1
1 0

= V −V E
0 −V

,

and indeed.det M[0,0], M[0] = −V 2. For the induction step, suppose the statement 
is true for.k ∈ N−1. Note that for.2 × 2-matrices. B and. C ,  we  ha  ve. [B,C] = −[C, B]
and .det(−B) = det(B). Thus, the previous identity on the determinant of the com-
mutator yields
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. det M[c,ck+1,m], M[c,ck+1] = det M[c,ck+1], M[c,ck+1,m]
= det M[c,ck+1], McM

m
[c,ck+1]

= det M[c,ck+1], Mc = −V 2,

where in the second equality we used (3.4) of Lemma 3.3 assuming. k is odd. If . k is 
even, as similar computation leads to the result. 

Proposition 3.13 ([39, Proposition 2.3], Fricke–Vogt Invariant) Let .V ∈ R, . c ∈ C
and .m ∈ N0 such that .[c,m − 1] ∈ C,  the  n

. t2c + t2[c,m] + t2[c,m−1] − tct[c,m]t[c,m−1] = 4 + V 2.

To prove this proposition we use the following algebraic identity. 

Lemma 3.14 Let .A, B be two real .2 × 2 matrices such that .det(A) = 1.  The  n

. tr(AB) = tr(A)tr(B) − tr(A−1B).

Proof Since. A is a.2 × 2 matrix with.det(A) = 1, we conclude.A + A−1 = tr(A)12. 
Hence, . tr(AB) = tr tr(A)B − A−1B = tr(A)tr(B) − tr(A−1B).

Proof of Proposition 3.13 Let .c ∈ C and.ck ∈ N0 be such that .c = [c , ck]. Denoting 
.A := Mc, Mc Mm

c and applying Lemma 3.12 yields 

. tr(A2) = tr(V 212) = 2V 2.

On the other hand, a direct computation of .tr(A2) gives 

. tr(A2) = tr (McMc M
m
c − Mc M

m+1
c )2

= tr((McMc M
m
c )2) + tr((Mc M

m+1
c )2) − 2tr(McMc M

m
c Mc M

m+1
c )

= 2tr((Mc M
m+1
c )2) − 2tr(Mc M

m
c Mc M

m+2
c ).

For the first term we use the identity .B2 = tr(B)B − det(B)12 for the .2 × 2-matrix 
.B = Mc Mm+1

c and then Lemmas 3.3(c), 3.3(c) and 3.8 lead to 

.tr((Mc M
m+1
c )2) = tr(Mc M

m+1
c )

2 − 2

= t2[c,m+1] − 2

= (tct[c,m] − t[c,m−1])2 − 2

= t2c t
2
[c,m] + t2[c,m−1] − 2tct[c,m]t[c,m−1] − 2.
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For the second term, we apply Lemma 3.14 and Lemma 3.3 (c) to get 

. tr(Mc M
m
c Mc M

m+2
c ) = tr(Mc M

m
c )tr(Mc M

m+2
c ) − tr((Mc M

m
c )−1Mc M

m+2
c )

= t[c,m]t[c,m+2] − tr(M2
c )

= t[c,m]t[c,m+2] − t2c + 2

= t[c,m](tct[c,m+1] − t[c,m]) − t2c + 2

= tct[c,m]t[c,m+1] − t2[c,m] − t2c + 2

= tct[c,m](tct[c,m] − t[c,m−1]) − t2[c,m] − t2c + 2

= t2c t
2
[c,m] − tct[c,m]t[c,m−1] − t2[c,m] − t2c + 2,

where in the third equality we used the identity.B2 = tr(B)B − det(B)12 with . B =
Mc, and in the fourth and sixth equalities we used Lemma 3.8. 

Combining the identities above provides the statement of the proposition. 

4 The Spectra of Periodic Approximations of Sturmian 
Hamiltonians 

We start applying the tools from the previous section in order to study the spectral 
bands of the periodic approximations of the Sturmian Hamiltonian, as is done in 
[39, Sect. 3.1]. We start by providing general results for all Sturmian Hamiltoni-
ans (Sect. 4.1) and then restrict to .V > 4 where further analysis may be obtained 
(Sect. 4.2). 

4.1 Basic Spectral Properties for all . V 0

We provide basic properties on the spectrum of a periodic approximation of a Stur-
mian Hamiltonians, i.e., .H p

q ,V . To do so, we mainly use the transfer matrices and the 
discriminant, as was introduced in the previous section. The results in this subsection 
appeared already in [8, 10, 44]. Since the results here apply for all .V 0,  we  tend  
to omit (only in this subsection) the notatio n .V from the proofs. 

The following proposition is a refinement of Proposition 3.5 for the operators 
.H p

q ,V . Its first part appears in [39, Proposition 3.1,(i)]. 

Proposition 4.1 Let .V 0 and .c ∈ C with . pq := ϕ(c) = ∞ and . p and . q coprime. 
Then the following assertions hold: 

(a) The spectrum .σc(V ) = σ(H p
q ,V ) consists of exactly . q connected components 

which are closed intervals. 
As usual, we call these intervals, the spectral bands of .H p

q ,V (or of .σ(H p
q ,V )).
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(b) The restriction of the discriminant . tc to each of the spectral bands is strictly 
monotone. 

Proof We need to prove only the first part of the proposition, as the second part 
is classical (see, e.g., [43, Theorem 5.4.2]). By [43, Theorem 5.4.2] the spectrum 
of a .q-periodic Jacobi operator (such as .H p

q ,V ) consists of .q closed intervals, 
which might overlap only at their boundaries. Assume by contradiction that .E is 
such a point where two intervals overlap. By [43, Theorem 5.4.3] this implies that 
.Mc(E) = ±12,  fo  r .c ∈ C such that.ϕ(c) = p

q . Substituting this in Lemma 3.12 gives 

.V 212 = M[c,m], McMn
[c,m]

2 = 0,  for  an  y .m, n ∈ N. Hence, we get .V = 0 and a 
contradiction. 

Next, we rephrase a statement from [8, Proposition 4] and immediately apply it 
to connect the spectra . σc. 

Lemma 4.2 Let .V 0 and .c = [0, c0, c1, . . . , ck] ∈ C.  Le  t .E ∈ R and .i < k.  I  f

. t[0,c0,c1,...,ci−2 ](E) > 2 and t[0,c0,c1,...,ci−1](E) > 2

then there exists .C > 1 such that for all .i ≤ j ≤ k, . t[0,c0,c1,...,c j ](E) > 2Cqj ,  wher  e
.ϕ([0, c0, c1, . . . , c j ]} = p j

q j
with .p j, q j coprime. 

Proof This follows from [8, Proposition 4] by fixing an .α ∈ [0, 1]\Q such that the 
first digits of the continuous fraction expansion of . α coincide with .c0, c1, . . . , ck . 

Lemma 4.3 ([39, Proposition 3.1,(ii)] spectral monotonicity property) Let . V 0
and let .c = [0, c0, c1, . . . , ck] ∈ C with .ϕ(c) ≥ 0 and .k ∈ N0.  The  n

. σc(V ) ⊆ σ[0,c0,c1,...,ck−2 ](V ) ∪ σ[0,c0 ,c1,...,ck−1](V ).

In addition, if .[c,−1] ∈ C,  the  n

. σc(V ) ⊆ σ[c,0](V ) ∪ σ[c,−1](V ).

Proof We start by proving the first inclusion. If .E /∈ σ[0,c0 ,c1,...,ck−2] ∪ σ[0,c0 ,c1,...,ck−1], 
then Proposition 3.5 implies 

. t[0,c0,c1,...,ck−2](E) > 2 and t[0,c0,c1,...,ck−1](E) > 2.

Thus, Lemma 4.2 leads to.|tc(E)| > 2 and by Proposition 3.5,.E /∈ σc, which proves 
the first inclusion. 

To prove the second inclusion, note first that if .k = 0 and .c = [0, 0], then the 
inclusion is trivial as .σ[c,0] = σ[0] = R. Suppose now .k ≥ 1. Then the condition 
.[c,−1] ∈ C implies that.ck ≥ 1 (in particular.ck /∈ {−1, 0}). We assume first that. ck >

1. Then, by Corollary 3.7, .tc = t[0,c0,c1,...,ck−1,1] and therefore .σc = σ[0,c0,c1,...,ck−1,1].
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Applying the first part of the lemma on .c = [0, c0, c1, . . . , ck − 1, 1] gives 

. σc = σ[0,c0 ,c1,...,ck−1,1] ⊆ σ[0,c0,c1,...,ck−1] ∪ σ[0,c0,c1,...,ck−1],

and this yields the second part of the lemma since.t[c,0] = t[0,c0,c1,...,ck−1] and. t[c,−1] =
t[0,c0,c1,...,ck−1] by Corollary 3.7 and Proposition 3.5. To complete the proof assume 
that .ck = 1. In this case .t[c,0] = t[0,c0,c1,...,ck−1] and .t[c,−1] = t[0,c0,c1,...,ck−2 ] (the latter 
is by applying twice Corollary 3.7) and once again the second part of the lemma 
follows from the first. 

We end by connecting the spectrum of an aperiodic Sturmian Hamiltonian,.Hα,V , 
with .α /∈ Q with the spectra of periodic operators which approximate it. To do so, 
we apply the following result from [8]. 

Proposition 4.4 ([8]) Let .α ∈ [0, 1]\Q with infinite continued fraction expansion 
.(ci )

∞
i=0.  The  n

. σ(Hα,V ) = E ∈ R : {t[0,c0,c1,...,ck ](E)}k∈N is a bounded sequence .

Proof This is proven in [8]. 

Corollary 4.5 Let .α ∈ (0, 1)\Q with infinite continued fraction expansion .(ci)
∞
i=0. 

Then we get for all . k ∈ N

. σ(Hα,V ) ⊆ σ[0,0,c1 ,...,ck ](V ) ∪ σ[0,0,c1 ,...,ck+1](V ).

Proof Let .E ∈ σ(Hα,V ) and assume by contradiction that there is some.k ∈ N such 
that.E /∈ σ[0,0,c1 ,...,ck ](V ) ∪ σ[0,0,c1 ,...,ck+1](V ). By Proposition 3.5,. t[0,0,c1 ,...,ck ](E) >

2 and . t[0,0,c1 ,...,ck+1](E) > 2. Applying Lemma 4.2 we get that there exists . C > 1
such that 

. |t[0,0,c1 ,...,cn ](E)| > Cqn for all n ∈ N.

In particular.{t[0,0,c1 ,...,cn ](E)}k∈N is an unbounded sequence, but this contradicts. E ∈
σ(Hα,V ) by Proposition 4.4. 

Both Lemma 4.3 and Corollary 4.5 provide monotonicity statements of the spectra. 
In addition to those, we also have the following spectral convergence result. 

Proposition 4.6 Let .V ∈ R and .α /∈ Q with infinite continued fraction expansion 
.(ci )

∞
i=0.  Fo  r .k ∈ N0,  se  t .ck = [0, 0, c1, . . . , ck] ∈ C.  The  n

.σ Hα,V = lim
k→∞ σ[ck ,1](V ) = lim

k→∞ σck (V ) =
k∈N0

σck (V ) ∪ σ[ck ,1](V ) .
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Proof By [9, Theorem 1], the spectral map .[0, 1 β σ Hβ,V is continu-
ous at all irrational .β ∈ [0, 1] and for all .V ∈ R. Observe that . limk→∞ ϕ(ck) =
limk→∞ ϕ([ck, 1]) = α where. ϕ is the evaluation map. Thus, 

. σ Hα,V = lim
k→∞

σ[ck ,1](V ) = lim
k→∞

σck (V )

follows using .α /∈ Q and .σc(V ) = σ Hϕ(c),V for .c ∈ C proven in Proposition 3.5. 
Set . k(V ) := σck (V ) ∪ σ[ck ,1](V ) for.k ∈ N0 and.V ∈ R. Lemma 4.3 and Corol-

lary 4.5 imply.σ Hα,V ⊆ k+1(V ) ⊆ k(V ). Thus,.σ Hα,V ⊆ k∈N0 k(V ) fol-
lows. By the convergence of .σ[ck ,1](V ) and .σck (V ), we conclude that . { k(V )}k∈N0

converge monotonically in the Hausdorff metric to.σ Hα,V . Thus, if.E /∈ σ Hα,V , 
then there is an .ε > 0 such that.Bε(E) := E ∈ R : |E − E | < ε does not inter-
sect .σ Hα,V . Then the Hausdorff convergence of.{ k(V )}k∈N0

to.σ Hα,V implies 
that there is a .k0 ∈ N0 such that .Bε/2(E) ∩ k(V ) = ∅ for all .k ≥ k0. Hence, 
.E /∈ k∈N0 k(V ) is derived proving. k∈N0 k(V ) = σ Hα,V . 

4.2 Spectral Bands Structure for Large Coupling Constant, 
. V > 4

From this point on until the end of the paper, we specialize our discussion for the 
case .V > 4. Under this assumption, one can prove quite a few useful connections 
between the periodic spectra, . {σc}c∈C .

We start with the three-intersection-property. This observation can essentially be 
found in [10] for the Fibonacci Hamiltonian and was generalized in [39, Proposi-
tion 3.1,(iii)]. This property starts failing if .|V | ≤ 4 and this is one major obstacle to 
treat the small coupling regime. 

Proposition 4.7 ([10, 39]) Let .V > 4, .c ∈ C and .m ∈ N0 such that .[c,m − 1] ∈ C. 
Then 

. σc(V ) ∩ σ[c,m](V ) ∩ σ[c,m−1](V ) = ∅.

Proof Assume by contradiction that there is some . E ∈ σc(V ) ∩ σ[c,m](V ) ∩
σ[c,m−1](V ). By Proposition 3.5, we obtain 

. |tc(E)|, |t[c,m](E)|, |t[c,m,−1](E)| ≤ 2.

Substituting this in Proposition 3.13, .V > 4 yields 

. 20 ≥ t2c (E) + t2[c,m](E) + t2[c,m−1](E) − tc(E)t[c,m](E)t[c,m−1](E) = 4 + V 2 > 20,

a contradiction.



A Review of a Work by L. Raymond: Sturmian Hamiltonians … 23

Corollary 4.8 Let.V > 4, and.c ∈ C such that.[c,−1] ∈ C.  I  f.E ∈ σc(V ), then either 

. E ∈ σ[c,0](V ) or E ∈ σ[c,−1](V ),

but not both. 

Proof Assume.E ∈ σc(V ). By Lemma 4.3,  we  ge  t.E ∈ σ[c,0](V ) ∪ σ[c,−1](V ).  Now,  
apply Proposition 4.7 with.m = 0 and get that either.E ∈ σ[c,0](V ) or. E ∈ σ[c,−1](V ),

but not both. 

Proposition 4.9 Let .V > 4, and .c ∈ C such that .[c,−1] ∈ C.  I  f .I ⊆ σc(V ) is a 
spectral band, then . I is either contained in a spectral band of .σ[c,0](V ) or in a 
spectral band of .σ[c,−1](V ), but not in both. 

Proof Since . I is a spectral band, we conclude that . I is closed and connected. Now 
both .I ∩ σ[c,0](V ) and.I ∩ σ[c,−1](V ) are closed too and according to Corollary 4.8, 
we have the following disjoint union.I = I ∩ σ[c,0](V ) I ∩ σ[c,−1](V ) .  Sinc  e. I
is connected, one of the closed sets .I ∩ σ[c,0](V ) and .I ∩ σ[c,−1](V ) must be empty 
and the other equals to . I . Hence, . I is contained in either .σ[c,0](V ) or .σ[c,−1](V ). 
Using the same argument we may conclude that . I is contained in a single connected 
component (spectral band) of .σ[c,0](V ) or .σ[c,−1](V ). 

Proposition 4.9 motivates a classification of the spectral bands into two types. 
We start employing such a dichotomy of the spectral bands and see that it leads to a 
hierarchical structure of the spectral bands from different spectra, . σc. This structure 
is developed and described in detail in the rest of this section. 

Let .I = [a, b] and .J = [c, d] be two closed intervals. We say that . I is strictly 
included in . J and denote .I ⊆str J if .c < a and .b < d . Note that this implies the 
(weaker) inclusion .I ⊆ J . 

Definition 4.10 

Let .V ∈ R and.c ∈ C be such that .ϕ(c) ∈ [0, 1] and .[c, 0], [c,−1] ∈ C. A spectral 
band .I (V ) of .σc(V ) is called 

• backward type . A
if there exists a spectral band.J (V ) in .σ[c,0](V ) such that .I (V ) ⊆str J (V ). 

• weak backward type . A
if there exists a spectral band.J (V ) in .σ[c,0](V ) such that .I (V ) ⊆ J (V ). 

• backward type . B
if there exists a spectral band.J (V ) in .σ[c,−1](V ) such that .I (V ) ⊆str J (V ). 

• weak backward type . B
if there exists a spectral band.J (V ) in .σ[c,−1](V ) such that .I (V ) ⊆ J (V ).
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Remark In [39, Definition 3.2], a spectral band of weak backward type. A is called a 
type.I I I band, and a spectral band of weak backward type. B is called a type.I I band. 
After that, the notations. A and. B (for such bands) also appeared in the literature, see, 
e.g., [15, 20, 28]. We prefer to use here (and also in [3]) the notations. A,. B for visual 
reasons and to distinguish those from the notation .G introduced in the sequel for 
spectral gaps. In addition, only the notions of weak backward types appear in [39, 
Definition 3.2] (though not in this name). We introduce here also the stronger notion 
of (non-weak) backward types and use them to prove slightly stronger statements, 
since those are needed in order to obtain further results for .V < 4 in [3]. 

In [39, Definition 3.2] also the notion of type. I gap is introduced being a spectral 
band.I (V ) in.σ[c,1](V ) that is contained in.σ[c,1,−1](V ) (so a weak backward. B band). 
By Proposition 4.9, .I (V ) ∩ σc(V ) = ∅ and so .I (V ) is contained in a spectral gap 
of .σc(V ). As mentioned before, we omit this terminology here but when coding the 
spectrum in Sect. 5.2 the label .G is rather used. These bands are a placeholder for 
the corresponding. B band one level higher, confer Definition 5.3. 

Using Definition 4.10 and Proposition 4.9 we conclude the following. 

Corollary 4.11 For all .V > 4 and .c ∈ C with .ϕ(c) ∈ [0, 1], every spectral band in 
.σc(V ) is either of weak backward type . A or weak backward type . B, but not both. 

Proof This is just a reformulation of Proposition 4.9. 

We note that according to Definition 4.10, whether a spectral band is a (weak) 
backward type . A or . B (or not at all) depends on the value of . V . We see later (Theo-
rem 4.22) that as long as .V > 4, the type of a spectral band does not depend on the 
value of . V . This statement is generalized in [3, Theorem 2.15] for all .V 0.  Note  
that there is no use to consider the backward type properties fo r .V = 0,  as  in  this  
case all spectra of all operators.Hα,V are equal to .[−2, 2]. 

If .c ∈ C with.ϕ(c) ∈ (0, 1) and.[c, 0], [c,−1] ∈ C, then there are. c1, c2, . . . , ck ∈
N for some .k ∈ N such that either .c = [0, 0, c1, . . . , ck + 1] or . c =
[0, 0, c1, . . . , ck, 1]. Indeed, the rational number.ϕ(c) has exactly two different con-
tinued fraction expansion [27, Chap I.4]. Then the weak backward type of a spectral 
band in .σc depends on the chosen representation. More precisely, a straightforward 
computation using Corollary 3.7 (see details in [3, Proposition 2.10]) yields 

• .I (V ) is of weak backward type . A in .σ[0,0,c1 ,...,ck+1](V ) if and only if 
.I (V ) is of weak backward type . B in .σ[0,0,c1 ,...,ck ,1](V ) and 

• .I (V ) is of weak backward type . B in .σ[0,0,c1 ,...,ck+1](V ) if and only if 
.I (V ) is of weak backward type . A in .σ[0,0,c1 ,...,ck ,1](V ). 

We note that this duality does not show up in [39]. There one considers a fixed 
.α ∈ [0, 1]\Q with a fixed infinite continued fraction expansion.(c̃k)k∈N0 and rational 
number.αk = ϕ([0, 0, c̃1, . . . , c̃k]). Hence,.αk has a unique finite continued fraction 
expansion. Here and in [3], we consider all elements of. C and this is why this duality 
is evident.
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We demonstrate the classification of spectral bands to weak backward types, by 
explicitly computing a few spectral bands in the following. 

Example 4.12 According to Example 3.4 we have for .V ∈ R, 

. σ[0](V ) = σ[0,0,0](V ) = σ[0,0,1,−1](V ) = R and σ[0,0,−1](V ) = [−2 − V , 2 − V ].

We examine .σ[0,0](V ) = [−2, 2] and wish to determine its backward type. To 
do so we need to examine.σ[0,0,0](V ) = R and.σ[0,0,−1](V ) = [−2 − V , 2 − V ].  By  
Definitio n 4.10, we see that for all .V 0 the spectral band .I[0,0](V ) := [−2, 2] is 
of backward type . A but not of weak backward type. B . 

A few additional spectra are 

. σ[0,0,1](V ) = [−2 + V , 2 + V ] and σ[0,0,1,0](V ) = σ[0,0](V ) = [−2, 2].

Given these spectra, one sees that for all .V 0, the spectral band . I[0,0,1](V ) :=
[−2 + V , 2 + V ] of .σ[0,0,1](V ) is of backward type .B but not of weak backward 
type . A. 

The spectral bands considered in this example are actually of a well-defined back-
ward type and not just weak backward type. This is stronger than what is currently 
proved in Corollary 4.11. This stronger version indeed holds, in general, for all 
spectral bands as we prove in Theorem 4.22. 

Next, we extend the classification of spectral bands into types by adding forward 
types to the backward type (later we show that they are actually the same). 

Let .I = [a, b] and .J = [c, d] be two closed intervals. We say that . I is to the left 
of . J (or . J is to the right of . I ) and denote .I ≺ J if .a < c and .b < d . Moreover, we 
say . I is strictly to the left of . J (or . J is strictly to the right of . I ) and denote. I ≺str J
if .b < c. Observe that .I ≺str J holds if and only if .I ≺ J and .I ∩ J = ∅. 
Definition 4.13 Let .V ∈ R\{0}.  Le  t .c ∈ C and .m ∈ N be such that .[c,m] ∈ C.  A  
spectral band.Ic(V ) of.σc(V ) is called of.m-forward type. Awith.M = m − 1 (respec-
tively, .m-forward type . B with .M = m) if the following holds. 

(A) There exist .M spectral bands of .σ[c,m](V ) (denoted .I 1[c,m](V ), . . . , I M[c,m](V )) 
which satisfy 

(A1) .I i[c,m](V ) ⊆str Ic(V ) for all .1 ≤ i ≤ M . 
In particular, these bands are of backward type . A. 

(A2) .I i[c,m](V ) is not of weak backward type . B for all .1 ≤ i ≤ M . 

(B) For each.n ∈ N,  there  exis  t .M + 1 spectral bands of . σ[c,m,n](V )

(denoted.I 1[c,m,n](V ), . . . , I M+1
[c,m,n](V )) which satisfy
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(B1) .I j
[c,m,n](V ) ⊆str I

j
[c,m,n−1](V ) for all.1 ≤ j ≤ M + 1,  wher  e. I j

[c,m,0](V ) :=
Ic(V ). 
In particular, these bands are of backward type . B . 

(B2) .I j
[c,m,n](V ) is not of weak backward type . A for all .1 ≤ j ≤ M + 1. 

(I) For each .n ∈ N,  we  hav  e

. I 1[c,m,n](V ) ≺ I 1[c,m](V ) ≺ I 2[c,m,n](V ) ≺ I 2[c,m](V ) . . . ≺ I M[c,m](V ) ≺ I M+1
[c,m,n](V ).

We say .Ic(V ) satisfies the stronger interlacing property if (I) is replaced by 

. I 1[c,m,n](V ) ≺str I
1
[c,m](V ) ≺str I

2
[c,m,n](V ) ≺str . . . ≺str I

M
[c,m](V ) ≺str I

M+1
[c,m,n](V ).

(Istr)

Remark Definition 4.13 rephrases the content of [39, Lemma 3.3]. A few notes 
should be made about the similarities and differences of both. First, as is commonly 
done in this review, we use the notation.c ∈ C rather than.(k, p) as in [39]. Second, we 
state the lemma from [39] as a definition here, since in [3] we need to keep the sepa-
ration between backward types and forwards type for the sake of some of the proofs 
(even if at the end we realize that both concepts are equivalent). Third, Definition 4.13 
introduces a slightly stronger notion of forward type than the one which appears 
explicitly1 in [39, Lemma 3.3]; the strengthening is by using everywhere the strict 
inclusion.⊆str rather than.⊆ and  also  by  having  in  (B1). I j

[c,m,n](V ) ⊆str I
j

[c,m,n−1](V )

for all .n ∈ N rather than just .I j
[c,m,n](V ) ⊆str I

j
c (V ). This strengthening is crucial 

in [3], and that is why we choose to deviate from the original exposition in [39, 
Lemma 3.3]. 

Our next task is to show that indeed each spectral band has a well-defined forward 
type as in Definition 4.13. Actually, we will see that if a spectral band is of weak 
backward type . A (respectively,. B)  then  it  is  also of .m-forward type. A (respectively, 
. B)  for  a  ll .m ∈ N. This will be stated in Proposition 4.18. But before doing so, we 
need to prove two preparatory lemmas (Lemmas 4.14 and 4.16). 

Lemma 4.14 Let .V > 4.  Le  t .c ∈ C and.m ∈ N be such that.[c,m] ∈ C.  Le  t .Ic(V ) be 
a spectral band in .σc(V ) of weak backward type .A with .M = m − 1 (respectively, 
of weak backward type . B with .M = m). Then the following holds (compare with 
Definition 4.13):

1 In the original paper [39], the strict inclusion and strict order were implicitly assumed without an 
explicit proof. 
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(a) There exist exactly .M spectral bands of .σ[c,m](V ) (denoted . I 1[c,m](V ), . . . ,

I M[c,m](V )) which are contained in .Ic(V ). 
These spectral bands satisfy properties (A1) and (A2) from Definition 4.13. 

(b) There exist exactly.M + 1 spectral bands of.σ[c,m,1](V ) (denoted. I 1[c,m,1](V ), . . . ,

.I M+1
[c,m,1](V )) which are contained in .Ic(V ). These spectral bands satisfy 

(1) .I j
[c,m,1](V ) ⊆ Ic(V ), for all .1 ≤ j ≤ M + 1. In particular, these bands are 
of weak backward type . B. 

(2) .I j
[c,m,1](V ) is not of weak backward type . A for all .1 ≤ j ≤ M + 1. 

(c) The following interlacing property holds: 

. I1[c,m,1](V ) ≺str I
1[c,m](V ) ≺str I

2[c,m,1](V ) ≺str I
2[c,m](V ) . . . ≺str I

M[c,m](V ) ≺str I
M+1
[c,m,1](V ).

Remark We can colloquially phrase Lemma 4.14 as follows: if the spectral band 
.Ic(V ) is of a weak backward type .A (or . B), then for all .m ∈ N it is “partially” 
.m-forward type .A or . B , correspondingly. By “partially” we mean that .Ic(V ) fully 
satisfies properties (A1) and (A2) (in Definition 4.13), but it satisfies properties (B1), 
(B2) and the strong interlacing (Istr) only for.n = 1 and property (B1) is satisfied only 
in its weak version, i.e., that all .I j

[c,m,1] are of weak backward type. B . Another differ-
ence between Lemma 4.14 and Definition 4.13 (.m-forward type) goes in the other 

direction: in this lemma we state that the spectral bands. I i[c,m]
M

i=1
and. I j

[c,m,n]
M+1

j=1
are unique, which is not part of Definition 4.13. 

Proof First, we fix the value of .V > 4 throughout the proof, but for brevity we 
omit .V from the various notations (for example, writing just . I and . σc). We fix the 
following auxiliary variable: 

. δB := 0, I is of backward type A,

1, I is of backward type B,

which allows us to prove the lemma simultaneously for both these cases. Note that 
with this notation .M = m − 1 + δB , for the value .M which is introduced in the 
statement. 

We introduce two other notations which will help throughout the proof. Given 
.c ∈ C and a spectral band.Ic ⊆ σc, we know by Proposition 3.5 that. tc(Ic) = [−2, 2]
and. tc|Ic is strictly monotone. Hence, for each.x ∈ [−2, 2] we may denote by. E Ic

c (x)

the unique value in .Ic such that .tc(E Ic
c (x)) = x . 

The proof consists of four steps, which we briefly summarize before going into 
the details. To obtain the candidates for the spectral bands.I i[c,m] in property (A) and 
the spectral bands.I j

[c,m,1] in property (B), we indicate specific energy values.{Ai }Mi=1
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and .{Bi}M+1
i=1 in . I and find the spectral bands of .σ[c,m] and .σ[c,m,1] which contain 

these values. This forms the first two steps of the proof. The third step would be to 
prove property (I) by observing the order between the aforementioned energy values 
.{Ai}Mi=1 and .{Bi}M+1

i=1 . The last step is to show that there are no other spectral bands 
in .σ[c,m] and .σ[c,m,1] which satisfy those properties, implying the uniqueness which 
is mentioned in (A) and (B). 

Step 1: Defining the spectral bands .{I i[c,m]}Mi=1 and proving (A2) and partially (A1): 
Define .Ai := E Ic

c (2 cos( iπ
m+δB

)) for .i = 1, . . . ,m − 1 + δB = M satisfying 

.tc(Ai ) = 2 cos( iπ
m+δB

). We use these values to define spectral bands in .σ[c,m],  and  

show later that those are exactly .{I i[c,m]}Mi=1 from Definition 4.13(A). 
Corollary 3.10 (applied for . = −δB) implies 

. t[c,m](Ai) = Sm−1+δB (tc(Ai))t[c,1−δB ](Ai) − Sm−2+δB (tc(Ai))t[c,−δB ](Ai).

The dilated Chebyshev polynomials satisfy.Sl(2 cos θ) = sin(l+1)θ
sin θ , see Lemma 8.3. 

Using this and.tc(Ai) = 2 cos( iπ
m+δB

), we evaluate the dilated Chebyshev polynomials 
which appear in the last equation: 

. Sm−1+δB (tc(Ai)) = Sm−1+δB 2 cos
iπ

m + δB
=

sin (m + δB) iπ
m+δB

sin iπ
m+δB

= 0,

and 

.Sm−2+δB (tc(Ai )) = Sm−2+δB 2 cos
iπ

m + δB

=
sin (m − 1 + δB) iπ

m+δB

sin iπ
m+δB

=
sin iπ − iπ

m+δB

sin iπ
m+δB

=
sin(iπ) cos iπ

m+δB
− cos(iπ) sin iπ

m+δB

sin iπ
m+δB

= − cos(iπ) = (−1)i+1.
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Combining the computations above gives 

. t[c,m](Ai) = (−1)i t[c,−δB ](Ai).

Since .Ic has a well-defined weak backward type (either .A or . B), by the defini-
tion of .δB we get that . t[c,−δB ] Ic

≤ 2.  Sinc  e .Ai ∈ Ic, the equation above implies 

.|t[c,m](Ai)| ≤ 2. This means that .{Ai}Mi=1 ⊆ σ[c,m]. Hence, for each .1 ≤ i ≤ M we 
may denote by .I i[c,m] the spectral band in .σ[c,m] which contains.Ai . At this point, we 

note that it could be that different.Ai0 = Ai1 give rise to the same spectral bands. I i0[c,m]
and .I i1[c,m]. However, we prove below in step 3 that .Ai0 Ai1 implies .I i0[c,m] I i1[c,m]. 

We show now that for each i the spectral band.I i[c,m] is of weak backward type. A and 
not of weak backward type. B . By Corollary 4.8,  we  have  that  either. Ai ∈ σ[c,m,0] = σc

or.Ai ∈ σ[c,m,−1].  Sinc  e .Ai ∈ Ic ⊆ σc we get that.Ai /∈ σ[c,m,−1]. By Proposition 4.9, 
we have that .I i[c,m] is either contained in a spectral band of .σ[c,m,0] or of .σ[c,m,−1]. 
But, since .Ai /∈ σ[c,m,−1] the former option holds and we get that .I i[c,m] is contained 
in . Ic. In particular.I i[c,m] is of weak backward type. A and not of weak backward type 
. B . This shows property (A2), but it does not yet show property (A1) since we only 
proved that.I i[c,m] is of weak backward type. A. We will complete the proof of property 

(A1) in step 3, where we also prove that .Ai0 = Ai1 implies .I i0[c,m] I i1[c,m] and that 
they satisfy (A1). 

Step 2: Defining the spectral bands .{I j
[c,m,1]}M+1

j=1 : 

We proceed similar as in step 1. Define .B j := E Ic
c (2 cos( jπ

m+δB+1 )) for . j = 1, . . . ,

m + δB = M + 1 satisfying.tc(B j) = 2 cos( jπ
m+δB+1 ). Similar to the previous step in 

the proof, we will now use these values to define spectral bands in .σ[c,m,1]. Corollar-
ies 3.7 and 3.10 (applied for . = −δB) lead to 

. t[c,m,1](B j) = t[c,m+1](B j)

= Sm+δB (tc(B j))t[c,1−δB ](B j) − Sm+δB−1(tc(B j))t[c,−δB ](B j).

The dilated Chebyshev polynomials satisfy.Sl(2 cos θ) = sin(l+1)θ
sin θ

, see Lemma 8.3. 
Using this and .tc(B j) = 2 cos( jπ

m+δB+1 ), we evaluate the dilated Chebyshev polyno-
mials which appear in the last equation: 

. Sm+δB (tc(B j )) = Sm+δB 2 cos
jπ

m + δB + 1
=

sin (m + δB + 1) jπ
m+δB+1

sin jπ
m+δB+1

= 0,

and
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. Sm+δB−1(tc(B j)) = Sm+δB−1 2 cos
jπ

m + δB + 1

=
sin (m + δB)

jπ
m+δB+1

sin jπ
m+δB+1

=
sin jπ − jπ

m+δB+1

sin jπ
m+δB+1

=
sin( jπ) cos jπ

m+δB+1 − cos( jπ) sin jπ
m+δB+1

sin jπ
m+δB+1

= − cos( jπ) = (−1) j+1.

Combining the computations above gives 

. t[c,m,1](B j) = (−1) j t[c,−δB ](B j).

Since .Ic has a well-defined weak backward type (either .A or . B), by the defini-
tion of .δB we get that . t[c,−δB ] Ic

≤ 2.  Sinc  e .B j ∈ Ic, the equation above implies 

.|t[c,m,1](B j)| ≤ 2. This means that . B j
M+1
j=1 ⊆ σ[c,m,1]. Hence, for each . 1 ≤ j ≤

M + 1 we may denote by .I j
[c,m,1] the spectral band in .σ[c,m,1] which contains .B j . 

Now, similar to the argument in step 1, we deduce that each.I j
[c,m,1] is of weak back-

ward type . B and not of weak backward type . A. 
We note that just as in the previous step, we should still prove that. I j0

[c,m,1] I j1
[c,m,1]

if . j0 j1). 

Step 3: Band interlacing: As mentioned before, the interlacing follows by the 
corresponding interlacing of .{Ai}Mi=1 and . B j

M+1
j=1 . The interlacing of .{Ai}Mi=1 and 

. B j
M+1
j=1 results from the interlacing of the zeros of two successive dilated Cheby-

shev polynomials, as these belong to a family of orthogonal polynomials. Writing 
this explicitly, we note that.0 <

j
M+2 <

j
M+1 <

j+1
M+2 < π,  for  al  l.1 ≤ j ≤ M ,  so  that  

the sets . i
M+1

M

i=1
, . j

M+2

M+1

j=1
interlace. The sets .{Ai}Mi=1 , . B j

M+1
j=1 are obtained as 

a monotone function acting on these sets and hence also interlace. Indeed, to see this 

recall that .Ai := E Ic
c 2 cos(π i

M+1 ) , .B j := E Ic
c 2 cos(π j

M+2 ) and note the strict 

monotonicity of the cosine on .[0,π] and the strict monotonicity of . tc on .Ic together 
with .E Ic

c = tc|Ic −1
. 

Hence, we get that either 

.B1 < A1 < B2 < · · · < AM < BM+1, (4.1)
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or 
.B1 > A1 > B2 > · · · > AM > BM+1. (4.2) 

Whether (4.1)  is  used  or (4.2) is determined by .sign( tc Ic
) which is indeed 

constant (see Proposition 3.5). We now draw a few conclusions from this inter-
lacing. In the previous two steps we have seen that .{Ai}Mi=1 ⊆ σc ∩ σ[c,m] and 

. B j
M

j=1 ⊆ σc ∩ σ[c,m,1]. Applying Proposition 4.7 with.c = [c,m, 1],.m = 0 yields 
.σc(V ) ∩ σ[c,m](V ) ∩ σ[c,m,1](V ) = ∅ (as always, for .V > 4). We get, in particular, 
that for all . i ,.Ai /∈ σ[c,m,1] and all . j ,.B j /∈ σ[c,m]. We use this to observe that for some 
.i0 i1, the spectral band.I i0[c,m] ⊆ σ[c,m] contains.Ai0 , the spectral band. I i1[c,m] ⊆ σ[c,m]
contains.Ai1 , and by the interlacing ((4.1)  and  (4.2)) there is some point . B j /∈ σ[c,m]
between.Ai0 and.Ai1 . This means, in particular, that all the spectral bands. I i[c,m]

M

i=1
, 

defined in step 1, are distinct. In exactly the same manner we conclude that all 

the spectral bands . I j
[c,m,1]

M+1

j=1
, defined in step 2, are distinct. By Proposition 4.7, 

.I i[c,m] ∩ I j
[c,m,1] = ∅ holds for all .i, j since both are contained in .σc(V ). Thus, the 

desired strong interlacing property (Istr) of Definition 4.13 follows for .n = 1.  We  
should just note that if the interlacing of the set s .{Ai }Mi=1, . B j

M+1
j=1 is as in (4.2), we 

should reshuffle the indices in order to get the interlacing as in (4.1). Namely, we 
permute the indices of .{Ai}Mi=1 by.1 ↔ M , .2 ↔ M − 1, ..., and permute the indices 

of . B j
M+1
j=1 by .1 ↔ M + 1, .2 ↔ M , and so on. Obviously, this affects the indices 

of the spectral bands. I i[c,m]
M

i=1
and. I j

[c,m,1]
M+1

j=1
, and we get the strong interlacing 

property of Definition 4.13,  (Istr)  f  or .n = 1. 
Using the interlacing property we may also deduce that the spectral bands . I i[c,m]

are of backward type. A. We already obtained in step 1 that they are of weak backward 
type . A. But, thanks to the interlacing property there is another spectral band to the 
left and to the right of each .I i[c,m] which is also included in . Ic. Hence, each . I

i
[c,m]

is strictly included in .Ic and it is of backward type . A. Thus, . I i[c,m]
M

i=1
satisfy also 

(A1). 

Step 4: Uniqueness of the bands: We show now that the spectral bands . I i[c,m]
M

i=1

are the only spectral bands of.σ[c,m] which are contained in.Ic and that . I
j

[c,m,1]
M+1

j=1
are the only spectral bands of .σ[c,m,1] which are contained in . Ic. 
Let .J ⊆ σ[c,m] such that .J ⊆ I . We will show that .Ai ∈ J for some.1 ≤ i ≤ M and 
conclude that .J = I i[c,m], which proves the uniqueness in property (A). 
Due to Corollary 4.11, .Ic has a well-defined weak backward type (either .A or 
. B). By definition of .δB , we therefore get that .Ic ⊆ σc ∩ σ[c,−δB ]. Hence, also . J ⊆
σc ∩ σ[c,−δB ]. Then Proposition 4.7 implies . σc(V ) ∩ σ[c,1−δB ](V ) ∩ σ[c,−δB ](V ) = ∅
for .V > 4 and so we conclude .J ∩ σ[c,1−δB ] = ∅. Thus, Proposition 3.5 leads to 
. t[c,1−δB ](E) > 2 for all .E ∈ J . Similarly, we have . σc(V ) ∩ σ[c,m−1](V ) ∩
σ[c,m](V ) = ∅ for .V > 4 by Proposition 4.7 and so .J ⊆ σc ∩ σ[c,m]. Thus, 
. t[c,m−1] (E) > 2 follows for all .E ∈ J .
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Since.t[c,1−δB ] and.t[c,m−1] are continuous in. E ,  the  signs  o  f.t[c,1−δB ](E) and. t[c,m−1] (E)

are constant for all .E ∈ J by the previous considerations. Thus, we can choose an 
.ξ ∈ {0, 1} such that 

. t[c,m−1] (E) + (−1)ξ t[c,1−δB ] (E) = 0 for all E ∈ J.

Since .J ⊆ Ic ⊆ σ[c,−δB ],  we  have . t[c,−δB ](E) ≤ 2 for all .E ∈ J . In addition, 
. t[c,m](E) = 2 if .E is the left or right edge of . J . Note that the sign of . t[c,m](E)

changes if .E is the left, respectively, the right edge of . J . Therefore, by the interme-
diate value theorem there exists .E0 ∈ J such that 

. t[c,m] (E0) + (−1)ξ t[c,−δB ] (E0) = 0.

Then Lemma 3.11 (applied for . = −δB )  give  s

. Sm−1+δB (tc(E0))

⎡

⎢⎣t[c,m−1](E0) + (−1)ξ t[c,1−δB ](E0)

=0 as E0∈J

⎤

⎥⎦

= Sm−2+δB (tc(E0)) + (−1)ξ

⎡

⎣t[c,m](E0) + (−1)ξ t[c,−δB ] (E0)

=0

⎤

⎦ .

We conclude.Sm−1+δB (tc(E0)) = 0 for .E0 ∈ J ⊆ I . 
Since by definition of the dilated Chebyshev polynomials .S0 ≡ 1,  we  ge  t . m − 1 +
δB = 0. Hence.m − 1 + δB ≥ 1 and we conclude.|tc (E0)| < 2, since dilated Cheby-
shev polynomials do not vanish outside.(−2, 2), see Lemma 8.2(f). Therefore, there 
exists some.θ ∈ (0,π) such that .tc (E0) = 2 cos θ and 

. 0 = Sm−1+δB (2 cos θ) = sin ((m + δB) θ)

sin θ
,

where  we  used  Lemma 8.3 in the last equality. We conclude that .θ = iπ
m+δB

for 

some.1 ≤ i ≤ m − 1 + δB . Therefore,.tc(E0) = 2 cos iπ
m+δB

or, equivalently,. E0 =
E I

c (2 cos( iπ
m+δB

)). But this is exactly the definition of.Ai in the beginning of the proof, 

and so .E0 = Ai . Thus, .J = I i[c,m] follows proving the uniqueness in (a). 

In order to show the uniqueness for the spectral bands. I j
[c,m,1]

M+1

j=1
, we repeat the 

arguments above, mainly replacing .m with .m + 1 and using .σ[c,m,1] = σ[c,m+1] and 
.σ[c,m,1,−1] = σ[c,m,0] by Lemma 3.6. Briefly, if we assume that . J is a spectral band 
of .σ[c,m,1] such that .J ⊆ I , we are able to conclude that there exists . 1 ≤ j ≤ m +
δB such that .E0 := 2 cos jπ

m+1+δB
∈ J . Thus, .E0 = B j for some .1 ≤ j ≤ m + δB
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follows where. B j
m+δB
j=1 where defined in step 2. Hence,.J = I j

[c,m,1] follows proving 
the uniqueness in (b). 

In the course of proving Lemma 4.14, we have gained some information regarding 
the location of the spectral bands .I i[c,m]. We state this here as a separate corollary, 
since it is useful in a proof which appears in [3, Eq. (7.11)]. 

Corollary 4.15 Let .V > 4, .c ∈ C and .m ∈ N be such that .[c,m] ∈ C.  I  f .Ic(V ) is a 
spectral band in .σc(V ) of weak backward type . B. There exist unique . {Ei}mi=1 ⊆ Ic
such that 

. tc(Ei) = 2 cos
iπ

m + 1
· sign(tc(L(Ic))),

where .L(Ic) is the left edge of . Ic. In addition, for all .1 ≤ i ≤ m, .Ei ∈ I i[c,m],  wher  e
.I i[c,m] are the spectral bands from Lemma 4.14 (also Definition 4.13). 

In order to upgrade Lemma 4.14(b) to the spectral bands. I j
[c,m,n]

M+1

j=1
(as required 

in (B) in Definition 4.13), the following lemma is used. 

Lemma 4.16 Let .V > 4.  Le  t .n ∈ N, .[c , n] ∈ C and . I be a spectral band in . σ[c ,n]
of weak backward type . B. Then there is a unique spectral band . J in .σ[c ,n+1] such 
that .J ⊆str I . In particular, . J is of backward type . B. 

Proof The proof of this lemma follows from Lemma 4.14.  Le  t.I ⊆ σ[c ,n] be  a  spectral  
band of backward type . B . Applying Lemma 4.14 for .c := [c , n] gives that there 
exists a unique spectral band .J ⊆ σ[c ,n,1] such that .J ⊆str I . Equivalently, . J is a 
spectral band of backward type .A when . J is considered a spectral band of .σ[c ,n,1]. 
Nevertheless, since .σ[c ,n,1] = σ[c ,n+1], we may consider .J as a spectral band of 
.σ[c ,n+1] since .σ[c ,n,1,0] = σ[c ,n+1,−1] by Lemma 3.6 Thus, . J is of backward type . B
as a spectral band of .σ[c ,n+1] for the same reason, since .J ⊆str I . 

Lemma 4.16 implies that every spectral band of backward type. B of.σ[c,n] contains 
another (unique) spectral band of backward type .B of .σ[c,n+1]. This construction 
continues indefinitely by recursion, and hence we call it the tower property. 

Corollary 4.17 (Tower property) Let.V > 4,.[c , 1] ∈ C and.I[c ,1] be a spectral band 
of .σ[c ,1](V ) of weak backward type . B. Then there are unique spectral bands.I[c ,n] in 
.σ[c ,n](V ) of backward type. B for all .n ≥ 2 such that.I[c , j+1] ⊆str I[c , j ] for all. j ∈ N. 

Proof This follows directly from an induction over .n ≥ 2 and Lemma 4.16. 

Proposition 4.18 Let .V > 4 and .c ∈ C with .[c,m] ∈ C for all .m ∈ N.  Le  t .Ic(V ) be 
a spectral band in .σc(V ) of weak backward type .A (respectively, weak backward 
type . B). Then .Ic(V ) is of .m-forward type . A (respectively, .m-forward type . B) for all 
.m ∈ N. In addition,
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(a) The spectral bands . I i[c,m](V )
M

i=1
mentioned in the .m-forward definition (Def-

inition 4.13) are the only spectral bands in .σ[c,m](V ) which are included in 
.Ic(V ). 

(b) The spectral bands . I j
[c,m,n](V )

M+1

j=1
mentioned in the .m-forward definition 

(Definition 4.13) are the only spectral bands in .σ[c,m,n](V ) which satisfy prop-
erties (B1) and (B2) (in Definition 4.13). 

(c) The strong interlacing property (Istr) holds. 

Proof As before, we omit all the .V dependencies here but note that the proof relies 
on various results using .V > 4. Combining Lemma 4.14 with Lemma 4.16 implies 

the existence and uniqueness of the spectral bands. I i[c,m]
M

i=1
and. I j

[c,m,1]
M+1

j=1
,  and  

these spectral bands satisfy properties (A1), (A2) and (Istr), see Definitio n 4.13.  Le  t
.1 ≤ j ≤ M + 1. Then Corollary 4.17 (applied for .c = [c,m]) asserts that for all 
.n ∈ N, there exist a unique spectral band.I j

[c,m,n] such that 

. I j
[c,m,n] ⊆str I

j
[c,m,n−1] ⊆str . . . ⊆str I

j
[c,m,1] ⊆ Ic.

By construction.I j
[c,m,n] is of backward type. B for all.n > 1 and not of weak backward 

type. A by Corollary 4.11. Thus, for all.n > 1, the spectral bands. I j
[c,m,n]

M+1

j=1
satisfy 

properties (B1) and (B2). All that is left to show is .I j
[c,m,1] ⊆str Ic for all . 1 ≤ j ≤

M + 1. 
Let .E− < E+ be chosen such that .Ic = [E−, E+]. Thus, .|tc(E±)| = 2 holds by 

Proposition 3.5. In addition, Lemma 4.14 implies .I 1[c,m,1] ≺str . . . ≺str I
M+1
[c,m,1] and 

.I j
[c,m,1] ⊆ Ic. Therefore, it is sufficient to prove.|t[c,m,1](E±)| > 2 in order to conclude 

that .I j
[c,m,1] ⊆str Ic for all .1 ≤ j ≤ M + 1. 

As .|tc(E±)| = 2, Lemma 8.2 implies .|Sl+1 (tc(E±)) | = l + 2. Thus, applying 
Lemma 3.9 and the reversed triangle inequality gives that for .m ≥ l ≥ −1, 

.|t[c,m,1](E±)| = |t[c,m+1](E±)| (4.3) 

=  |Sl+1 (tc(E±)) t[c,m−l](E±) − Sl (tc(E±)) t[c,m−l−1](E±)| 
≥ (l + 2)|t[c,m−l](E±)|  −  (l + 1)|t[c ,m−l−1](E±)|.

We continue estimating the previous term by a suitable choice of. l depending whether 
.Ic(V ) is of weak backward type . A or . B . 

If .Ic(V ) is of weak backward type. A,  se  t .l = m − 1. Note that . Ic(V ) ⊆ σ[c,0](V )

(since we assume now that .Ic(V ) is of weak backward type . A) and therefore 
.|t[c,0](E±)| ≤ 2.  The  n .E± ⊆ σc(V ) ∩ σ[c,0](V ) leads to .E± /∈ σ[c,1](V ) by Propo-
sition 4.7 and.V > 4. Thus,.|t[c,1](E±)| > 2 is concluded from Proposition 3.5. Sub-
stituting .|t[c,0](E±)| ≤ 2 and .|t[c,1](E±)| > 2 in Eq. (4.3)  gives
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. |t[c,m,1](E±)| ≥ (m + 1)|t[c,1](E±) − m|t[c,0](E±)| > 2

finishing the proof in this case. 
If.Ic(V ) is of weak backward type. B ,  se  t .l = m and note that.|t[c,−1](E±)| ≤ 2.  In  

addition, .|t[c,0](E±)| > 2 holds as .E± ∈ Ic(V ) and .Ic(V ) is not of weak backward 
type . A by Corollary 4.11 and .V > 4. Then Equation (4.3) leads to 

. |t[c,m,1](E±)| ≥ (m + 2)|t[c,0](E±)| − (m + 1)|t[c,−1](E±)| > 2

finishing the proof. 

Proposition 4.18 is comparable to [39, Lemma 3.3]. Nevertheless, Proposition 4.18 
is slightly stronger in three aspects: using everywhere the strict inclusion . ⊆str

rather than . ⊆; stating the properties for all .m, n ∈ N; and also by having in (B1) 
.I j

[c,m,n](V ) ⊆str I
j

[c,m,n−1](V ) for all .n ∈ N rather than just .I j
[c,m,n](V ) ⊆str I

j
c (V ). 

This strengthening is crucial in [3], and that is why we choose to deviate from the 
original exposition in [39, Lemma 3.3]. 

Proposition 4.18 shows the implication between (weak) backward type and for-
ward type. Therefore, we are motivated to include both in one definition (Defini-
tion 4.19) and to prove their equivalence if .V > 4, see Theorem 4.22. 

Definition 4.19 Let .V > 4 and .m ∈ N.  Le  t .c ∈ C such that .[c,m] ∈ C. A spectral 
band .Ic of .σc(V ) is called of 

• type . A if. Ic is of backward type. A and  it  is  also of.m-forward type. A for all.m ∈ N. 
• type . B if. Ic is of backward type. B and  it  is  also of.m-forward type. B for all.m ∈ N. 

Before proving the main theorem—that each spectral band is of type .A or . B ,  we  
provide a useful corollary of Proposition 4.18 for which the following example is a 
warm up. 

Example 4.20 Let .V > 4. Then a short computation yields that . σ[0,0](V ) =
[−2, 2] =: I[0,0](V ) is of backward type .A and . σ[0,0,1](V ) = [−2 + V , 2 + V ] =:
K[0,0,1](V ) is of backward type . B , see also Example 4.12. Thus, Proposition 4.18 
implies that .I[0,0](V ) is of type .A and .K[0,0,1](V ) is of type . B . Moreover, Proposi-

tion 4.18 and Lemma 4.16 imply for all .n ≥ 2 that there are . I i[0,0,n](V )
n−1

i=1
of type 

. A and one spectral band.K[0,0,n](V ) of type . B such that 

. σ[0,0,n] =
n−1

i=1

I i[0,0,n](V ) ∪ K[0,0,n](V ), K[0,0,l](V ) ⊆str K[0,0,l−1](V ) for 2 ≤ l ≤ n,

and 
. I 1[0,0,n](V )} ≺str I

2
[0,0,n](V ) ≺str . . . ≺str I

n−1
[0,0,n](V ) ≺str K[0,0,n](V ).

The structure is sketched in Fig. 2.
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σ[0,0,2,1](V ) 

c1 =  2  

B 

I1 [0,0,2,1](V ) 

B 

I2 [0,0,2,1](V ) 

A 

σ[0,0,2](V ) 

c1 = 2 

A 

I1 [0,0,2](V ) 

B 

K[0,0,2](V ) 

σ[0,0,1](V ) 

c1 =  1  

B 

K[0,0,1](V )−2  +  V 2  +  V 

σ[0,0](V ) 
A 

I[0,0](V ) −2 2

Fig. 2 The first spectral bands defined in Example 4.20 

Corollary 4.21 Let .V > 4 and .c = [0, c0, c1, . . . , ck] ∈ C be such that .ck ≥ 1 if 
.k ≥ 1 and .ϕ(c ) ∈ [0, 1]. Consider a spectral band . J in .σc (V ). 

(a) If . J is of weak backward type. A,  the  n . J is of backward type . A and either 

• .J = [−2, 2] and .ϕ(c ) = 0,  o  r
• there is a unique spectral band.Ic in .σc(V ) with .c = [0, c0, c1, . . . , ck−1] and 
a.1 ≤ i ≤ M (where.M = ck − 1 if. Ic is of type. A and.M = ck if . Ic is of type 
. B) such that.J = I i[c,m] with.m = ck where the latter is the unique. i th spectral 
band associated with .Ic defined in (A). 

(b) If . J is of weak backward type. B ,  the  n . J is of backward type . B and either 

• .J = K[0,0,n] from Example 4.20, .ϕ(c) = 1
n and .k = 1,  o  r

• there is a unique spectral band.Ic in .σc(V ) with .c = [0, c0, c1, . . . , ck−2] and 
a .1 ≤ j ≤ M + 1(where.M = ck−1 − 1 if .Ic is of type . A and .M = ck−1 if . Ic
is of type . B) such that .J = I j

[c,m,n] with .m = ck−1, n = ck where the latter is 
the unique. j th spectral band associated with .Ic defined in (B). 

In addition, there is a unique spectral band .I[c,ck−1,1] in .σ[c,ck−1,1](V ) of type . B
such that either .J = I j

[c,ck−1,1] (if .ck = 1)  o  r .J ⊆str I
j

[c,ck−1,1] (if .ck > 1). 

Proof Define .c = [0, c0, c1, . . . , ck−1]. 
(a) Let.J ⊆ σc (V ) be of weak backward type. A. Note first that.σ[0,0](V ) = [−2, 2], 
where the corresponding spectral band is of type . A, see Example 4.20.  I  f . ϕ(c ) ∈
[0, 1], we conclude .k ≥ 1 and .ϕ([c , 0]) = ϕ(c) ≥ 0. Then there is a spectral band 
.Ic ⊆ σc(V) with.J ⊆ Ic. By Corollary 4.11,.Ic is either of weak backward type. A or 
. B . Thus, Proposition 4.18(a) implies the statement and, in particular, the uniqueness 
of the bands. I i[c,m](V )

M

i=1
for .m = ck . 

(b) If .k = 0,  the  n .c = [0, 0] and the spectral band in .σ[0,0](V ) is of type . A,  see  
Example 4.20.  I  f .k = 1,  the  n .c = [0, 0, n] with .n ≥ 1 by assumption. Thus, the 
only spectral band .J ⊆ σc (V ) of weak backward type .B is the spectral band 
.K[0,0,n] described in Example 4.20. Hence,.J = K[0,0,n] follows satisfying. K[0,0,n] ⊆
K[0,0,1] = [−2 + V , 2 + V ] = σ[0,0,1](V ),  wher  e .K[0,0,1] is of type . B . Note that 
.K[0,0,n] ⊆str K[0,0,1] if .n > 1 and else .K[0,0,n] = K[0,0,1]. 

Next, we treat the case .k ≥ 2 with .ck ≥ 1.  I  f .ck = 1,  the  n . σ[c ,−1](V ) = σc(V )

holds by Lemma 3.6. Thus, there is a spectral band.Ic ⊆ σc(V ) such that.J ⊆str Ic.  Set
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.m = ck−1. Observe that. J is a spectral band in.σ[c,m,1](V ). Thus, Proposition 4.18(b) 
implies .J = I j

[c,m,c1] for some.1 ≤ j ≤ M + 1. 
If .ck ≥ 2,  the  n .σ[c ,−1](V ) = σ[c,ck−1,ck−1](V ) where .ck − 1 ≥ 1. Thus, there is a 

spectral band .Jck−1 in .σ[c,ck−1,ck−1](V ) = σ[c ,−1](V ) with .J ⊆ Jck−1.  Sinc  e .V > 4, 
Corollary 4.11 asserts that.Jck−1 is either of weak backward type. A or. B . We claim that 
.Jck−1 is of weak backward type. B . Therefore assume toward contradiction that. Jck−1

is of weak backward type . A.  The  n .Jck−1 ⊆ σ[c,ck−1,ck−1,0](V ) = σ[c ,0](V ) follows. 
Thus, .J ⊆ σc (V ), .J ⊆ σ[c ,0](V ),  an  d .J ⊆ σ[c ,−1](V ) while .J = ∅, contradicting 
Proposition 4.7 using .V > 4. Hence, .Jck−1 is of weak backward type . B . Thus, we 
can inductively conclude that there are spectral bands .Jl in .σ[c,ck−1,l](V ) of weak 
backward type . B for all .1 ≤ l ≤ ck − 1 such that 

. J ⊆ Jck−1 ⊆ Jck−2 ⊆ . . . ⊆ J1.

Since.J1 ⊆ σ[c,ck−1,1](V ) is of weak backward type. B ,.J1 is included in a spectral band 
. Ic in.σc(V ).  Se  t.m = ck−1 and.n = ck . Observe that. J is a spectral band in. σ[c,m,n](V )

and .Ic is either of weak backward type .A or . B . Thus, Proposition 4.18(b) implies 
.J = I j

[c,m,n] for some.1 ≤ j ≤ M + 1. In particular,.J = I j
[c,ck−1,1] if .n = ck = 1 and 

.J ⊆str I
j

[c,ck−1,1] if .n = ck > 1. 

Theorem 4.22 For all.V > 4 and.c ∈ C with.[c,m] ∈ C for all.m ∈ N, every spectral 
band in.σc(V ) is either of type. A or. B and its type is independent of the value of.V > 4. 
In addition, for every spectral band .Ic(V ) in .σc(V ) and all .m, n ∈ N, the spectral 

bands . I i[c,m](V )
M

i=1
and . I j

[c,m,n](V )
M+1

j=1
mentioned in the .m-forward definition 

(Definition 4.13) are unique and the strong interlacing property (Istr) holds. 

Remark Theorem 4.22 collects all the previous statements of this section. This 
result is comparable to [39, Lemma 3.3], as was discussed before. The independence 
of the spectral band type in the value of .V > 4 was not explicitly mentioned in 
[39, Lemma 3.3]. Showing this is based on combining a continuity argument and the 
three intersection property (Proposition 4.7). Further discussions on the role of this 
independence may be found in [3]. 

Proof Let .V > 4 and .c ∈ C be such that .[c,m] ∈ C for all .m ∈ N.  Le  t .Ic(V ) be a 
spectral band in.σc(V ). By Corollary 4.11,  we  have  that.Ic(V )has a well-defined weak 
backward type (either .A or . B)  for  al  l .V > 4. Suppose .Ic(V ) is of weak backward 
type .A (respectively, . B). Then Proposition 4.18 implies that . Ic(V) is of .m-forward 
type .A (respectively, .m-forward type . B)  for  al  l .m ∈ N. In addition, Corollary 4.21 
asserts that .Ic(V ) is also of backward type .A (respectively, . B). Hence, .Ic(V ) is of 
type . A (respectively,. B). 

According to the previous considerations,.Ic(V ) is either of type. A or . B for each 
.V > 4. We explain now why this type is independent on the value of .V (as long 
as .V > 4). Therefore observe that it suffices to prove that if .Ic(V0) is of type . A
(respectively, . B) for one .V0 > 4,  the  n .Ic(V ) is of type .A (respectively, . B)  for  al  l
.V > 4. Assume toward contradiction this is not the case. Then there is a .V0 > 4 and
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a sequence .{Vn}n∈N ⊆ (4,∞) such that .limn→∞ Vn = V0 and the type of .Ic(V0) is 
different to the type .Ic(Vn) for all .n ∈ N. Without loss of generality assume . Ic(V0)

is of type. A and.Ic(Vn) is of type. B for all .n ∈ N (the other case is treated similarly). 
In particular, .Ic(V0) ⊆ σ[c,0](V0) and .Ic(Vn) ⊆ σ[c,−1](Vn) for all .n ∈ N.  In  order  to  
continue, we need the following observations. 

Let .c ∈ C.  Fo  r .V ∈ R, the preimage .tc (·, V )−1({±2}) coincides with the edges 
of the spectral bands, confer the discussion at Proposition 3.5. Thus, if . J (V ) =
[a(V ), b(V )] is a spectral band of .σc (V ),  the  n .|tc (a(V ), V )| = 2 = |tc (b(V ), V )|. 
From the definition of. tc , it is immediate that.(4,∞) V a(V ) ∈ R and. (4,∞)

V b(V ) ∈ R are continuous. Note that indeed these edges are continuous on 
.V ∈ R\ {0}, see also a discussion in [3, cor. 3.2]. Thus,.(4,∞) V σc (V ) is also 
continuous (as a finite union of intervals with continuous edges) in the Hausdorff 
metric. 

Let .Ic(V ) = [a(V ), b(V )]. By assumption, we have. a(V0) ∈ Ic(V0) ⊆ σ[c,0](V0)

and.a(Vn) ∈ Ic(Vn) ⊆ σ[c,−1](Vn) for all .n ∈ N. By continuity of .V a(V ), . V
σ[c,0](V ) and.V σ[c,−1](V ), we conclude 

. σ[c,0](V0) a(V0) = lim
n→∞ a(Vn) ∈ lim

n→∞ σ[c,−1](Vn) = σ[c,−1](V0).

Thus, .a(V0) ∈ σc(V0) ∩ σ[c,0](V0) ∩ σ[c,−1](V0) follows contradicting Proposition 
4.7 and .V > 4. 

5 The Integrated Density of State for Sturmian 
Hamiltonian 

A Sturmian Hamiltonian,.Hα,V with.α /∈ Q gives rise to periodic Hamiltonians. H p
q ,V

whose spectra converge to .σ Hα,V (Proposition 4.6). The spectra of these periodic 
operators exhibit a special structure, as is described in the previous section and 
summarized in Theorem 4.22. We employ it in this section in order to study the 
integrated density of states of .Hα,V for .V > 4. 

5.1 A Light Introduction to the Integrated Density of States 
and Its Gap Labels 

We briefly introduce the integrated density of states for the Sturmian Hamiltonian, 
.Hα,V . First, restricting .Hα,V to .

2({1, . . . , n}), we obtain a Hermitian .n × n matrix, 
denoted by.Hα,V |[1,n]. We denote its set of . n eigenvalues by.σ Hα,V |[1,n] and use it 
to define 

.Nα,V (E) := lim
n→∞

# λ ∈ σ Hα,V [1,n] : λ ≤ E

n
. (5.1)
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The limit in (5.1) is known to exist for all .α ∈ [0, 1]\Q, .V ∈ R and .E ∈ R, see, 
e.g., [16, 25, 42]. The function .E Nα,V (E) is called the integrated density of 
states (IDS) of .Hα,V . There are a few equivalent ways to define the IDS in our 
case. Here, we choose the way which is computationally the most convenient within 
the framework developed in this paper. This definition of the IDS is common in the 
physics literature. Within the mathematics literature, it is also known by the name the 
integrated (normalized) empirical spectral distribution. Two fundamental properties 
of the IDS in our setting are 

(IDS1) The IDS.Nα,V : R → [0, 1] is a monotone, non-decreasing, and a continuous 
function. 

(IDS2) We have .E ∈ R\σ(Hα,V ) if and only if there exists an .ε > 0 such that the 
restriction .Nα,V is constant on .(E − ε, E + ε). 

In particular, we have that the IDS is constant on the spectral gaps, i.e., on the 
connected components of .R\σ(Hα,V ). The values that the IDS attains at the gaps 
are also called the gap labels. The gap labeling theory is a general theory [1, 4, 17], 
which predicts the set of all possible gap labels of an operator. Applying the gap 
labeling theory to .Hα,V leads to the following assertion. 

Proposition 5.1 For all .α ∈ [0, 1]\Q and .V ∈ R\{0}, 

. Nα,V (E) : E ∈ R\σ(Hα,V ) ⊆ {lα mod 1 : l ∈ Z} ∪ {1}.

The question which was raised by Mark Kac (though in the context of the almost 
Mathieu operator) is whether there is an equality above, or in his words, “Are all 
gaps there?”. Since then this problem was given the name “The Dry Ten Martini 
Problem” [42]. It is shown in Theorem 5.25 that there is indeed equality if . V > 4
(in [3] this result is extended to all .V 0). 

As a first step toward the proof of Theorem 5.25, we show how the definition 
of the IDS in (5.1) may be restated in terms of the spectral bands of the periodic 
approximations.H p

q ,V , as presented previously. Therefore, note that.{E} = [E, E] is 
an interval and so we can use the notation.I ≺str {E} for another interval . I . 
Proposition 5.2 Let .V ∈ R\{0} and .α ∈ [0, 1]\Q with continued fraction expan-
sion .(ck)

∞
k=0. Consider its convergents .ϕ([0, c0, . . . , ck]) = pk

qk
, k ∈ N with . pk, qk

coprime. Then for all .E ∈ R, we have 

. Nα,V (E) = lim
k→∞

# I : I is a spectral band of σ(H pk
qk

,V ) with I ≺str {E}
qk

.

(5.2) 

Proof We start by noting that the words .(ωα(1), . . . ,ωα(qk)) and 

. ω pk
qk

(1), . . . ,ω pk
qk

(qk) are equal up to a cyclic shift. This can be deduced, for exam-

ple, by combining Lemma 2.4 with [31, Proposition 2.2.24] (using that our words. Wk

are the words.sk in [31, Proposition 2.2.24] up to a cyclic shift). This means that the
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matrices .Hα,V [1,qk ] and .H pk
qk

,V [1,qk ]
are unitarily equivalent (since their diagonals 

are equal up to a cyclic shift). Using this observation and passing to the subsequence 
.nk := qk, k ∈ N, in the limit of (5.1) yields 

. Nα,V (E) = lim
k→∞

# λ ∈ σ Hα,V [1,qk ] : λ ≤ E

qk

= lim
k→∞

# λ ∈ σ H pk
qk

,V [1,qk ]
: λ ≤ E

qk
.

At this point the reader is referred to Sect. 7 and, in particular, Proposition 7.1 
where the Floquet–Bloch theory is summarized. Assigning to each .H pk

qk
,V a .qk ×

qk-Hermitian matrix .Hck ,V (θ) with .θ ∈ [0,π], the union (over .θ ∈ [0,π])  of  these  
matrices eigenvalues equals to .σck (V ) = σ(H pk

qk
,V ), see Proposition 7.1.  From  now  

on, se t .θ = 0. The matrices .H pk
qk

,V [1,qk ]
and.Hck ,V (0) differ by a matrix of rank two 

using Eq. (7.1). Hence, the counting functions. # λ ∈ σ H pk
qk

,V [1,qk ]
: λ ≤ E

and .# λ ∈ σ Hck ,V (0) : λ ≤ E differ by at most two.2 Hence, we may replace 
the numerator in the limit above to get 

. Nα,V (E) = lim
k→∞

# λ ∈ σ Hck ,V (0) : λ ≤ E

qk
.

According to Proposition 7.1 and, in particular, Eq. (7.3), .Hck ,V (0) has exactly one 
eigenvalue in each spectral band .σck (V ). Thus, the number of spectral bands . I in 
.σck (V ) = σ(H pk

qk
,V ) satisfying .I ≺str {E} differs at most by one from 

.# λ ∈ σ Hck ,V (0) : λ ≤ E . Hence, (5.2) follows. 

Remark The equivalence between (5.1)  and  (5.2) was conjectured in [10, Sect. 5]. 
An explanation of this equivalence is given at the end of Section 2 in [39]. The proof 
above contains an elaborated argument.3 

2 To be more precise, the difference is a traceless matrix of rank two. By appropriately applying 
perturbation theory one can show that this results in at most a difference of one in the eigenvalue 
counting, see, e.g., [3, Corollary III.2]. 
3 The denominators in (5.1)  and  (5.2) may differ by one, even if .E is in a spectral gap, as opposed 
to what is written in [39]. This was also pointed out to LR by Mark Embree. However, this does not 
affect the value to which the limit converges.
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5.2 Symbolic Representation (Coding) of the Periodic Spectra 

Fix .α /∈ Q and consider the spectrum .σ Hα,V for .V > 4. We use the spectra of 
periodic operators to provide covers of .σ Hα,V allowing us to represent the IDS as 
a power series, see Eq. (5.5) in Sect. 5.3. Toward this we define. 

Definition 5.3 For .c ∈ C with .[c, 1] ∈ C we define the level .Lc;V by 

. Lc,V := I : I is a spectral band of σc(V ) of type A or B or
I is a spectral band of σ[c,1](V ) of type B

.

We equip the set .Lc,V with the order relation .≺str, i.e., .[a, b] ≺str [c, d] if .b < c, 
which was already introduced before Definition 4.13. This is in fact a total order 
relation on .Lc,V if .V > 4, as is shown next in Lemma 5.4. 

Let us first consider some examples. The lowest level is. L [0,0],V = {[−2, 2], [V −
2, V + 2]}. Observe that if .V > 4,  the  n .[−2, 2] ≺str [V − 2, V + 2]. A sketch of 
.L [0,0],V and other sets can be found in Fig. 3. Observe that.L [0,0],V and.L [0,0,1],V both 
contain the interval .[−2 + V , 2 + V ]. Thus, these sets .L [0,0],V and.L [0,0,1],V are not 
disjoint, in general. 

Lemma 5.4 Let .V > 4 and .c, [c, 1] ∈ C. Then, for all .I, I ∈ Lc,V , we either have 
.I = I or .I ∩ I = ∅. In particular, .(Lc,V ,≺str) is totally ordered. 

Proof Let .I, I ∈ Lc,V . We only need to show that .I ∩ I = ∅, since then either 
.I ≺str I or .I ≺str I follows. If .I, I are both spectral bands of .σc(V ), respectively, 
.σ[c,1](V ),  the  n .I ∩ I = ∅ as they are disjoint connected components of the same 
spectrum, see Proposition 4.1. Otherwise, assume .I ⊆ σc(V ) and .I ⊆ σ[c,1](V ). 
Then. I is necessarily of type. B and, in particular, (by the backward type. B property) 

L[0,0,1,2,3],V 

c3 =  3 G(1) 

A(1) 

G(2) 

A(2) 

G(3) 

A(3) 

G(3) 

B 

G(1) 

A(1) 

G(2) 

A(2) 

G(3) 

B 

G(1) 

A(1) 

G(2) 

A(2) 

G(3) 

B 

L[0,0,1,2],V 

c2 = 2 

B G(1) A(1) G(2) A(2) G(3) 

L[0,0,1],V 

c1 =  1  

G(1) B 

L[0,0],V 
A(1) 

−2 2 

G(2) 

−2  +  V 2 + V

Fig. 3 Visualization of the sets .Lc,V for some .c ∈ C.  A  lab  el .A(i), B or .G(i) is assigned to each 
spectral band. This label assignment describes the coding map .bV from Proposition 5.8 for this 
particular case
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there exists a spectral band .J ⊆ σ[c,1,−1](V ) such that .I ⊆ J .  Bu  t . σ[c,1,−1](V ) =
σ[c,0](V ) and by Proposition 4.7 we have 

. σc(V ) ∩ σ[c,1](V ) ∩ σ[c,0](V ) = ∅,

so that .I ∩ I = I ∩ J ∩ I = ∅. 
Let .α ∈ [0, 1]\Q with continued fraction expansion given by .(ck)

∞
k=0.  Define  the  

finite continued fraction expansions .ck := [0, c0, c1, . . . , ck] ∈ C for .k ∈ N0.  In  the  
following, we say .Lck ,V is a cover of a set .A ⊆ R if .A ⊆ I∈Lck ,V

I . 

Lemma 5.5 Let.V > 4 and.α ∈ [0, 1]\Qwith continued fraction expansion. (ck)
∞
k=0

and .ck := [0, c0, c1, . . . , ck] ∈ C for .k ∈ N0. Then the following holds. 

(a) For all .k ∈ N0, .Lck ,V is a cover of .Lck+1,V . 
(b) For all .k ∈ N0, .Lck ,V is a cover of .σ(Hα,V ). 
(c) For all .k ∈ N0, . k(V ) := σck (V ) ∪ σ[ck ,1](V ) = I∈Lck ,V

I .  Furthermore  ,

.limk→∞ I∈Lck ,V
I = k∈N0 k(V ) = σ(Hα,V ) where the limit is taken in the 

Hausdorff metric. 

Proof If.I ⊆ σ[ck+1 ,1](V ) is of type. B , then it is contained in. σ[ck+1,1,−1](V ) = σck (V )

using Lemma 3.6 and Corollary 3.7. Thus, .Lck ,V covers. I and so .Lck ,V is a cover of 
all spectral bands in .σ[ck+1 ,1](V ) of type . B .  I  f .I ⊆ σck+1(V ) is of type . A,  then  it  is  
contained in .σ[ck+1,0](V ) = σck (V ) using Lemma 3.6 and Corollary 3.7. Thus, . Lck ,V

covers . I .  I  f .I ⊆ σck+1(V ) is of type . B , then Corollary 4.21(b) implies that there is 
a .J ⊆ σ[ck ,1](V ) of type .B with .I ⊆ J . Thus, .Lck ,V covers . I as well. Combined 
with the previous considerations, we obtain that .Lck ,V is a cover of .σck+1 (V ) and all 
spectral bands in.σ[ck+1,1](V ) of type. B , namely,.Lck ,V is a cover of.Lck+1,V . Thus, (a) 
is proven. 

Having this, (b) follows from Proposition 4.6. 
By definition, we have . I∈Lck ,V

I ⊆ k(V ). Moreover, every spectral band of 

.σ[ck ,1](V ) of type . A is contained in .σck (V ). Thus, . I∈Lck ,V
I = k(V ) and now (c) 

follows from Proposition 4.6. 

By the first part of the last lemma, every spectral band of .Lck+1,V is contained in 
a unique spectral band of .Lck ,V . We may use this in order to construct a symbolic 
representation (coding) of each spectral band in level .Lck ,V in terms of the spectral 
bands in all previous levels in which it is recursively included. 

Definition 5.6 Let .α ∈ [0, 1]\Q with continued fraction expansion .(ck)∞k=0 and 
.ck := [0, c0, c1, . . . , ck] ∈ C for .k ∈ N0. Consider the countable alphabet . A :=
{A(i) : i ∈ N} ∪ {G(i) : i ∈ N} ∪ {B}. A (finite or infinite) spectral-.α-code is either 
a finite sequence .γ = (γ(0), γ(1), . . . , γ(k)) ∈ Ak+1 or an infinite sequence . γ =
(γ(0), γ(1), . . .) ∈ AN0 satisfying the following: 

(. 1) .γ(0) ∈ {A(1),G(2)}.
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Fig. 4 Visualization of the 
properties . 2 3 4)
with.ck+1 = 2. Each figure 
shows the possible 
descendants .γ(k + 1) of 
.γ(k) as well as from which 
element in. A, the element 
.γ(k) could come from 

γ(k) 

γ(k − 1) 

γ(k +  1)  

(Σ2) (Σ3) (Σ4) 

A(j) or B 

A(i) 

G(1) A(1) G(2) 

G(j) 

B 

G(1) A(1) G(2) A(2) G(3) 

A(j) or B 

G(i) 

B 

(. 2) If .γ( j) ∈ {A(i) : i ∈ N} then . γ( j + 1) ∈ {A(i) : 1 ≤ i ≤ c j+1 − 1} ∪
{G(i) : 1 ≤ i ≤ c j+1}. 

(. 3) If .γ( j) = B then . γ( j + 1) ∈ {A(i) : 1 ≤ i ≤ c j+1} ∪ {G(i) : 1 ≤ i ≤ c j+1 +
1}. 

(. 4) If .γ( j) ∈ {G(i) : i ∈ N} then .γ( j + 1) = B . 

The set of all infinite spectral-.α-codes will be denoted as. α. Similarly, the set of all 
spectral-.α-codes in.Ak+1 is denoted by. ck . Moreover, the set. spec

ck ⊆ ck is defined 
as those .γ = (γ(0), . . . , γ(k)) ∈ ck , who additionally satisfy 

(. 5) .γ(k) ∈ {A(i) : i ∈ N} ∪ {B}. 
A depiction of conditions. 2) − 4) in Definition 5.6 appears in Fig. 4. 

Remark 5.7 There is a merit in embedding all the codes defined above in a tree 
graph. Our depiction of the codes in Figs. 4 and 5 uses this point of view. The tree 
representation explicitly appears in [3] using a directed rooted tree with a strict (i.e., 
irreflexive) partial order relation defined on its vertex set. It is called the spectral-
.α-tree in [3]. Here, we confine ourselves to the original presentation of [39]  using  
the symbolic representation of codes (and appeal to the tree only via the figures). 
Finally, we note that in [3] the vertices of the tree graph are labeled only by . A and 
. B , as opposed to using also the label .G(i) in the current paper. 

The previous definition is in close relation with the forward property of a spectral 
band, see Definition 4.13. This is made precise in Proposition 5.8. Before, we define 
a partial order . on .A := {A(i) : i ∈ N} ∪ {G(i) : i ∈ N} ∪ {B} by setting 

. G(1) A(1) G(2) A(2) . . . .

Let .α ∈ [0, 1]\Q with infinite continued fraction expansion.(ck)
∞
k=0,  convergent  s

.ϕ(ck) and.ck = [0, c0, c1, . . . , ck] ∈ C for.k ∈ N0.  I  f .γ, η ∈ k∈N0 ck ∪ α,  defin  e

.γ η : ⇐⇒ γ(0) η(0), or

γ( j) = η( j) and γ( j + 1) η( j + 1) for some j ∈ N0.
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This defines a partial order on. k∈N0 ck , respectively,. α. We continue defining an 
encoding of . k∈N0

Lck ,V via the spectral-.α-codes . k∈N0 ck preserving the partial 
order relations, the types, and inclusions. This statement deviates slightly from [39] 
and follows the lines of [3, Proposition 7.1]. The reader is referred to Fig. 3,  where  
an example of some spectra is plotted together with the associated code as described 
in the following propos ition.

Proposition 5.8 Let.α ∈ [0, 1]\Qwith infinite continued fraction expansion. (ck)
∞
k=0

and .ck = [0, c0, c1, . . . , ck] ∈ C for .k ∈ N0. Then there exists for each .V > 4,  a  
unique m ap

. bV :
k∈N0

ck →
k∈N0

Lck ,V

with the following properties: 

(a) For each .k ∈ N0, .bV bijectively maps . ck onto .Lck ,V . 
(b) For each .k ∈ N,  we  have  for  a  ll .γ ∈ ck−1 and.η = (η(0), . . . , η(k)) ∈ ck , 

. γ = (η(0), . . . , η(k − 1)) ⇔ bV (η) ⊆ bV (γ) ⇔ bV (γ) ∩ bV (η) = ∅.

(c) Let .γ, η ∈ k∈N0 ck .  The  n .γ η if and only if .bV (γ) ≺str bV (η). 
(d) If .γ ∈ ck for some.k ∈ N0,  the  n

(1) .γ(k) ∈ A(i) if and only if .bV (γ) ⊆ σck (V ) is of type. A. 
(2) .γ(k) ∈ B if and only if .bV (γ) ⊆ σck (V ) is of type . B . 
(3) .γ(k) ∈ G(i) if and only if .bV (γ) ⊆ σ[ck ,1](V ) is of type .B and . bV (γ) ∩

σck (V ) = ∅. 

Remark 5.9 Note that Proposition 5.8(d) asserts that the spectral band .bV (γ) for 
.γ ∈ ck is contained in a spectral gap of .σck (V ) if and only if .γ(k) = G(i) for some 
.i ∈ N. This, in particular, explains the notation.G(i) standing for a gap. 

Proof We first note that every such map satisfying (a) and (c) must be unique since 
. ck is totally ordered and .Lck ,V is totally ordered by Lemma 5.4. 

First, suppose that such a map exists and justify that the equivalence . bV (η) ⊆
bV (γ) ⇔ bV (γ) ∩ bV (η) = ∅ in (b) holds. Suppose.bV (γ) ∩ bV (η) = ∅ holds. Since 
.Lck−1,V is a cover of .Lck ,V by Lemma 5.5, we conclude.bV (η) ⊆ I∈Lck−1 ,V

I .  Since  
the spectral bands in .Lck−1,V do not touch (Lemma 5.4)  an  d .bV (γ) ∩ bV (η) = ∅,  we  
conclude.bV (η) ⊆ bV (γ). The reverse implication is trivial. 

We continue inductively defining the map .bV . 

Induction base:  I  f .k = 0,  we  hav  e .c0 = [0, 0], . [0,0] = (A(1)), (G(2)) and 
.Lc0,V = {[−2, 2], [−2 + V , 2 + V ]}, see also Example 4.20.  Defin  e . bV (A(1)) =
[−2, 2] and.bV (G(2)) = [−2 + V , 2 + V ] satisfying (a)–(d) for.V > 4 by construc-
tion.
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If .k = 1,  we  have .c1 = [0, 0, c1] where.c1 ∈ N.  By  Exampl  e 4.20,  we  hav  e

. σ[0,0,c1 ](V ) =
c1−1

j=1

I j
[0,0,c1 ](V ) ∪ K[0,0,c1 ](V )

where 

. I 1[0,0,c1 ](V ) ≺str I
2
[0,0,c1 ](V ) ≺str . . . ≺str I

c1−1
[0,0,c1 ](V ) ≺str K[0,0,c1](V )

and .I j
[0,0,c1 ](V ) ⊆ [−2, 2] are of type .A and .K[0,0,c1 ](V ) ⊆ [−2 + V , 2 + V ] is of 

type. B .  Sinc  e.σ[0,0,c1,1,−1](V ) = σ[0,0](V ), every spectral band in.σ[0,0,c1,1](V ) of type 
. B is contained in.σ[0,0](V ) = [−2, 2]. Applying Proposition 4.18 to the spectral band 
.[−2, 2]of type. Awith.m = c1 implies that the spectral bands of type. B in. σ[0,0,c1,1](V )

are . J i(V )
c1
i=1 with 

. J 1(V ) ≺str I
1
[0,0,c1 ](V ) ≺str J

2(V ) ≺str . . . ≺str I
c1−1
[0,0,c1 ](V ) ≺str J

c1(V )

and .J i(V ) ⊆ [−2, 2]. Thus, 

. Lc1,V = I i[0,0,c1 ](V ) : 1 ≤ i ≤ c1 − 1 ∪ J i(V ) : 1 ≤ i ≤ c1 ∪ K[0,0,c1 ](V ) .

Since .J c1(V ) ⊆ [−2, 2] and .K[0,0,c1 ](V ) ⊆ [−2 + V , 2 + V ], we conclude 
.J c1(V ) ≺str K[0,0,c1 ](V ) using.V > 4. In addition, we have 

. c1 = (A(1), A(i)) : 1 ≤ i ≤ c1 − 1 ∪ (A(1),G(i)) : 1 ≤ i ≤ c1 ∪ (G(2), B) .

With this at hand, define.bV (A(1), A(i)) := I i[0,0,c1 ](V ),.bV (A(1),G(i)) := J i(V ), 
and .bV (G(2), B) := K[0,0,c1 ](V ) satisfying (a)–(d) by construction. 

Induction step: Let.k ≥ 2 be such that.bV : k
l=0 ck → k

l=0 Lck ,V satisfies (a)–(d). 
We show how to extend.bV : ck+1 → Lck+1,V .  Le  t .γ = (γ(0), . . . , γ(k)) ∈ ck . 

If.γ(k) = A(l),  then  se  t.M = ck+1 − 1 and if.γ(k) = B ,  then  s  et.M = ck+1.  By  the  
induction hypothesis and property (d), .bV (γ ) ⊆ σck (V ) is of type . A if . γ(k) = A(l)

and of type .B if .γ(k) = B . Thus, Proposition 4.18 implies that there are exactly 

. I ick+1

M

i=1
⊆ σck+1(V ) of type. A and. I j

[ck+1,1]
M+1

j=1
⊆ σ[ck+1,1](V ) of type. B such that 

.I ick+1
, I j

[ck+1,1] ⊆str bV (γ ) and 

. I 1[ck+1,1] ≺str I
1
ck+1

≺str . . . ≺str I
M
ck+1

≺str I
M+1
[ck+1,1].

Furthermore, (. 2) implies that all choices for .γ(k + 1) are . A(i) : 1 ≤ i ≤ M ∪
G( j) : 1 ≤ j ≤ M + 1 . Then define for .γ = (γ(0), . . . , γ(k + 1)) ∈ ck+1 ,
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. bV (γ) = I ick+1
if γ(k + 1) = A(i),

I j
[ck+1,1] if γ(k + 1) = G( j).

Thus, .bV (γ) ⊆ bV (γ ) holds, namely, this definition satisfies (b) as well as (d). Fur-
thermore, let .γ1 := (γ(0), . . . , γ(k), γ(k + 1)) and . γ2 := (γ(0), . . . , γ(k), η(k +
1)) for .γ(k) ∈ A(l), B and . γ(k + 1), η(k + 1) ∈ A(i) : 1 ≤ i ≤ M ∪
G( j) : 1 ≤ j ≤ M + 1 . By construction, we conclude 

.γ1 γ2 ⇔ bV (γ1) ≺str bV (γ2). (5.3) 

If.γ(k) = G(l), then the induction hypothesis and property (d) imply that. bV (γ ) ⊆
σ[ck ,1](V ) is of type .B and .bV (γ ) ∩ σck (V ) = ∅. Thus, Corollary 4.17 asserts that 
there is a unique spectral band . J in .σck+1 (V ) of type .B with .J ⊆ bV (γ ). Note that 
if .ck+1 = 1,  the  n .J = bV (γ ).  Defin  e .bV (γ(0), . . . , γ(k + 1)) := J . This definition 
satisfies (b) as well as (d). 

By the previous considerations, we have defined the map . bV : ck+1 → Lck+1,V

and by construction it is injective and it satisfies (b) and (d). Next, we prove that 
.bV : ck+1 → Lck+1,V is also surjective. Therefore, let .J ∈ Lck+1 ,V . 

If.J ⊆ σck+1(V ) is of type. A, then Corollary 4.21(a) and.k ≥ 2 imply that there is a 
unique spectral band.Ick ⊆ σck (V ) such that.J = I i[ck ,ck+1] for some.1 ≤ i ≤ M (where 
.M = ck+1 − 1 if.Ick is of type. A and.M = ck+1 if.Ick is of type. B). Since. bV : ck →
Lck ,V is bijective by induction hypothesis, there is a . γ = (γ(0), . . . , γ(k)) ∈ ck
with .bV (γ) = Ick . Moreover, property (d) asserts .γ(k) = A(l) if .Ick is of type . A and 
.γ(k) = B if .Ick is of type. B . Hence,.γ := (γ(0), . . . , γ(k), A(i)) ∈ ck+1 by (. 2) or 
(. 3) and .bV (γ ) = J = I i[ck ,ck+1]. 

If.J ⊆ σ[ck+1 ,1](V ) is of type. B , then Corollary 4.21(b) and.k ≥ 2 imply that there is 
a unique spectral band.Ick ⊆ σck (V ) such that.J = I i[ck ,ck+1,1] for some. 1 ≤ i ≤ M + 1
(where.M = ck+1 − 1 if.Ick is of type. A and.M = ck+1 if.Ick is of type. B). Since. bV :

ck → Lck ,V is bijective by induction hypothesis, there is a . γ = (γ(0), . . . , γ(k)) ∈
ck with .bV (γ) = Ick . Moreover, property (d) asserts .γ(k) = A(l) if .Ick is of type 

. A and .γ(k) = B if .Ick is of type . B . Hence, .γ := (γ(0), . . . , γ(k),G(i)) ∈ ck+1 by 
(. 2) or (. 3) and .bV (γ ) = J = I i[ck ,ck+1,1]. 

If .J ⊆ σck+1(V ) is of type . B , then Corollary 4.21(b) implies that there is a 
unique spectral band .I[ck ,1] ⊆ σ[ck ,1](V ) of type .B such that .J ⊆ I[ck ,1].  Sinc  e . bV :

ck → Lck ,V is bijective by induction hypothesis, there is a . γ = (γ(0), . . . , γ(k)) ∈
ck with .bV (γ) = I[ck ,1]. Moreover, property (d) asserts .γ(k) = G(l). Thus, . γ =

(γ(0), . . . , γ(k), B) ∈ ck+1 by (. 4) and.bV (γ ) = J . 
It is left to prove that .bV : ck+1 → Lck+1,V satisfies (c). Let .γ, η ∈ ck+1 .  We  

need to treat two cases. I f .γ(k) = η(k), then the equivalence .γ η .⇔ . bV (γ) ≺str

bV (η) follows from (5.3). If .γ(k) η(k), then there is a .0 ≤ l ≤ k − 1 such that 
.γ( j) = η( j) for all . j ≤ l and .γ(l + 1) η(l + 1).  Sinc  e .l + 1 ≤ k, the induc-
tion hypothesis and (c) yield the equivalence .γ η .⇔ .bV (γ ) ≺str bV (η ) where 
.γ = (γ(0), . . . , γ(l + 1)) and .η = (η(0), . . . , η(l + 1)). Thus, .bV (γ ) ∩ bV (η ) =
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∅ holds. By property (b), we have .bV (γ) ⊆ bV (γ ) and .bV (η) ⊆ bV (η ). Hence, the 
previous considerations imply that.γ η if and only if .bV (γ) ≺str bV (η) proving (c) 
for .bV : ck+1 → Lck+1 ,V . 

Corollary 5.10 Let .α ∈ [0, 1]\Q with infinite continued fraction expansion . (ck)
∞
k=0

and .ck = [0, c0, c1, . . . , ck] ∈ C for .k ∈ N0. For all .V > 4 and .k ∈ N0,  the  imag  e
.bV

spec
ck ) equals to . I : I spectral band ofσck (V ) . 

Proof This follows immediately from Proposition 5.8 and Theorem 4.22 asserting 
that every spectral band in .σck (V ) is either of type. A or . B if .V > 4. 

Now we can use the previous considerations, to assign to each infinite code in. α

an element in .σ Hα,V . 

Lemma 5.11 Let.V > 4 and.α ∈ [0, 1]\Q. For all.γ ∈ α,  the  se  t. k∈N0
bV (γ|[0,k])

contains exactly one element and . k∈N0
bV (γ|[0,k]) ⊆ σ Hα,V . 

Proof Consider the sequence . bV (γ|[0,k]) k∈N0
of intervals. This is a decreasing 

nested sequence of non-empty closed intervals, see Proposition 5.8(b). Applying 
Cantor intersection theorem yields that. k∈N0

bV (γ|[0,k]) is non-empty. Furthermore, 
it must be closed and convex (as intersection of closed and convex sets). Hence, it may 
be either an interval or a single point. Lemma 5.5 asserts . bV (γ|[0,k]) ⊆ I∈Lck ,V

I =
k(V ) and 

. 

k∈N0

bV (γ|[0,k]) ⊆
k∈N0

k(V ) = σ Hα,V .

According to [8], .σ Hα,V is of Lebesgue measure zero if .V 0. Thus, . σ Hα,V

cannot contain an interval, and therefore . k∈N0
bV (γ|[0,k]) is a single point (which 

is contained in .σ Hα,V ). 

A consequence of this lemma is, that we now get a well-defined map . Eα,V :
α → σ(Hα,V ) by setting .Eα,V (γ) to be the unique element in . k∈N0

bV (γ|[0,k]), 
which  exists  by  Lemma 5.11. 

Lemma 5.12 Let .V > 4 and .α ∈ [0, 1]\Q. Then the map .Eα,V : α → σ(Hα,V ) is 
a bijection. 

Proof Let.ϕ(ck), k ∈ N0 be the convergents of. α. For each.k ∈ N,  we  ha  ve. σ(Hα,V ) ⊆
I∈Lck ,V

I by Lemma 5.5.  Furthermore,  i  f.E ∈ σ(Hα,V ) is fixed, then for each.k ∈ N, 
there exists a unique .I ∈ Lck ,V such that .E ∈ I , since the spectral bands in . Lck ,V

are disjoint. By Proposition 5.8, .bV : ck → Lck ,V is a bijection for each .k ∈ N. 
Thus, there exists a unique .γk ∈ ck for each .k ∈ N such that .E ∈ bV (γk).  The  n
.E ∈ bV (γk) ∩ bV (γk+1) = ∅ follows. Thus, Proposition 5.8(b) asserts . bV (γk+1) ⊆
bV (γk) and the codes.γk+1 and.γk coincide on the first.k + 1 digits. Hence, we induc-
tively conclude for all . j ≥ k, .bV (γ j) ⊆ bV (γk) and the codes .γ j ∈ j and . γk ∈ k

coincide on the first .k + 1 digits. Since . k and . j were arbitrary, there is a unique 
.γ ∈ α such that . γ and .γk have  the  same  fir  st .k + 1 digits for all .k ∈ N. We claim
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.Eα,V (γ) = E . By definition of .Eα,V ,  we  g  et .Eα,V (γ) ∈ k∈N0
bV (γk). On the other 

hand, also .E ∈ k∈N0
bV (γk) follows from our choice of . γk . The uniqueness from 

Lemma 5.11 then yields .Eα,V (γ) = E . 

Lemma 5.13 Let .V > 4 and .α ∈ [0, 1]\Q, then the map .Eα,V : α → σ(Hα,V ) is 
order preserving, i.e., if .γ, η ∈ α,  the  n

. γ η ⇔ Eα,V (γ) < Eα,V (η).

Proof Let .ϕ(ck), k ∈ N0 be the convergents of . α.  Also  l  et .γ, η ∈ α with .γ η. 
Then there is some .k ∈ N0 such that .γ|[0,k] η|[0,k]. Thus, Proposition 5.8(c) leads 
to 

. Eα,V (γ) ∈ bV (γ|[0,k]) ≺str bV (η|[0,k]) Eα,V (η),

implying.Eα,V (γ) < Eα,V (η). 
Conversely, suppose .Eα,V (γ) < Eα,V (η),  the  n .γ η follows by Lemma 5.12. 

Thus, there exists a .k0 ∈ N0 such that for all .k < k0, .γ|[0,k] = η|[0,k] and . γ(k0)
η(k0). Note that .γ(k0) B η(k0). Hence, either .γ(k0) η(k0) or .η(k0) γ(k0). 
Since 

. bV γ|[0,k0] Eα,V (γ) < Eα,V (η) ∈ bV η|[0,k0 ] ,

we conclude .γ|[0,k0] η|[0,k0 ] from Lemma 5.4 Proposition 5.8. Hence, . γ η
follows. 

Lemma 5.14 Let .V > 4 and .α ∈ [0, 1]\Q with convergents .ϕ(ck), k ∈ N0. 
Furthermore, let .γ ∈ α with .Eα,V (γ) =: E. Then for all .k ∈ N,  the  image  o  f
. η ∈ spec

ck : η γ|[0,k] under .bV equals . I : I is a spectral band of σck (V ) with
I ≺str {E} . 

Proof Assume.η ∈ spec
ck with .η γ|[0,k].  The  n .bV (η) is a spectral band of .σck with 

.bV (η) ≺str bV (γ|[0,k]). In particular, .bV (η) ∩ bV (γ|[0,k]) = ∅ follows from Proposi-
tion 5.8(b) and (c). By construction of the map.Eα,V ,  we  ha  ve.E ∈ bV (γ|[0,k]),  which  
show s

. bV η ∈ spec
ck : η γ|[0,k] ⊆ I : I is a spectral band of σck with I ≺str {E} .

To show the other inclusion, consider a spectral band . I of .σck with .I ≺str {E}.  We  
apply Proposition 5.8 to get.η ∈ spec

ck such that.bV (η) = I and. bV (η) ∩ bV (γ|[0,k]) =
∅. Combining .E ∈ bV (γ|[0,k]) and .I ≺str {E}, we get that .bV (η) ≺str bV (γ|[0,k]). 
Hence, by Proposition 5.8 .η γ|[0,k] which finishes the proof. 

As a consequence of the considerations of this subsection, we conclude with the 
following statement.
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Proposition 5.15 Let .V > 4 and .α ∈ [0, 1]\Q with convergents . pkqk = ϕ(ck), k ∈
N0,  wher  e .pk, qk are coprime. For each.E ∈ σ(Hα,V ), there is a unique.γ ∈ α such 
that .E = Eα,V (γ) and 

.Nα,V (E) = Nα,V (Eα,V (γ)) = lim
k→∞

# η ∈ spec
ck : η γ|[0,k]

qk
. (5.4) 

Remark Note that the latter statement asserts that the value.Nα,V (Eα,V (γ)) is inde-
pendent of .V > 4 as the limit on the right-hand side is so. In fact, the value is 
independent for all .V > 0 as proven in [3, Theorem 1.9 (d)]. 

Proof Let .E ∈ σ(Hα,V ). The existence of a unique.γ ∈ α such that . E = Eα,V (γ)

is proven in Lemma 5.12. Thus, .Nα,V (E) = Nα,V (Eα,V (γ)) holds. Proposition 5.2 
leads to 

. Nα,V (E) = lim
k→∞

# I : I is a spectral band of σ(H pk
qk

,V ) with I ≺str {E}
qk

.

First note that .σ(H pk
qk

,V ) = σck (V ) by Proposition 3.5.  Le  t . bV : k∈N0 ck →
k∈N0

Lck ,V be the map defined in Proposition 5.8 satisfying . E = Eα,V (γ) ∈
bV (γ|[0,k]) for all .k ∈ N0.  Thus,  Lemma 5.14 leads to 

. bV η ∈ spec
ck : η γ|[0,k] = I : I ⊆ σck (V ) spectral band with I ≺str {E} .

Hence, Proposition 5.8(a) (asserting that.bV is injective if restricted to.
spec
ck ) implies 

. η ∈ spec
ck : η γ|[0,k] = I : I ⊆ σck (V ) spectral band with I ≺str {E}

finishing the proof. 

5.3 A Formula for the IDS Via the Spectral Coding 

In this subsection, we use the hierarchical structure of the periodic spectra and its 
coding in order to provide an explicit formula for the IDS, .Nα,V . Proposition 5.15 
is the starting point for the current subsection. Next, we provide some counting 
arguments in order to express the numerator in (5.4) and to obtain a convenient 
formula for the IDS, which is eventually proven in Proposition 5.21. 

Example 5.16 We provide a guiding example to demonstrate some of the count-
ing arguments which are developed in this subsection. Let .α /∈ Q whose contin-
ued fraction expansion that starts with .(2, 1, 1, 2, . . . ) and consider, for exam-
ple, .γ = (G(2), B,G(2), B,G(2), . . . ) ∈ α. We would like to compute the IDS at 
.E := Eα,V (γ) using the sequence in Proposition 5.2. Here we show how to compute
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γ(4) c4 =  2  
B G(1) A(1) G(2) B G(1) A(1) G(2) A(2) G(3) B G(1) A(1) G(2) B G(1) A(1) G(2) A(2) G(3) B G(1) A(1) 

G(2) A(2) G(3) 

γ(3) c3 =  1G(1) A(1) G(2) B G(1) A(1) G(2) B G(1) B 

γ(2) c2 =  1B G(1) B G(1) A(1) 
G(2) 

γ(1) c1 =  2G(1) A(1) G(2) B 

γ(0) 
A(1) 

G(2)

Fig. 5 Visualization of the codes in Example 5.16 as an ordered graph. The rectangles mark all the 
vertices in level . 4 descending from a blue marked vertex in level . j ∈ {0, 1, 2, 3, 4}

the.k = 4 element of this sequence. First observe that. 513 = pk
qk

= ϕ([0, 0, 2, 1, 1, 2]). 
Since bands and codes are in a one-to-one relation by Proposition 5.8, we can rather 
think of codes and count the number of codes.η ∈ spec

c4 of length. 5 with .η γ|[0,4]. 
We demonstrate this situation in Figure 5—to better illustrate the example, we adapt 
here the tree formalism from [3], even though it did not originally appear in [39]. 

The beginning of the code . γ is marked red and we need to count the codes 
.η = (η(0), . . . , η(4)) ∈ spec

c4 which correspond to spectral bands and which are to 
the left of this path. γ. Specifically, one needs to count the vertices in the fourth level 
which are inside the rectangles, but only those vertices that are labeled .A(i) or . B
should be counted since.η ∈ spec

c4 . To do so, we follow the red path and at each level 
. j ∈ {0, 1, 2, 3, 4} we mark the vertices that branch off to the left. In Figure 5,  we  
marked them with blue squares. The set of paths ending at a blue square in leve l . j
with label. = A if.η( j) = A(i) and. = G if.η( j) = G are denoted by. j (γ .  For  
instance, . 0(γ, A) = (A(1)) and . 0(γ,G) = ∅. Then we use the evolution laws 
. 2 3) and . 4) to calculate how many codes of length 5 are descendants of 
these blue squares and end with an .A(i) or an . B . This number is denoted by .d4

j , 
see Definition 5.19. For instance,.d4

0 (A) = 8 and.d4
1 (G) = 3.  The  n. d4

j · j (γ

is the total number of codes.η ∈ spec
c4 where.η( j) has the label. and.η γ|[0,4] since 

.η( j) γ( j).  Le  t . D4
j (γ) = d4

j (A) · j(γ, A) + d4
j (G) · j (γ,G) be the sum of 

these numbers for the different labels. ∈ {A,G}, see Lemma 5.17 and Eq. (5.5). For 
this specific example, we now can check directly in Fig. 5 that 

. D4
0(γ) = 8 · 1 + 5 · 0 = 8,

D4
1(γ) = 2 · 0 + 3 · 0 = 0,

D4
2(γ) = 1 · 1 + 2 · 1 = 3,

D4
3(γ) = 1 · 0 + 1 · 0 = 0,

D4
4(γ) = 1 · 1 + 0 · 1 = 1,
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and . η ∈ spec
c4 : η γ|[0,4] = 12 coinciding with the sum of . D4

j (γ). Thus, 

. 
# η ∈ spec

c4 : η γ|[0,4]
q4

= 12

13

follows. 

In this subsection, we perform this counting in a general manner and the final 
result is given in Proposition 5.21.  Le  t .α ∈ [0, 1]\Q and.γ ∈ α an infinite spectral-
.α-code. Define 

. Dk
j (γ) := γ ∈ spec

ck : γ ( j) γ( j) and ∀i < j, γ (i) = γ(i) ,

for all .0 ≤ j ≤ k. Notice that, in particular, 

. Dk
0(γ) = γ ∈ spec

ck : γ (0) γ(0) ,

and, for example, .Dk
0(γ) = ∅ if .γ(0) = A(1). 

We intend to employ the sets .Dk
j (γ) in order to compute the numerator in (5.4), 

see, e.g., (a) in the following lemma. 

Lemma 5.17 Let .V > 4,α ∈ [0, 1]\Q with convergents .ϕ(ck), k ∈ N0, and . γ ∈
α. Then the following assertions hold. 

(a) We have 

. η ∈ spec
ck : η γ|[0,k] =

k

j=0

Dk
j (γ).

(b) Let .Rk
j : ck → c j , γ Rk

j (γ) = γ|[0, j ] be the restriction map. Then 

. Dk
j (γ) =

η∈Rk
j (D

k
j (γ))

# (Rk
j )

−1(η) ∩ spec
ck .

(c) If .η ∈ Dk
j (γ),  the  n .η( j) B γ( j). In particular .Dk

j = ∅ if .γ( j) = B . 
(d) For any .0 ≤ j ≤ k,  we  hav  e .Rk

j (D
k
j (γ)) = j (γ, A) j (γ,G), where 

. j (γ, A) := η ∈ c j : η γ|[0, j ], η|[0, j−1] = γ|[0, j−1], η( j) ∈ {A(i) : i ∈ N} ,

j (γ,G) := η ∈ c j : η γ|[0, j ], η|[0, j−1] = γ|[0, j−1], η( j) ∈ {G(i) : i ∈ N} .
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Proof (a) Let.η ∈ Dk
j (γ) for.0 ≤ j ≤ k. By construction of. on.

spec
ck ,. η( j) γ( j)

implies .η γ|[0,k] . Thus 

. Dk
j (γ) ⊆ {γ ∈ s

ck : η γ|[0,k]},

follows for all.0 ≤ j ≤ k. For the converse inclusion observe that if.η ∈ spec
ck satisfies 

.η γ|[0,k], then either .η(0) γ(0),  or  there  is  some.0 ≤ j ≤ k such that 

. η( j) γ( j) and η(i) = γ(i) for all 0 ≤ i < j.

(b) Let .η ∈ Rk
j (D

k
j (γ)),  so  we  hav  e .η( j) γ( j).  Thus,  i  f .γ̃ ∈ (Rk

j )
−1({η}),  the  n

.γ̃|[0, j ] = η holds and so .γ̃ γ|[0,k] . If, additionally, .γ̃ ∈ spec
ck ,  then  w  e .γ̃ ∈ Dk

j (γ). 
With this the claim follows. 
(c) This follows. 4) in Definition 5.6 asserting that if .γ( j) = B ,  the  n . γ( j − 1) =
G(i) for some .i ∈ N. Therefore, there is no code .η ∈ c j with . η( j − 1) = γ( j −
1), η( j) γ( j) and.η( j) = B or .γ( j) = B . 
(d) This follows directly from (c). 

To continue the counting arguments, we find it useful to partition finite codes 
according to their finite letter. Toward this we introduce another notation. Let . α ∈
[0, 1]\Q with continued fraction expansion .(ck)∞k=0 and .ck = [0, c0, . . . , ck] ∈ C. 
Consider a subset .E ⊆ ck .  Defin  e

. (E, A) := # η ∈ E : η(k) = A(i) for some i ∈ N ,

(E,G) := # η ∈ E : η(k) = G(i) for some i ∈ N ,

(E, B) := # {η ∈ E : η(k) = B} .

For instance, . (E, A) is the number of those spectral-.α-codes in . E which end on 
an .A(i).  Le  t .l ∈ N.  The  n . ((Rk+l

k )−1(E), A) is the number of those codes in . ck+l

that are extensions of codes in. E and end with a letter .A(i). The next lemma provides 
identities for counting the number of such code extensions. Therefore, recall that the 
convergents . pkqk = ϕ(ck), k ∈ N0, of .α ∈ [0, 1]\Q with .pk, qk coprime satisfy the 
recursive relation (2.3). 

Lemma 5.18 ([39, Proposition 4.1]) Let.α ∈ [0, 1]\Qwith continued fraction expan-
sion .(ck)

∞
k=0 and convergents .

pk
qk

= ϕ(ck), k ∈ N0, where .pk, qk are coprime. 

(a) Let .E ⊆ ck , k ∈ N0.  The  n

.

⎛
⎜⎜⎜⎜⎝

Rk+1
k

−1
(E) ,G

Rk+1
k

−1
(E) , B

Rk+1
k

−1
(E) , A

⎞
⎟⎟⎟⎟⎠

= Tk+1

⎛

⎜⎝
(E,G)

(E, B)

(E, A)

⎞

⎟⎠ ,
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where 

. Tk+1 := Tk+1 (ck+1) :=
⎛

⎝
1 ck+1 + 1 ck+1

1 0 0
0 ck+1 ck+1 − 1

⎞

⎠ .

(b) If . ∈ N,  the  n

. 

⎛
⎜⎜⎜⎝

Rk+
k

−1
(E) ,G

Rk+
k

−1
(E) , B

Rk+
k

−1
(E) , A

⎞
⎟⎟⎟⎠ = Sk+ S−1

k

⎛

⎝
(E,G)

(E, B)

(E, A)

⎞

⎠

with .Sk := Sk (ck) := TkTk−1 . . . T1 and .S0 = I the identity matrix. 
(c) The matrix .Sk is given by 

. Sk =
⎛

⎝
pk + (−1)k qk − (−1)k qk − pk − (−1)k

pk−1 − (−1)k qk−1 + (−1)k qk−1 − pk−1 + (−1)k

pk − pk−1 + (−1)k qk − qk−1 − (−1)k qk − qk−1 − pk + pk−1 − (−1)k

⎞

⎠

and its inverse .S−1
k equals to 

. S−1
k = (−1)k

⎛

⎝
1 − pk pk−1 − 1 pk−1 + pk − 1
qk − 1 1 − qk−1 1 − qk − qk−1

1 − pk − qk qk−1 + pk−1 − 1 pk + pk−1 + qk + qk−1 − 1

⎞

⎠ .

Proof (a) This is a direct consequence of the defining properties. 2) to . 4). 
(b) This is proven via induction over. ∈ N.  Fo  r. = 1 this statement is just part (a) of 
this Lemma. Now assume the statement holds for an arbitrary . ∈ N. By observing 
.Rk+ +1

k = Rk+
k ◦ Rk+ +1

k+ we get 

. Rk+ +1
k

−1
(E) = Rk+ +1

k+
−1

Rk+
k

−1
(E) .

Using (a) and our induction hypothesis then yields 

. Rk+ +1
k

−1
(E) ,G = Rk+ +1

k+
−1

Rk+
k

−1
(E) ,G

= Tk+ +1 Rk+
k

−1
(E) ,G

= Tk+ +1Sk+ S−1
k (E,G)

= Sk+ +1S
−1
k (E,G) .

(c) The stated form for .Sk can be computed inductively. Then one checks by direct 
computations that .S−1

k is given by the stated matrix. Occasionally, the formula
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.qk pk−1 − pkqk−1 = (−1)k (see [27, Theorem 2]) is used. We leave the computa-
tional details to the reader. 

Let .γ ∈ c j such that .γ( j) = A(i) for some. i . Then, for .k > j , we wish to count 
how many .η ∈ spec

ck there are such that .η|[0, j ] = γ. By the previous lemma, this 
number depends only on . j and . k, but it does not depend on the particular . γ ∈ c j

satisfying .γ( j) = A(i). Indeed, using Lemma 5.18 we define 

Definition 5.19 For .α ∈ [0, 1]\Q,  defin  e

. dk
j (A) := 0 1 1 Sk S

−1
j

⎛

⎝
0
0
1

⎞

⎠ ,

and 

. dk
j (G) := 0 1 1 Sk S

−1
j

⎛

⎝
1
0
0

⎞

⎠ .

With this definition we may express the number of elements in the sets . Dk
j (γ)

(which are used in Lemma 5.17(a)) 

.#Dk
j (γ) = dk

j (A) · # j (γ, A) + dk
j (G) · # j(γ,G), (5.5) 

where the sets . j(γ, A), . j (γ,G) were defined in Lemma 5.17. To verify identity 
(5.5) one first observes that the set.Dk

j (γ)may be decomposed into codes. η ∈ Dk
j (γ)

for which .η( j) = A(i) (for some . i ) and codes .η ∈ Dk
j (γ) for which . η( j) = G(i)

(for some . i ). This decomposition is thorough, since there are no codes . η ∈ Dk
j (γ)

for which .η( j) = B , see Lemma 5.17(c). To count the codes .η ∈ Dk
j (γ) for which 

.η( j) = A(i), we notice that the prefix of each such code, . η(0), . . . , η( j − 1), A(i)

belongs to . j (γ, A) and there are exactly .dk
j (A) ways to extend such a prefix to get 

an element in .Dk
j (γ). 

Next, we provide an explicit formula for .dk
j (A) and .dk

j (G) using the conver-
gents . pkqk = ϕ(ck), k ∈ N0, of . α with .pk, qk coprime. Therefore, we like to remind 
the reader on the recursive definition of .{pk}∞k=−1 and .{qk}∞k=−1 in (2.3) with initial 
condition: 

. p−1 = 1, p0 = 0, q−1 = 0, q0 = 1.

Lemma 5.20 Let .α ∈ [0, 1]\Q with convergents . pkqk = ϕ(ck), k ∈ N0, with . pk, qk
coprime. Consider the numbers 

.Pk
j := (−1) j [q j pk − p jqk] for − 1 ≤ j ≤ k.
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Then 
. dk

j (A) = Pk
j−1 − Pk

j and dk
j (G) = Pk

j

hold for .0 ≤ j ≤ k. 

Proof We sketch the computation of .dk
j (G).  We  ha  ve

. Sk S
−1
j ·

⎛

⎝
1
0
0

⎞

⎠ = (−1) j Sk ·
⎛

⎝
1 − p j

q j − 1
1 − p j − q j

⎞

⎠ .

Performing this matrix multiplication and simplifying then yields 

. 0 1 0 · Sk S−1
j ·

⎛

⎝
1
0
0

⎞

⎠ =(−1) j[q j pk−1 − p jqk−1 − (−1)k],

0 0 1 · Sk S−1
j ·

⎛

⎝
1
0
0

⎞

⎠ =(−1) j[p jqk−1 + q j pk − q j pk−1 − p jqk + (−1)k],

and hence 

. dk
j (G) = (−1) j [q j pk − p jqk] = Pk

j .

To compute.dk
j (A), one proceeds analogously. 

Now, we have collected all the pieces in order to provide the promised formula 
for the IDS .Nα,V . 

Proposition 5.21 Let .V > 4,α ∈ [0, 1]\Q with convergents . pkqk = ϕ(ck), k ∈ N0,

with .pk, qk coprime. Then, for each .γ ∈ α, 

. Nα,V (Eα,V (γ)) =
∞

k=−1

(−1)kμk(γ)(qkα − pk)

where 

. μ−1(γ) := # 0(γ, A) and μk(γ) := # k (γ,G) − # k(γ, A) + # k+1(γ, A), k ∈ N0.

Proof Let.γ ∈ α. Our starting point is Proposition 5.15, to which we consequently 
apply Lemma 5.17(a), (5.5) and Lemma 5.20,
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. Nα,V (Eα,V (γ)) = lim
k→∞

# η ∈ spec
ck : η γ

qk

= lim
k→∞

k
j=0 #D

k
j (γ)

qk

= lim
k→∞

1

qk

k

j=0

# j(γ, A) · dk
j (A) + # j(γ,G) · dk

j (G)

= lim
k→∞

1

qk

k

j=0

# j(γ, A) · (Pk
j−1 − Pk

j ) + # j (γ,G) · Pk
j

= lim
k→∞

1

qk

k

j=0

Pk
j · # j(γ,G) − # j(γ, A) + # j+1(γ, A)

+ 1

qk
Pk

−1 · # 0(γ, A) − 1

qk
Pk
k

=0

·# k+1(γ, A)

= lim
k→∞

1

qk

k

j=−1

Pk
j · μ j (γ)

= lim
k→∞

k

j=−1

(−1) jμ j (γ) · q j
pk
qk

− p j

=: fk ( j)

,

where in the last two equalities we substitute .μ j (γ) from this proposition statement 
and the .Pk

j from Lemma 5.20. 

According to [27, Theorem 4], the sequence. p2l
q2l

∞
l=1

is monotonically increasing, 

.
p2l−1

q2l−1

∞
l=1

is monotonically decreasing and both sequences converge to . α. Hence, 

we conclude for all .k ∈ N, 

. (−1) j q j
pk
qk

− p j ≥ 0 for all j ≤ k and (−1)k (qkα − pk) ≥ 0.

Since .μ j (γ) ≥ 0 if . j ≥ 1, we conclude . fk( j) ≥ 0 for all . j ∈ N. Thus, 
.limk→∞ k

j=−1 fk( j) converges absolutely using that the limit exists. For each 
.k ∈ N,  we  also  have. f2k(2l) is monotone increasing in.l ∈ N and. f2k(2l − 1) is mono-
tone decreasing in .l ∈ N. Note also that . limk→∞ fk( j) = (−1) jμ j (γ) · q jα − p j

for each. j ≥ −1. Hence, the monotone convergence theorem applied to the following 
two summands separately leads to 

.Nα,V (Eα,V (γ)) = lim
k→∞

⎛

⎝
2k

j=0

f2k (2 j − 1) +
2k

l=0

f2k(2l)

⎞

⎠ =
∞

j=−1

(−1) jμ j (γ) · q jα − p j
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where we used in the first step that the limit exists and so we can pass to the subse-
quence of even numbers.2k. 

Remark 5.22 Recognizing the importance of the functions .μk(γ), k ≥ −1 for the 
representation of the IDS in Proposition 5.21, we wish to elaborate on their possible 
values and their connection to the spectral code. 

We have 

. μ−1(γ) = 0, γ(0) = A(1),

1, γ(0) = G(2).

For .k ∈ N0 one can read the value of .μk(γ) from the following table. 

.k = 0 . k ≥ 1
.γ(k) .A(1) .G(2) .A(i) .B . G(i)

.γ(k + 1) .A( j ) .G( j ) .B .A( j ) .G( j ) .A( j ) .G( j ) . B

.# k (γ, A) .0 .0 .1 .i − 1 .i − 1 .0 .0 . i − 1

.# k (γ,G) .0 .0 .0 .i .i .0 .0 . i − 1

.# k+1(γ, A) . j − 1 . j − 1 .0 . j − 1 . j − 1 . j − 1 . j − 1 . 0

.μk(γ) . j − 1 . j − 1 .−1 . j . j . j − 1 . j − 1 . 0

Therefore we can conclude for all . k ∈ N−1

. μk(γ) = δA,γ(k) + # k+1(γ, A) − δk,0

where 

. δA,γ(k) := 1 γk ∈ {A(i) : i ∈ N} and k ≥ 0,

0 else.

Remark 5.23 Comparing the IDS formula in Proposition 5.21 to the formula in [39, 
Theorem 4.7] shows that they are similar up to an additional term of.−αwhich appears 
in [39, Theorem 4.7], but not in Proposition 5.21. The source for this difference is the 
connection between the coefficients .μk(γ), we used above, and similar coefficients 
.πk(γ) in [39]. It can be checked that the connection between both type of coefficients 
is given by 

. πk(γ) = μk(γ) + δk,0.

We conclude this subsection by making a connection between the set of all possible 
infinite codes, .γ ∈ α and the set of all possible infinite sequences, .(μk)k∈N−1

.  The  
latter set is given b y

. Mα :=
⎧
⎨

⎩(μk)k∈N−1 ∈ N
N−1
−1

μ−1 ∈ {0, 1} and μ−1 = 1 ⇐⇒ μ0 = −1,
μ0 ∈ {−1, . . . , c1 − 1} and μ0 = c1 − 1 =⇒ μ1 = 0,
μ j ∈ {0, . . . , c j+1} and μ j = c j+1 =⇒ μ j+1 = 0 for j ≥ 1

⎫
⎬

⎭ ,

where .(ck)k∈N is the continued fraction expansion of . α.
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Lemma 5.24 ([39, Proposition 4.4]) Let .α ∈ [0, 1]\Q. Then there is a bijection 
between . α and .Mα. The bijection is explicitly given by .γ (μk(γ))k∈N−1

where 

. μ−1(γ) := # 0(γ, A) and μk(γ) := # k (γ,G) − # k(γ, A) + # k+1(γ, A), k ∈ N0.

Proof It is straightforward to verify that the map in the statement is well defined: 
given.γ ∈ α, one can check that .(μk(γ))k∈N−1

∈ Mα. To see this compare the defi-
nition of .Mα with Remark 5.22 which shows a table which characterizes.(μk)k∈N−1 . 
To show that this map is a bijection, we take .(μk)k∈N−1 ∈ Mα and inductively com-
pute the corresponding.γ(k). On the way, we prove that.γ(k) is uniquely determined 
by .(μ−1,μ0, . . . ,μk+1). 

To aid this computation confer the table in Remark 5.22 and recall that for all 
. k ∈ N−1

. μk(γ) = δA,γ(k) + # k+1(γ, A) − δk,0.

First, if .μ−1 = 1,  then  we  s  et .γ(0) = G(2) and otherwise if .μ−1 = 0,  then  we  s  et
.γ(0) = A(1). 

If .μ0 = −1, then .μ−1 = 1 and therefore .γ(0) = G(2). Now property . 4) from 
Definition 5.6 implies .γ(1) = B . Else, if .μ0 = i ∈ {0, . . . c1 − 1},  the  n . γ(0) = A(1)

follows. If in addition .μ1 = 0, then we conclude .γ(1) = G(i),  and  i  f .μ1 0,  the  n
.γ(1) = A(i) holds. Notice that the code.(γ(0), γ(1)) generated this way fulfills Def-
inition 5.6. This describes the induction base of the construction. 

Now assume . γ was uniquely determined by . μ up to .γ(k) for some .k ≥ 1.  I  f
.γ(k) was .G(i), then property . 4) yields again .γ(k + 1) = B .  I  f . γ(k) ∈ {A(i) :
i ∈ N} ∪ {B},  the  n. 2) and. 4) imply.γ(k + 1) ∈ {A(i) : i ∈ N} ∪ {G(i) : i ∈ N}. 
Assume .μk = j . Then we get even .γ(k + 1) ∈ {A( j),G( j)}.  I  f .μk+1 = 0,  the  n
.γ(k + 1) = G( j) and otherwise .γ(k + 1) = A( j). Thus .γ(k),μk and .μk+1 uniquely 
determine .γ(k + 1). Observe again, that the code .(γ(0), . . . , γ(k + 1)) fulfills 
Definition 5.6. 

5.4 Finding all the Gap Labels 

Our aim in this subsection is to prove the following. 

Theorem 5.25 Let .V > 4.  Fo  r .α ∈ [0, 1]\Q we have 

. Nα,V (E) : E ∈ R\σ(Hα,V ) = { α mod 1 : ∈ Z} ∪ {1} = (Z + Zα) ∩ [0, 1].

A main tool in the proof of the theorem is Proposition 5.21. Therefore, we need 
the following auxiliary lemma.
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Lemma 5.26 ([39, Proposition 5.2]) Let.α ∈ [0, 1]\Qwith convergents. pkqk = ϕ(ck). 
For each . ∈ Z,  there  is  som  e .k0 ∈ N and .μ = (μ j ) j∈N−1 ∈ Mα such that . μ j = 0
for . j > k0 and 

. =
∞

j=−1

(−1) jμ j q j =
k0

j=−1

(−1) jμ j q j . (5.6) 

Moreover, if . ∈ {−1, 0, 1},  the  n .μk0 ≥ 1. 

Proof We prove the statement inductively over.m ∈ N that 

(a) For all . ∈ [−q2m, q2m−1) there is a .k0 ≤ 2m and a .μ = μ j ∈ Mα satisfying 
(5.6).μ j = 0 if . j > k0. 

(b) If .μk0−1 = ck0 ,  the  n . ∈ [−qk0 ,−qk0 + qk0−1) if .k0 is even 
and. ∈ [−qk0−1 + qk0 , qk0 ) if .k0 is odd. 

To do this, we check the claim in an alternating manner on the positive and negative 
part of these intervals. Also recall the recursive behavior of the sequence .(qk)k∈N0 , 
that is: 

. q−1 = 0, q0 = 1 and qk = ckqk−1 + qk−2 for k ∈ N.

First, let .m = 1 and consider . ∈ [−q2, q1) = [−q2,−q0) ∪ {−q0} ∪ (−q0, q1) and 
we separately consider each of the cases 

. ∈ {−q0} ∈ (−q0, q1) and ∈ [−q2,−q0).

If . = −q0 = −1, then we choose .k0 = 0 ≤ 2m − 1 and . μ := (μ j) j∈N−1 :=
(1,−1, 0, 0, . . . ). In this case we get .μ ∈ Mα and 

. 

∞

j=−1

(−1) jμ j q j = μ0 = −1 =

For the second case, if . ∈ (−q0, q1) ∩ Z = [0, c1) ∩ Z, choose . k0 = 0 ≤ 2m − 1
and .μ := (0 0, 0, . . . ). Again, observe that .μ ∈ Mα satisfies (5.6). For the third 
case we assume. ∈ [−q2,−q0). Notice that we can decompose this interval into the 
.c2 intervals 

. [−q2,−q0) =
c2

j=1

[−q0 − (c2 + 1 − j)q1, q0 − (c2 − j)q1).

That is, there is a unique.μ1 ∈ {1, . . . , c2} with 

. − q0 − μ1q1 ≤ −q0 − (μ1 − 1)q1.
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Equivalently, we can write this as 

. − q0 ≤ + μ1q1 < −q0 + q1 = c1 − 1.

If . + μ1q1 happen to be .−q0 = −1, then we can apply the first case to it and get 

. + μ1q1 =
0

j=−1

(−1) jμ j q j ,

with .μ−1 = 1 and .μ0 = −1.  The  n .μ := (1,−1,μ1, 0, 0, . . . ) ∈ Mα and . k0 = 1 ≤
2m − 1 satisfy (5.6)  for  the  give  n . . We proceed similarly when 

. − q0 + μ1q1 < −q0 + q1 = c1 − 1.

More precisely, if this holds, the second case yields 

. + μ1q1 =
0

j=−1

(−1) jμ j q j ,

with .μ−1 = 0 and .μ0 = + μ1q1. Thus for .μ := (0,μ0,μ1, 0, 0, . . . ) we have . μ ∈
Mα as .μ0 = c1 − 1 (we need this since .μ1 0) and, by construction, . μ satisfies 
(5.6)  for  the  give  n . and .k0 = 1 ≤ 2m − 1. This ends the induction base. 

For the induction step suppose (a) and (b) hold for some .m ∈ N.  Le  t . ∈
[−q2m+2, q2m+1). Again, we separately discuss the three cases 

. ∈ [−q2m+2,−q2m ∈ [−q2m, q2m−1) and ∈ [q2m−1, q2m+1).

For. ∈ [−q2m, q2m−1) there is nothing to do, as (5.6) holds by the induction hypoth-
esis. 

If. ∈ [q2m−1, q2m+1) = [q2m−1, q2m−1 + c2m+1q2m), then there exists some. μ2m ∈
{1, . . . , c2m+1} such that 

.q2m−1 + (μ2m − 1)q2m ≤ q2m−1 + μ2mq2m, (5.7) 

or equivalently 
. − q2m + q2m−1 ≤ − μ2mq2m < q2m−1.

In particular we observe . − μ2mq2m /∈ [−q2m,−q2m + q2m−1). Thus the induction 
hypothesis implies that there exists.(μ−1, . . . ,μ2m−1, 0, 0, . . . ) ∈ Mα with. μ2m−1

c2m such that 

. − μ2mq2m =
2m−1

j=−1

(−1) jμ j q j .
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Note that if .μ2m−1 = c2m, then the induction hypothesis for (b) and .k0 = 2m yields 
. − μ2mq2m ∈ [−q2m,−q2m + q2m−1), a contradiction. 

Therefore we set .μ := (μ−1, . . . ,μ2m−1,μ2m, 0, 0, . . . ) and observe.μ ∈ Mα,  a  s
.μ2m−1 c2m .  Then  (5.6) hold for the given . and .k0 = 2m ≤ 2(m + 1) − 1.  Note  
that if .μ2m = c2m+1, i.e., .k0 = 2m + 1 odd then (5.7) implies 

. ∈ [q2m+1 − q2m, q2m+1) = [−qk0−1 + qk0 , qk0).

This proves (b) if .k0 is odd for .m + 1. 
Finally, we suppose . ∈ [−q2m+2,−q2m) = [−c2m+2q2m+1 − q2m,−q2m).  Then  

there exists some.μ2m+1 ∈ {1, . . . , c2m+2} such that 

. − μ2m+1q2m+1 − q2m ≤ −(μ2m+1 − 1)q2m+1 − q2m, (5.8) 

or equivalently 

. − q2m ≤ + μ2m+1q2m+1 < −q2m + q2m+1 = −q2m + c2m+1q2m + q2m−1.

In particular, we observe . + μ2m+1q2m+1 /∈ [−q2m + q2m+1, q2m+1). Thus, the 
induction hypothesis implies that there are some . (μ−1, . . . ,μ2m , 0, 0, . . . ) ∈ Mα

with .μ2m c2m+1 such that 

. + μ2m+1q2m+1 =
2m

j=−1

(−1) jμ j q j .

Note that if .μ2m = c2m+1, then the induction hypothesis for (b) and . k0 = 2m + 1
yields . + μ2m+1q2m+1 ∈ [−q2m + q2m+1, q2m+1), a contradiction. 

Therefore we set .μ := (μ−1, . . . ,μ2m,μ2m+1, 0, 0, . . . ) and observe.μ ∈ Mα,  a  s
.μ2m c2m+1.  Then (5.6) hold for the given . and .k0 = 2m + 1 ≤ 2(m + 1) − 1. 
Note that if .μ2m+1 = c2m+2, i.e., .k0 = 2m + 2 even then (5.8) implies 

. ∈ [−q2m+2,−q2m+2 − q2m+1).

Thus, (b) holds if .k0 is even for .m + 1. 
Note that .μk0 ≥ 0 holds for all .k0 ≥ 1. The cases where .k0 ∈ {−1, 0} and . μk0 =

0 are exactly when . ∈ {−1, 0, 1}. Therefore . ∈ Z\{−1, 0, 1} and .μk0 0 imply 
.μk0 ≥ 1. 

Proof (Proof of Theorem 5.25) We start by recalling that the gap labeling theorem 
[4, Proposition 5.2.4] already provides the inclusion, 

.G := {Nα,V (E) : E ∈ R\σ(Hα,V )} ⊆ { α mod 1 : ∈ Z} ∪ {1} .
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First note that the spectrum .σ(Hα,V ) is a compact subset of . R.  Then  i  f . E <

inf σ(Hα,V ), we obtain.Nα,V (E) = 0. Similarly if.E > supσ(Hα,V ),  the  n. Nα,V (E) =
1 and so .{0, 1} ⊆ G holds. We continue proving. α mod 1 ∈ G for . ∈ Z\{−1, 0}.
The case . = −1 will be treated separately at the end. 

Let . ∈ Z\{−1, 0} and let .μ = (μ−1,μ0, . . . ) ∈ Mα be such that there is some 
.k0 ∈ N0 with . = k0

j=−1(−1) jμ j q j and.μ j = 0 for all . j ≥ k0 + 1, which exists by 
Lemma 5.26. In addition, Lemma 5.26 asserts that .μk0 ≥ 1. Then define 

.μ = (μ−1,μ0, . . .μk0−1, (μk0 − 1), ck0+2, 0, ck0+4, 0, ck0+6, . . . ). (5.9) 

Observe that.μ ∈ Mα using.μk0 ≥ 1. Then Lemma 5.24 implies that there are unique 
.γ, γ ∈ α such that .E := Eα,V (γ) and .E := Eα,V (γ ) satisfy 

. Nα,V (E) =
∞

j=−1

(−1) jμ j (q jα − p j) and Nα,V (E ) =
∞

j=−1

(−1) jμ j (q jα − p j).

With this choice we get 

. [0, 1 Nα,V (E) =
∞

j=−1

(−1) jμ j (q jα − p j)

=
k0

j=−1

(−1) jμ j (q jα − p j)

=
k0

j=−1

(−1) jμ j q jα

= α

−
k0

j=−1

(−1) jμ j p j

∈Z

and therefore.Nα,V (E) = α mod 1. 
We also claim .E E . Assume differently, i.e., .E = E ,  the  n .γ = γ due to 

Lemma 5.12. Hence, .μ j (γ) = μ j (γ ) follows for all . j ∈ N−1 by the definition of 
.(μ j ) j∈N−1 in Proposition 5.21. This yields a contradiction for . j ≥ k0. 

Next we observe 

.|Nα,V (E ) − Nα,V (E)| = |(−1)k0+1(qk0α − pk0 ) + (−1)k0+1ck0+2(qk0+1α − pk0+1)

+
∞

j=k0+3

(−1) jμ j (q jα − p j )|

= (−1)k0+1(qk0+2α − pk0+2) +
∞

j=k0+3

(−1) jμ j (q jα − p j ) .
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Using the recursion formulas for .{pk}k∈N−1 and .{qk}k∈N−1 from Eq. (2.3), we induc-
tively conclude 

. (−1)k0+1(qk0+2nα − pk0+2n) +
∞

j=k0+2n+1

(−1) jμ j (q jα − p j)

= (−1)k0+1qk0+2(n+1)α − pk0+2(n+1)) +
∞

j=k0+2(n+1)+1

(−1) jμ j (q jα − p j) ,

for all .n ∈ N. Hence, we obtain 

. |Nα,V (E ) − Nα,V (E)| ≤ |qk+2nα − pk+2n | +
∞

j=k+2n+1

(−1) jμ j(q jα − p j) ,

for all .n ∈ N. Sending.n → ∞ and using that the sum exists, we conclude 

. |Nα,V (E ) − Nα,V (E)| ≤ lim
n→∞ |qk+2nα − pk+2n | ≤ 0,

by properties of the Diophantine approximation [27, Theorem 9]. Therefore . α
mod 1 = Nα,V (E) = Nα,V (E ) while .E E . Since the IDS is monotonously 
increasing (IDS1) and constant on the gaps (IDS2), we conclude that .(E, E ) is 
completely contained in .R\σ(Hα,V ). That is for all .E ∈ (E, E ) we still get 

. Nα,V (E ) = Nα,V (E) = α mod 1

and so we conclude. α mod 1 ∈ G. 
We now treat the last case . = −1 and the gap label. α mod 1 = 1 − α for . =

−1.  Le  t.μ = (1,−1, 0, 0, . . . ) and.μ = (0, c1 − 1, 0, c3, 0, c5 . . . ). By Lemma 5.24 
there are again unique .γ, γ ∈ α such that .μ(γ) = μ and .μ(γ ) = μ . Following 
similar computations as above, we get .Nα,V (Eα,V (γ)) = 1 − α = Nα,V (Eα,V (γ )). 
Since .γ γ , Lemma 5.12 implies .Eα,V (γ) Eα,V (γ ). Hence we also get in this 
case .1 − α ∈ G. 

6 A Recursive Relation for Periods of Mechanical Words 

This section is devoted to the proof of Lemma 2.4 and deriving a consequence of 
its proof (given as Corollary 6.5). Let .α ∈ [0, 1]\Q with infinite continued fraction 
expansion .(ck)∞k=0 and convergents .αk = ϕ([0, c0, c1, . . . , ck]) for .k ∈ N0. Recall 
from (2.6) the definition
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. Wk(i) := ωαk (i), 0 ≤ i ≤ qk − 1,

for the period of those mechanical words .ωαk . Further recall the statement of 
Lemma 2.4: 

. W0 = 0, W1 = 0 . . . 0
c1−1

1,

and if .k ≥ 2,  the  n

. Wk = Wk−2W
ck
k−1, k ≡ 0 mod 2,

Wck
k−1Wk−2, k ≡ 1 mod 2,

where the power means a concatenation of words. We now bring four auxiliary 
lemmas (Lemmas 6.1, 6.2, 6.3,  an  d 6.4) which are needed to prove Lemma 2.4. 

Lemma 6.1 (Period prefixes) Let .α ∈ [0, 1]\Q and .k ≥ 2. 

(a) If .k ≡ 0 mod 2 then 

.Wk(i) = Wk−1(i) for all 0 ≤ i ≤ qk−1 − 2 (6.1) 

and 
.Wk(i) = Wk−2(i mod qk−2) for all 0 ≤ i ≤ qk−1 − 2. (6.2) 

(b) If .k ≡ 1 mod 2 then 

.Wk(i) = Wk−1(i mod qk−1) for all 0 ≤ i ≤ qk − 2 (6.3) 

and 
.Wk(i) = Wk−2(i) for all 0 ≤ i ≤ qk−2 − 2. (6.4) 

Proof (a) Start by treating the case .k ≡ 0 mod 2.  Sinc  e . k is even, standard theory 
of rational convergents ([27, Theorem 4]) implies . pk−2

qk−2
<

pk
qk

<
pk−1

qk−1
. 

We start by showing that for all.0 ≤ i ≤ qk−1 − 1 ,. pk
qk
i = pk−1

qk−1
i from which 

(6.1) of the Lemma follows when using Lemmas 2.3 and (2.6). 
Assume toward contradiction that there exists .0 ≤ i ≤ qk−1 − 1 such that 

.
pk
qk
i = pk−1

qk−1
i . Clearly, .i > 0 must hold. Using . pkqk <

pk−1

qk−1
, we infer that there 

exists an .m ∈ N such that 
. 
pk
qk

i < m ≤ pk−1

qk−1
i,

or, equivalently, 

.
pk
qk

<
m

i
≤ pk−1

qk−1
. (6.5)



A Review of a Work by L. Raymond: Sturmian Hamiltonians … 65

Since . k is even, [27, Theorem 2] implies 

.
pk−1

qk−1
− pk

qk
= 1

qk−1qk
. (6.6) 

By (6.5),.mqk − i pk > 0 holds and so .mqk − i pk ≥ 1. Thus, (6.6)  an  d . i ≤ qk−1 − 1
lead to 

. 
1

qk−1qk
= pk−1

qk−1
− pk

qk
≥ m

i
− pk

qk
= mqk − i pk

iqk
>

mqk − i pk
qk−1qk

≥ 1

qk−1qk
,

a contradiction. 
Next, we show that for all.0 ≤ i ≤ qk−1 − 1 ,. pk−2

qk−2
i = pk

qk
i from which (6.2) 

of the Lemma follows when using Lemmas 2.3 and (2.6). 

Assume toward contradiction that there exists.0 ≤ i ≤ qk−1 − 1 such that. pk−2

qk−2
i =

pk
qk
i . Clearly,.i > 0must hold. Using.

pk−2

qk−2
<

pk
qk
, we infer that there exists an. m ∈ N

such that 
. 
pk−2

qk−2
i < m ≤ pk

qk
i,

or, equivalently, 

.
pk−2

qk−2
<

m

i
≤ pk

qk
. (6.7) 

Let .(ci)i∈N0 be the infinite continued fraction expansion of . α.  Sinc  e . k is even, [27, 
Theorem 3] implies 

.
pk
qk

− pk−2

qk−2
= ck

qkqk−2
. (6.8) 

By (6.7),.mqk−2 − i pk−2 > 0 holds and so.mqk−2 − i pk−2 ≥ 1.  Thus  , (6.7)  and  (6.8) 
lead to 

. 
ck

qkqk−2
= pk

qk
− pk−2

qk−2
≥ m

i
− pk−2

qk−2
= mqk−2 − i pk−2

iqk−2
>

mqk−2 − i pk−2

qk−1qk−2
.

Since .k ≥ 2,  we  hav  e .qk−2 > 0 and  so (2.3) and the previous estimate leads to 

. 1 ≤ mqk−2 − i pk−2 <
ckqk−1

qk
= ckqk−1

ckqk−1 + qk−2
< 1,

a contradiction. 
(b) For the case .k ≡ 1 mod 2, we get by standard theory of rational convergents 
([27, Theorem 4]) that . pk−1

qk−1
<

pk
qk

<
pk−2

qk−2
. 

To prove (6.3) we need to show that for all .0 ≤ i ≤ qk − 1 , . pk−1

qk−1
i = pk

qk
i , 

which can be done similar to the way that (6.1) was proven above (but exchanging
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the roles of . pkqk and.
pk−1

qk−1
). Note that statement (6.3) is stronger than (6.1) in the sense 

that we show equality for a longer subset (up to .qk − 2 rather than up to .qk−1 − 2). 

Assume toward contradiction that there exists.0 ≤ i ≤ qk − 1 such that. pk−1

qk−1
i =

pk
qk
i . Clearly,.i > 0must hold. Using.

pk−1

qk−1
<

pk
qk
, we infer that there exists an. m ∈ N

such that 
. 
pk−1

qk−1
<

m

i
≤ pk

qk
.

Thus, .qk−1m − pk−1i ≥ 1 follows. Since . k is odd, [27, Theorem 2] implies 

. 
pk
qk

− pk−1

qk−1
= 1

qk−1qk
.

Hence, .i ≤ qk − 1 lead to 

. 
1

qk−1qk
= pk

qk
− pk−1

qk−1
≥ m

i
− pk−1

qk−1
= qk−1m − pk−1i

iqk−1
>

qk−1m − pk−1i

qk−1qk
≥ 1

qk−1qk
,

a contradiction. 
To prove (6.4) we need to show that for all .0 ≤ i ≤ qk−2 − 1 ,. pk

qk
i = pk−2

qk−2
i . 

Next, we show that for all .0 ≤ i ≤ qk−2 − 1 ,. pk−2

qk−2
i = pk

qk
i from which (6.2)  of  

the Lemma follows when using Lemma s 2.3 and (2.6). 
Assume toward contradiction that there exists .0 ≤ i ≤ qk−2 − 1 such that 

.
pk−2

qk−2
i = pk

qk
i . Clearly, .i > 0 must hold. Using . pkqk <

pk−2

qk−2
, we infer that there 

exists an .m ∈ N such that 
. 
pk
qk

<
m

i
≤ pk−2

qk−2
.

Let .(ci)i∈N0 be the infinite continued fraction expansion of . α.  Sinc  e . k is odd, [27, 
Theorem 3] implies 

. 
ck

qkqk−2
= pk−2

qk−2
− pk

qk
>

pk−2

qk−2
− m

i
= pk−2i − mqk−2

iqk−2
.

Hence, .i ≤ qk−1 − 1 and the recursive relation (2.3) 

. 1 ≥ ckqk−1

qk
>

cki

qk
> pk−2i − mqk−2 ≥ 0.

Thus, .pk−2i − mqk−2 = 0 follows or equivalently .mi = pk−2

qk−2
. This contradicts . i ≤

qk−2 − 1 and .pk−1, qk−1 are coprime. 

The proof of the previous lemma allows to conclude the following, which will be 
used to prove the second part of Lemma 2.4.
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Lemma 6.2 (The period as a prefix of a Sturmian sequence) Let .α ∈ [0, 1]\Q and 
.k ≥ 2. 

(a) If .k ≡ 0 mod 2 then 

. ωα(i) = Wk−1(i) for all 0 ≤ i ≤ qk−1 − 2.

(b) If .k ≡ 1 mod 2 then 

. ωα(i) = Wk−1(i mod qk−1) for all 0 ≤ i ≤ qk − 2.

Proof For the first part of the lemma, we use that when.k ≡ 0 mod 2 then. 
pk
qk

< α <
pk−1

qk−1
([27, Theorem 8]). We have shown in the first part of the proof of Lemma 6.1 that 

for all .0 ≤ i ≤ qk−1 − 1 , . pk
qk
i = pk−1

qk−1
i . Combing this with . pkqk < α <

pk−1

qk−1
we 

get that . α i = pk−1

qk−1
i ,  for  al  l .0 ≤ i ≤ qk−1 − 1. Now, the first part of the current 

lemma follows when using the mechanical word representation as in Lemma 2.3. 
For the second part of the lemma, we use that when.k ≡ 1 mod 2 then. 

pk−1

qk−1
< α <

pk
qk

([27, Theorem 8]). We have shown in the second part of the proof of Lemma 6.1 

that for all.0 ≤ i ≤ qk − 1,. pk−1

qk−1
i = pk

qk
i . Combing this with.

pk−1

qk−1
< α <

pk
qk

we 

get that. pk−1

qk−1
i = α i ,  for  al  l .0 ≤ i ≤ qk − 1. Now, the second part of the current 

lemma follows when using the mechanical word representation as in Lemma 2.3. 

Lemma 6.3 (Period suffixes) Let .α ∈ [0, 1]\Q and .k ≥ 2. 

(a) If .k ≡ 0 mod 2,  the  n

.Wk(qk − i) = Wk−1(qk−1 − i) for all 1 ≤ i ≤ qk−1. (6.9) 

(b) If .k ≡ 1 mod 2,  the  n

.Wk(qk − i) = Wk−2(qk−2 − i) for all 1 ≤ i ≤ qk−2. (6.10) 

Proof Using (2.5) in Lemma 2.3 gives for all .k ≥ 1, 

.Wk(qk − 1) (qk − 1 + 1)
pk
qk

(qk − 1)
pk
qk

1, (6.11) 

which proves the case.i = 1 in (6.9)  and  (6.10). If.c1 = 1 and.k ∈ {2, 3}, we conclude 
.q1 = 1 from (2.3), and hence the statement holds in this case (as we have shown that 
it holds for.i = 1). Thus, in the sequel of the proof, when treating.k ∈ {2, 3}, we will 
assume .c1 > 1.
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We show another auxiliary statement which aids in the proof—that the sub-word 
.Wk |{1,...,qk−2} is a palindrome, i.e.: 

.Wk(i) = Wk(qk − (i + 1)) for all 1 ≤ i ≤ qk − 2. (6.12) 

To prove this identity, observe for .1 ≤ i ≤ q − 2 and .p, q coprime, 

. (q − i)
p

q
− (q − 1 − i)

p

q
= −i

p

q
− − (i + 1)

p

q

= − i
p

q
+ 1 + (i + 1)

p

q
+ 1

= (i + 1)
p

q
− i

p

q
.

Thus, (6.12) follows from (2.5) in Lemma 2.3. We now proceed to prove the lemma 
using the above. 

(a) Assume that .k ≡ 0 mod 2.  Fo  r .2 ≤ i ≤ qk−1 − 1,  we  hav  e

. Wk(qk − i) = Wk(i − 1) = Wk−1(i − 1) = Wk−1(qk−1 − i),

where the first and third equalities follow from (6.12), and the second equality 
follows from (6.1) in Lemma 6.1. To finish this part of the proof we only need 
to show that (6.9) holds for .i = qk−1, i.e., that .Wk(qk − qk−1) = Wk−1(0) = 0. 
Using [27, Theorem 2] we calculate 

. qk−1
pk
qk

= 1

qk
(qk−1 pk − qk pk−1) + pk−1 = − 1

qk
+ pk−1.

Hence, 

. Wk(qk − qk−1) = (qk − qk−1 + 1)
pk
qk

− (qk − qk−1)
pk
qk

= pk − pk−1 + 1

qk
+ pk

qk
− pk − pk−1 + 1

qk

= pk + 1

qk
− 1

qk
= 0,

follows where in the last equality we used that.qk > pk + 1, which holds if. k > 2
or if .k = 2 and .c1 > 1 (which we can assume since we have already dealt the 
case .k = 2, .c1 = 1 in the beginning of the proof). 

(b) Assume that .k ≡ 1 mod 2.  Fo  r .2 ≤ i ≤ qk−2 − 1 we have 

.Wk(qk − i) = Wk(i − 1) = Wk−2(i − 1) = Wk−2(qk−2 − i),
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where the first and third equalities follow from (6.12), and the second equality 
follows from (6.4) in Lemma 6.1. To finish this part of the proof we only need 
to show that (6.10) holds for.i = qk−2, i.e., that.Wk(qk − qk−2) = Wk−2(0) = 0. 
Using [27, Theorem 3] we calculate 

. qk−2
pk
qk

= 1

qk
(qk−2 pk − qk pk−2) + pk−2 = − ck

qk
+ pk−2.

Hence, we conclude 

. Wk(qk − qk−2) = (qk − qk−2 + 1)
pk
qk

− (qk − qk−2)
pk
qk

= pk − pk−2 + ck
qk

+ pk
qk

− pk − pk−2 + ck
qk

= pk + ck
qk

− ck
qk

.

To conclude.Wk(qk − qk−2) = 0, we now show.
ck
qk

< 1 and.
pk+ck
qk

< 1. The recur-
sions (2.3) lead to 

. 
ck
qk

= 1

qk

qk − qk−2

qk−1
< 1

and 

. 
pk + ck
qk

= ck (pk−1 + 1) + pk−2

ckqk−1 + qk−2
< 1,

where to get the last inequality we observe that for .k ≥ 3 (recalling that . k ≥
2 and we consider now odd . k values) .pk−2 ≤ qk−2 and .pk−1 + 1 ≤ qk−1,  and  
equality in both of these may be achieved only i f.k = 3 and.c1 = 1 (which yields 
.p1 = q1 = 1 and.p2 + 1 = c2 = q2), but we have already dealt with this case in 
the beginning of the proof. 

Lemma 6.4 (Sub-periods of the period) Let .α ∈ [0, 1]\Q and .k ≥ 2. 

(a) If .k ≡ 0 mod 2,  the  n

.Wk(i) = Wk(i + qk−1 mod qk) for all 1 ≤ i ≤ qk − 2. (6.13) 

(b) If .k ≡ 1 mod 2,  the  n

. Wk(i mod qk ) = Wk(i + qk−1 mod qk ) for all − qk−1 + 1 ≤ i ≤ qk − qk−1 − 2.
(6.14)
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Proof As before we use frequently (2.5) in Lemma 2.3. 

(a) Let .k ≡ 0 mod 2.  Le  t .1 ≤ i ≤ qk − 2.  Sinc  e .pk, qk are coprime, we conclude 

. j pk
qk

/∈ Z and. j pk
qk

− 1
qk

= j pk
qk

for all .1 ≤ j ≤ qk − 1.  The  n

. Wk(i + qk−1 mod qk) = (i + 1 + qk−1)
pk
qk

− (i + qk−1)
pk
qk

= (i + 1)
pk
qk

+ qk−1
pk
qk

− pk−1 − i
pk
qk

+ qk−1
pk
qk

− pk−1

= (i + 1)
pk
qk

− 1

qk
− i

pk
qk

− 1

qk

= (i + 1)
pk
qk

− i
pk
qk

= Wk(i)

follows where we used [27, Theorem 2] in the third equality. 
(b) Let .k ≡ 1 mod 2.  Le  t .−qk−1 + 1 ≤ i ≤ qk − qk−1 − 2. 

. Wk(i + qk−1) = (i + 1 + qk−1)
pk
qk

− (i + qk−1)
pk
qk

= (i + 1)
pk
qk

+ qk−1
pk
qk

− pk−1 − i
pk
qk

+ qk−1
pk
qk

− pk−1

= (i + 1)
pk
qk

+ 1

qk
− i

pk
qk

+ 1

qk
. (6.15) 

Thus, it suffices to prove (quite similar to the proof of the first part) that for all 
.−qk−1 + 1 ≤ j ≤ qk − qk−1 − 1, 

. j
pk
qk

+ 1

qk
= j

pk
qk

.

Assume toward contradiction that. j pk
qk

+ 1
qk

= j pk
qk

for some. −qk−1 + 1 ≤
j ≤ qk − qk−1 − 1. This means that there exists.m ∈ Z such that. j pk

qk
+ 1

qk
= m. 

Therefore, 
. j pk ≡ −1 mod qk . (6.16) 

By [27, Theorem 2].−qk−1 pk + pk−1qk = −1. Thus,. j = −qk−1 is a solution to 
(6.16). In fact, since.pk, qk are coprime any solution to (6.16) satisfies. j ≡ −qk−1

mod qk . We now obtain a contradiction since there is no such value in the range 
. j ∈ {−qk−1 + 1, . . . , qk − qk−1 − 1}. 

We now combine the last three lemmas to prove Lemma 2.4.
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Proof (Proof of Lemma 2.4) A short computation leads to.W0 = 0 with.α0 = 0
1 and 

.W1 = 0 . . . 0
c1−1

1 with .α1 = 1
c1
. 

We start by observing that the second part of the lemma follows quite straight-
forwardly from Lemma 6.2. To see this note that Lemma 6.2 connects .ωα to . Wk−1

(rather than to .Wk as in the statement of Lemma 2.4), so an appropriate conversion 
(and a switch of the parity of . k) should be done. Further note that when treating the 
case .k ≡ 0 mod 2 we have by (2.3)  tha  t .qk+1 ≥ qk + 1, which allows to conclude 
that the equality for this case holds for all.0 ≤ i ≤ qk − 1 (by Lemma 6.2, (b) it holds 
for .0 ≤ i ≤ qk+1 − 2). 

We proceed to prove the first part of the lemma and, as before, distinguish between 
two cases according to the parity of . k: 

(a) Let.k ≡ 0 mod 2. We first treat the case.k = 2 and.c1 = 1. In this case, we have 
.W0 = 0 and.W1 = 1. Then the recursion relation (2.3) asserts .α1 = p1

q1
= 1

1 and 
.α2 = p2

q2
= c2

c2+1 . Thus,.W2 = 0 1 . . . 1
c2

= W0W
c2
1 follows as claimed by (2.4)  and  

(2.6). Therefore, we can from now on assume that if .k = 2,  the  n .c1 > 1. 
Next, observe that .qk−1 = qk−2 can happen only for .k = 2 and .c1 = 1 (as can 
be verified from (2.3)). Therefore, we may continue the proof assuming that 
.qk−1 > qk−2. 
Applying (6.2) in Lemma 6.1 establishes the required statement for the prefix of 
.Wk , i.e.: 

. Wk−2 = Wk |{0,...,qk−2−1} = Wk |{0,...,qk−ckqk−1−1} ,

where we used .qk−1 > qk−2 and the recursive relation (2.3)  o  f .{qk}. 
Applying (6.9) in Lemma 6.3 gives 

. Wk |{qk−qk−1,...,qk−1} = Wk−1.

The last equality together with (6.13) in Lemma 6.4 yields 

. Wk |{qk−ckqk−1 ,...,qk−1} = Wck
k−1,

and completes the proof of this part. 
(b) Let .k ≡ 1 mod 2. 

Applying (6.10) in Lemma 6.3 establishes the required statement for the suffix 
of .Wk , i.e.: 

. Wk−2 = Wk |{qk−qk−2 ,...,qk−1} = Wk |{ckqk−1 ,...,qk−1} ,

where we used the recursive relation (2.3)  o  f .{qk}. Applying (6.3) in Lemma 6.1 
gives 

. Wk |{0,...,qk−1−1} = Wk−1.
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We observe that in this case we have.k ≥ 3 and.qk−2 ≥ 1. Hence, the last equality 
together with (6.14) in Lemma 6.4 yields 

. Wk |{0,...,ckqk−1−1} = Wck
k−1,

and completes the proof. 

Having proven Lemma 2.4, we use the arguments from the proof in order@@@@ 
to draw useful insights on the corresponding dynamical system. We refer the reader 
to [6, 7, 12, 13] for more background on the dynamical perspective. 

Let .A be a finite set (frequently called an alphabet). The set . AZ = {ω : Z → A}
is a compact metrizable space if equipped with the product topology. The shift 
.T : AZ → AZ is defined by .(Tω)(n) := ω(n − 1) for all .n ∈ Z, and it is a home-
omorphism. Then we can define the action of the group . Z on .AZ, where the shift 
. T is the generator of . Z and hence .(AZ, T ) defines a topological dynamical system. 
Denote by .Orb(ω) := {T nω : n ∈ Z} the orbit of .ω ∈ AZ under this action. For a 
given .α ∈ [0, 1], the orbit closure .Orb(ωα) is denoted by . α where .ωα ∈ AZ is the 
sequence defined in Eq. (2.4). Since . α is shift invariant (i.e., .T α) = α)  and  
closed,. α, T ) is also a dynamical system. If.α ∈ [0, 1]\Q,  the  n. α, T ) is called a 
Sturmian dynamical system. Using the previous results, we provide in the following 
a representation of . β for .β ∈ [0, 1] ∩ Q. 

Consider the alphabet .A = {0, 1}. A finite word is a concatenation . v1v2 . . . vk
of letters .vn ∈ A for .1 ≤ n ≤ k. For a finite continued fraction expansion . c =
[0, 0, c1, . . . , ck] ∈ C, with .ck /∈ {−1, 0}, recursively define the finite words . sn :=
sn(c) for .−1 ≤ n ≤ k by 

. s−1 = 1, s0 = 0, s1 = 0c1−11, sn = scnn−1sn−2 for 2 ≤ n ≤ k,

where .sm denotes the .m-times concatenation of the word . s. The two-sided infinite 
concatenation of the word. s is denoted by.s∞ ∈ AZ. We further denote. s(c) := sk(c)
for a finite continued fraction .c = [0, 0, c1, . . . , ck]. 

Given a rational number .β ∈ (0, 1) ∩ Q, a finite continued fraction expansions 
. c satisfying .ϕ(c) = β is not unique, see Remark 2.1. However, the corresponding 
dynamical system. β can be represented via .s(c)∞ for any. c satisfying.ϕ(c) = β: 

Corollary 6.5 Let .β = p
q ∈ (0, 1) ∩ Q be such that .p, q are coprime. Fix a finite 

continued fraction expansion .c = [0, 0, c1, . . . , ck] ∈ C, with .ck /∈ {−1, 0},  such  
that .ϕ(c) = β.  The  n .Orb(s(c)∞) = β .  Furthermore  , .Orb(s([0, 0])∞) = 0 and 
.Orb(s([0, 0, 1])∞) = 1. 

Proof If .β = 0, then only .c = [0, 0] satisfies .ϕ(c) = β. Thus, .s(c) = s0 = 0 and 
.ωβ = 0∞ proving the claim. If .β = 1, then only .c = [0, 0, 1] satisfies .ϕ(c) = β. 
Thus, .s(c) = s1 = 1 and.ωβ = 1∞ proving the claim.
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Now, let.β ∈ (0, 1) ∩ Q. We first note that there exist exactly two (using. β ∈ (0, 1)
and.ck /∈ {−1, 0}) finite continued fraction expansions for. β (a short and a long one) 
denoted by 

. cs = [0, 0, c1, . . . , cm + 1] and cl = [0, 0, c1, . . . , cm, 1].

We first show that .Orb(s(cs)∞) = Orb(s(cl)∞). Since the continued fractions . cs
and . cl share the same digits up to .m − 1,  we  hav  e .sk := sk(cs) = sk(cl) for all . k ≤
m − 1. Hence,.s(cs) = scm+1

m−1 sm−2 and.s(cl) = scmm−1sm−2sm−1 follows by the recursive 
definition. Thus, .Orb (s(cs)∞) = Orb (s(cl)∞) follows since .s(cs)∞ is a the same 
word as .s(cl)∞ up to a shift (by the length of the word.sm−1). 

Define 

. c := cs m ≡ 0 mod 2,

cl m ≡ 1 mod 2.

Note that the words.s(cs) and.s(cl) generate the same orbit by the previous consider-
ations. By construction,.c = [0, 0, c1, . . . , c j ] is a tuple of an even length, i.e.,. j ∈ N

is even. Choose .α ∈ [0, 1]\Q with continued fraction expansion .(dk)k∈N0 such that 
.c = [0, 0, d1, . . . , d j ], namely .ck = dk for all .k ≤ j . Applying [31, prop. 2.2.24] to 
. α yields .ωα|[1,q j ] = s([0, 0, d1, . . . , d j ]) = s(c). Note that .s(c) is a finite word of 
length.q j and let .vi ∈ {0, 1} be the letters of this word, namely.s(c) = v1 . . . vq j .  Se  t
.u = v1 . . . vq j−1, which is the prefix of.s(c)where we deleted the last letter. Since. β =
ϕ(c) = α j and . j ∈ N is even, Lemma 6.2 implies .ωα|[0,q j−1] = Wj = ωα j [0,q j−1]. 
Since .α < 1,  we  have .ωα(0) = 0. Combined with the previous considerations, we 
have .ωα j [0,q j−1] = 0u, a word of length . q j . Thus, 

. β = α j = Orb (0u)∞ .

Since  we  wish  to  prove .Orb(s(c)∞) = β, it suffices to show that .vq j = 0,  since  
then .s(c) = u0 and .Orb ((0u)∞) = Orb ((u0)∞) holds trivially. The claim that the 
last digit of .s(c) is zero (i.e., .vq j = 0) follows inductively from the definition of the 
words using .s0 = 0 and .sk = sckk−1sk−2 and since . j is even (such a statement also 
appears in [31, problem 2.2.10]). 

7 Floquet-Bloch Theory Via Finite-Dimensional 
Hamiltonian Matrices 

This section complements Sect. 3 by providing an alternative approach for the spectral 
analysis of the periodic operators, .H p

q ,V . In Sect. 3.1 the Floquet-Bloch theory is 
described in terms of transfer matrices and the discriminant, whereas here we make 
use of finite Hamiltonian matrices .Hc,V (θ). These matrices .Hc,V (θ) play a crucial



74 R. Band et al.

role in [3] and henceforth it is advantageous to introduce them already here and make 
the appropriate connection to the transfer matrices. 

We use here the continued fraction notation,.c ∈ C and denote the corresponding 
rational number by .

p
q := ϕ(c). The corresponding operator is 

. (H p
q ,Vψ)(n) := ψ(n + 1) + ψ(n − 1) + Vω p

q
(n) ψ(n),

where the potential is given by the mechanical word, 

. ω p
q
(n) := χ

1− p
q ,1

n
p

q
mod 1 ,

which is . q periodic (see Sect. 2.2). To describe the relevant Floquet-Bloch theory, 
we define the following finite-dimensional auxiliary matrix 

.Hc,V (θ) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 cos(θ) + Vω p
q
(0), q = 1,

Vω p
q
(0) 1 + e−iθ

1 + eiθ Vω p
q
(1)

, q = 2,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Vω p
q
(0) 1 0 . . . e−iθ

1 Vω p
q
(1) 1 . . . 0

0 1
. . .

...

...
. . .

. . . 0

0 1

eiθ 0 · · · 0 1 Vω p
q
(q − 1)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, q > 2.

(7.1) 

The characteristic polynomial of the matrix above is denoted by 

. Pc,V (θ; E) := det(E − Hc,V (θ)).

Using the auxiliary matrices defined above, we get the following by standard Floquet-
Bloch theory (see e.g., [46, Sect. 7.2], [43, Sect. 5.3]). 

Proposition 7.1 Let .V ∈ R and .c ∈ C with .
p
q = ϕ(c) = ∞. 

(a) The spectrum of .H p
q ,V is given by 

.σ(H p
q ,V ) =

θ∈[0,π]
σ(Hc,V (θ)).



A Review of a Work by L. Raymond: Sturmian Hamiltonians … 75

(b) Suppose . p and . q are coprime. Denoting the roots of .Pc,V (θ; ·) by . λ(θ)
i

q

i=1
we 

have 
.λ(0)

q−1 > λ(π)
q−1 > λ(π)

q−2 > λ(0)
q−2 > λ(0)

q−3 > λ(π)
q−3 > . . . (7.2) 

and get that .σ(H p
q ,V ) is the following union of . q disjoint closed intervals 

.σ(H p
q ,V ) = . . . λ(π)

q−3,λ
(0)
q−3 λ(0)

q−2,λ
(π)
q−2 λ(π)

q−1,λ
(0)
q−1 , (7.3) 

which are commonly called spectral bands. 

The general statement of Proposition 7.1 within Floquet-Bloch theory is with weak 
inequalities in (7.2) and possible intersections of the spectral bands in (7.3)  at  their  
edges. Specifically, in our case where the potential is given by .ω p

q
(n), this slightly 

stronger version holds since .p, q are coprime–a proof is found in Proposition 4.1 
using transfer matrices. 

Since Floquet-Bloch theory may be described either in terms of transfer matrices 
(as in Sect. 3.1) and in terms of finite-dimensional Hamiltonian matrices (as in 
this section), it makes sense to draw a direct connection between both. Hence, we 
explicitly state the connection between the trace . tc of the transfer matrix (i.e., the 
discriminant) and the characteristic polynomial.Pc,V : 

Lemma 7.2 For all .θ ∈ [0, 2π], 

. Pc,V (θ; E) = tc(E, V ) − 2 cos(θ).

A standard way to prove the identity in the lemma is to develop the Floquet-
Bloch theory using both the discriminant . tc and the characteristic polynomial . Pc,V

and note that these two polynomials have common roots. See for example [43,  The-
orem 5.4.1,(iii)]. Nevertheless, we bring here a direct computational proof4 which 
exploits the structure of the matrix .Hc,V (θ). 

Proof As usual, denote .
p
q := ϕ(c), with coprime.p, q . We first prove the statement 

assuming .q ≥ 3 and at the end check that it holds also for the cases .q = 1 and 
.q = 2. Start by examining. Pc,V (θ; E) + 2 cos(θ) = det E1 − Hc,V (θ) + 2 cos(θ)
and decomposing it into summands. We use the Leibniz formula for determinants to 
get 

.Pc,V (θ; E) =
σ∈Sq

sign(σ)

q

n=1

E1 − Hc,V (θ) n,σ(n), (7.4) 

where.Sq is the set of all permutations on.[q] := {1, 2, . . . , q}. We examine only per-
mutations with a non-vanishing contribution to the sum above. Let .σ ∈ Sq be such 
permutation and .n ∈ [q].  We  have  th  at . E1 − Hc,V (θ) n,σ(n) 0 only if . σ(n) ∈
{n − 1, n, n + 1} (noting that we consider a cyclic ordering of the indices in the set

4 An idea toward such a proof is also found in remark 3 after [43, Theorem 5.4.1]. 
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.[q], such that if .n = 1 then .n − 1 := q and if .n = q then .n + 1 = 1). If . σ(n) =
n + 1, then we can have either .σ(n + 1) = n or .σ(n + 1) = n + 2 (so that the cor-
responding product in (7.4) differs than zero). In the first case, we see that the per-
mutation. σ contains an involution,.(n n + 1). The second case imposes that. σ is the 
cyclic permutation, .σ+

cyc = (1 2 . . . q − 1 q), as all other permutations which 
satisfy both .σ(n) = n + 1 and .σ(n + 1) = σ(n + 2) have a vanishing contribution 
to (7.4). Explicitly the contribution of .σ+

cyc to this sum is 

. sign(σ+
cyc)

⎛

⎝
q−1

n=1

E1 − Hc,V (θ) n,n+1

⎞

⎠ −Hc,V (θ) q,1 = (−1)q+1(−1)q−1(−eiθ) = −eiθ.

If we repeat the arguments above for the case .σ(n) = n − 1 we get that either 
.σ contains the involution .(n − 1 n) or that it is the cyclic permutation . σ−

cyc =
(q q − 1 . . . 2 1)whose contribution to (7.4)  i  s.−e−iθ. Hence, the contribution 
of both .σ+

cyc and .σ−
cyc sums to .−2 cos(θ). All other permutations with non-vanishing 

contribution to (7.4) contain only involutions of the form.(n − 1 n) or fixed points 
.(n). We denote the set of such permutations by .Sq and summarize the discussion so 
far by writing 

.Pc,V (θ; E) + 2 cos(θ) =
σ∈Sq

(−1)|I (σ)|

n∈F(σ)

E − Vω p
q
(n − 1) , (7.5) 

where .I (σ) is the set of involutions (n n+1) of . σ and .F(σ) is the set of fixed points 
of . σ. 

Now, we consider.tc(E, V ) and decompose it into summands. To do so, we recall 
(see Sect. 3.1) the definition of.Mc(E, V ) as the product of one-step transfer matrices, 

. Aα(n)(E, V ) := E − Vωα(n − 1) −1
1 0

,

and write 

.tc(E, V ) = tr (Mc(E, V )) (7.6) 

. = tr
q

n=1

Aϕ(c)(n)(E, V ) (7.7) 

. =
ν∈{1,2}q

q

n=1

Aϕ(c)(n)(E, V )
νn,νn+1

, (7.8) 

where we have the interpretation.νq+1 := ν1 due to the cyclic property of the trace. In 
the sum above, a summand which corresponds to.ν ∈ {1, 2}q is non-zero if and only
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if there is no . n such that .νn = νn+1 = 2. We denote the set of all such . ν ∈ {1, 2}q
with non-vanishing contribution by .Nq ,  so  tha  t

.tc(E, V ) =
ν∈Nq

q

n=1

Aϕ(c)(n)(E, V )
νn,νn+1

. (7.9) 

For the last part of this proof, we show a bijection .h : Sq → Nq such that the con-
tribution of .σ ∈ Sq to (7.5) equals the contribution of .h(σ) to (7.9). We explicitly 
construct this bijection as follows: for any fixed point .n ∈ F(σ) we set 

. h(σ)n = h(σ)n+1 = 1,

and for any involution.(n n + 1) ∈ I (σ) we set 

. h(σ)n = 1, h(σ)n+1 = 2, h(σ)n+2 = 1.

First, the map .h : Sq → Nq is well defined, as no two subsequent entries of . h(σ)

may be equal to. 2. Furthermore, one can see that it is a bijection and for each. ν ∈ Nq

one can uniquely construct the corresponding .σ ∈ Sq such that .h(σ) = ν. Finally, 
it is also not hard to check that the contribution to the corresponding sum ((7.5)  or  
(7.9)) is preserved under the map . h. 

We end the proof by checking that the statement holds for the particular cases of 
.q = 1 and .q = 2. 

For .q = 1 we have 

. Pc,V (θ; E) = E − 2 cos+Vω p
q
(0) ,

and 

. tc(E, V ) = tr A p
q
(1)(E, V ) = tr

E − Vω p
q
(0) −1

1 0
= E − Vω p

q
(0).

For .q = 2 we have 

. Pc,V (θ; E) = det
E − Vω p

q
(0) − 1 + e−iθ

− 1 + eiθ E − Vω p
q
(1)

= E − Vω p
q
(1) E − Vω p

q
(0) − 2 − 2 cos(θ),

and



78 R. Band et al.

. tc(E, V ) = tr A p
q
(2)(E, V ) · A p

q
(1)(E, V )

= tr
E − Vω p

q
(1) −1

1 0
E − Vω p

q
(0) −1

1 0

= tr
E − Vω p

q
(1) E − Vω p

q
(0) − 1 −E + Vω p

q
(1)

E − Vω p
q
(1) −1

= E − Vω p
q
(1) E − Vω p

q
(0) − 2.

8 Dilated Chebychev Polynomials of the Second Kind 

In this section we collect proofs to the statements and identities around the dilated 
Chebychev polynomials of second kind. Recall that we defined these polynomials 
recursively by setting 

. S−1(x) := 0, S0(x) := 1 and Sn(x) := x Sn−1(x) − Sn−2(x) for all n ∈ N.

We also remind the reader that the classical Chebychev polynomials of second kind 
can be defined using the recursion formula 

. U−1(x) := 0, U0(x) := 1 and Un(x) := 2xUn−1(x) −Un−2(x) for all n ∈ N.

Lemma 8.1 For all .n ∈ N−1 and all .x ∈ R we have .Sn(2x) = Un(x). 

Proof We perform a proof by induction over .n ∈ N−1.  Fo  r .n = −1 and . n = 0
the statement follows directly from the definition. Therefore let .n ∈ N and assume 
.Sn−1(2x) = Un−1(x) and.Sn−2(2x) = Un−2(x) for all .x ∈ R.  Then  we  g  et

. Sn(2x) = 2x Sn−1(2x) − Sn−2(2x) = 2xUn−1(x) −Un−2(x) = Un(x).

Lemma 8.2 Let .x ∈ R and .n ∈ N0. Then the following holds. 

(a) We have .Sn+1(x)Sn−1(x) − Sn(x)2 = −1. 
(b) If .|x | = 2,  the  n .sign(x)n−1Sn−1(x) = n. 
(c) If .|x | ≥ 2,  the  n .2|Sn(x)| − |Sn−1| ≥ 0. 
(d) If .|x | ≥ 2,  the  n .sign(x)nSn(x) = |Sn(x)| and 

.sign(x)nx Sn−1(x) ≥ 2 Sn−1(x) .
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(e) If .|x | ≥ 2,  the  n

. sign(x)n Sn(x) − x

2
Sn−1(x) ≥ 1.

(f) If .|x | ≥ 2,  the  n .|Sn(x)| ≥ 1. 
(g) If .|x | > 2 and .n ≥ 1,  the  n

. sign(x)n Sn(x) − x

2
Sn−1(x) > 1.

Proof We prove each statement by an induction over . n. 

(a) For .n = 0 and .n = 1, observe 

. S1(x)S−1(x) − S0(x)2 = −12 = −1,

and 
. S2(x)S0(x) − S1(x)2 = (x2 − 1) − x2 = −1.

Suppose the statement is true for .n ∈ N and.n − 1,  the  n

. Sn+1Sn−1 − S2n = (x Sn − Sn−1) Sn−1 − S2n
= Sn (x Sn−1 − Sn)

=Sn−2

−S2n−1

= Sn Sn−2 − Sn = −1

follows. 
(b) Let .|x | = 2.  Fo  r .n = 0 and .n = 1, observe in these cases 

. sign(x)−1S−1(x) = 0 and sign(x)0S0(x) = 1.

Suppose the statement is true for .n ∈ N and.n − 1,  the  n

. sign(x)n+1Sn+1 = sign(x)n+1 (x Sn − Sn−1)

= |x |(n + 1) − n = 2(n + 1) − n = (n + 1) + 1.

(c) Let .|x | ≥ 2.  I  f .n = 0,  the  n .2|Sn| − |Sn−1| = 2 − 0 ≥ 0. Suppose the statement 
is true for .n ∈ N0.  The  n

. 2|Sn+1| − |Sn| = 2|x Sn − Sn−1| − |Sn| ≥2|x | · |Sn| − |Sn−1| − |Sn|
≥4|Sn| − |Sn−1| − |Sn|
≥2|Sn| − |Sn−1| ≥ 0

by induction hypothesis.
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(d) Again, let .|x | ≥ 2 and consider .n = 0 and .n = 1 for the induction base. Then 

. sign(x)0S0(x) = 1 = |S0(x)| and sign(x)1S1(x) = sign(x) · x = |x| = |S1(x)|.

Suppose it holds for .n ∈ N.  The  n

. sign(x)n+1Sn+1(x) = sign(x)n+1 (x Sn − Sn−1)

= |x | · |Sn| − |Sn−1| ≥ 2|Sn| − |Sn−1| ≥ 0,

where the last follows by the previous induction. Hence, . sign(x)n+1Sn+1(x) =
|Sn+1(x)| follows proving the first part of (8.2). Moreover, this and.|x | ≥ 2 lead 
to 

. sign(x)nx Sn−1(x) = |x | Sn−1(x) ≥ 2 Sn−1(x)

proving the second part of (8.2). 
(e) Let .|x | ≥ 2 and suppose.n = 0 for the induction base. Then 

. sign(x)0 S0(x) − x

2
S−1(x) = 1.

Suppose the statement is true for .n ∈ N0.  The  n

. sign(x)n+1 Sn+1(x) − x

2
Sn(x)

= sign(x)
x

2
≥1 if |x|≥2

sign(x)n Sn(x) − x

2
Sn−1(x) + x2

4
− 1

≥0

sign(x)n−1Sn−1(x)

≥0 by (b)

≥sign(x)n Sn(x) − x

2
Sn−1(x)

follows. Thus, the induction hypothesis implies the desired claim. 
(f) Let .|x | ≥ 2 and .n ∈ N0. Then (d) and (e) imply 

. |Sn(x)| = sign(x)nSn(x) ≥ 1 + sign(x)n
x

2
Sn−1(x) ≥ 1.

(g) Let .|x | > 2.  I  f .n = 1,  the  n

.sign(x)1 S1(x) − x

2
S0(x) = sign(x) x − x

2
= |x |

2
> 1
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follows. A similar computation as in (e) leads to 

. sign(x)n+1 Sn+1(x) − x

2
Sn(x) ≥ sign(x)n Sn(x) − x

2
Sn−1(x) > 1,

where the last estimate follows by the induction hypothesis. 

Lemma 8.3 ([36, (18.5.2)]) For all .n ∈ N and all .θ ∈ R we have 

. Sn(2 cos θ) = Un(cos θ) = sin(n + 1)θ

sin θ
.
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