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Abstract We present a review of the work (Raymond in a constructive gap labelling
for the discrete Schrodinger operator on a quasiperiodic chain (1995), [39], Raymond
in Etude algébrique de milieux quasipériodiques (1995), [40]). The review aims at
making this work more accessible and offers adaptations of some statements and
proofs. In addition, this review forms an applicable framework for the complete
solution of the Dry Ten Martini Problem for Sturmian Hamiltonians as appears in
Band, Beckus and Loewy (Dry Ten Martini Problem for Sturmian Hamiltonians,
[3D. A Sturmian Hamiltonian is a one-dimensional Schrodinger operator whose
potential is a Sturmian sequence multiplied by a coupling constant, V € R. The
spectrum of such an operator is commonly approximated by the spectra of designated
periodic operators. If V > 4, then the spectral bands of the periodic operators exhibita
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particular combinatorial structure. This structure provides a formula for the integrated
density of states. Employing this, it is shown that if V > 4, then all the gaps, as
predicted by the gap labeling theorem, are there.

Keywords Sturmian Hamiltonian - Spectral gap labels * Spectral tree

1 Introduction

1.1 The Motivation for this Review

The starting point of this paper is the unpublished work of Raymond, [39] and
his PhD thesis [40] (see also [41]). The first two authors became aware of [39]
via a private communication with Damanik. Band and Beckus were influenced by
[39] in their joint work with Loewy [3] and found it beneficial to refer to parts of
[39] in [3]. Indeed, [39] is a very stimulating work, contains some foundational
results, and is referred to numerous times (see, e.g., the surveys [12-14, 26] and
references within), in spite of being unpublished. We started to write the current
review with three goals in mind. First, it might be worthwhile to elaborate on some of
the proofs and fill in some gaps. Second, by adapting some notations and conventions,
we create a unified framework toward providing the complete solution for the Dry
Ten Martini Problem for Sturmian Hamiltonians, [2, 3]. Finally, we felt that the
whole community might benefit from having a published version of Raymond’s
work upon reaching its thirtieth anniversary. Hence, we joined forces to produce the
current review, with Raymond joining as well after this review was already initiated.
While this review was in final stages of preparation, we became aware that a similar
publication is planned in [38], as part of the book series initiated by Baake and
Grimm [6, 7].

In this review, we make the connection to [39] as transparent as possible. In
particular, throughout the review we clarify as much as possible where we merely
rephrase statements from [39] and where we elaborate or bring new statements and
terminology. When writing the current review, we were trying to provide an appro-
priate balance between two objectives. On the one hand, our desire is to reflect the
original work [39] with no substantial changes. On the other hand, at times we felt
that the exposition may profit by including adaptations based on later papers and
recent progress in the field.

We should emphasize that the current review covers only the first five sections
of [39] that form the starting point for resolving the Dry Ten Martini Problem for
Sturmian Hamiltonians in [3]. We do not treat here the last section of [39] about the
Hausdorff dimension of the Fibonacci Hamiltonian. This part in [39] led to further
progress in the study of the fractal dimensions of the spectrum of Sturmian Hamilto-
nians, see, e.g., [15, 20, 24, 28, 34]. Reviewing this part of [39] is not included here
since the focus is on the study of the integrated of states and the gap labels.
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1.2 A Short Historical Review

Let us start by introducing the model. We consider bounded linear operators H, v :
0>(Z) — €*(Z), given by

(Hoyp) () :=p(n+1) + ¢ — 1)+ Vx—anra mod D), (1.1

where V € Ris the coupling constant and x[1—q,1) is the characteristic function of the
interval [1 — «, 1). Whenever a € R\Q, the operator H,, y is aperiodic (in the sense
that its potential sequence is not periodic) and it is known as a Sturmian Hamiltonian.

We provide a short summary on the developments for the spectral theory of Stur-
mian Hamiltonians and refer the reader to the surveys [12-14, 26] and references
therein for more details. This class of operators serves as the guiding example for one-
dimensional quasicrystals and was introduced in [29, 37]. This model is also called
Kohmoto model and a plot of the associated spectra, as they vary with a—called the
Kohmoto butterfly—can be found in Fig. 1.

A first mathematical analysis of the so-called Fibonacci Hamiltonian H, y with
o= % was developed in [10]. Shortly after it was proven that the Fibonacci
Hamiltonian has Cantor spectrum of Lebesgue measure zero and the spectral measure
is purely singular continuous, [44, 45]. For all Sturmian Hamiltonians (i.e.,alla ¢ Q

Frequencies

Spectrum

Fig.1 The Kohmoto butterfly for V = 2
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and V # 0), Cantor spectrum of Lebesgue measure zero was proven in [8]. This result
was generalized in [30] to a large class of one-dimensional dynamical systems. The
absence of point spectrum and upper bounds on the growth of solutions for Sturmian
Hamiltonians were thoroughly studied as well [21-23].

Influenced by these results, one may ask whether all the spectral gaps that are
predicted by the gap labeling theorem [1, 4] appear. This is the so-called Dry Ten
Martini Problem for Sturmian Hamiltonians. Such a question was originally asked
by Kac in 1981 for the almost Mathieu operator (“are all gaps there ?”), see [42].
For large enough coupling constant, V > 4, it was proven in [39] that all gaps are
there, and this is reviewed in the current paper. For the Fibonacci Hamiltonian and
small enough coupling V, it was proven in [18] that all spectral gaps are there.
This result was extended in [35] for a € [0, 1]\Q with eventually periodic continued
fraction expansion and small enough coupling constant. In a remarkable study of the
Fibonacci Hamiltonian [20], it was proven that all gaps are there for all V # 0 and
a= % Finally, a complete solution of the Dry Ten Martini Problem for Sturmian
Hamiltonians for all « € [0, 1]\Q and all V # 0 is provided in [3]. Moreover, the
hierarchical structure of the periodic approximations spectra (initiated in [39]) was
extended in [3] to all V # 0.

This hierarchical structure also laid the ground to estimate the Hausdorff dimen-
sion for the Fibonacci Hamiltonian in [39]. It influenced the study of the fractal
dimension and the transport exponent for Sturmian Hamiltonians during the last
decades, see, e.g., [11, 15, 19, 20, 24, 28, 33, 34].

Organization of the paper. The paper is structured as follows. Section 2 discusses
the Sturmian sequences and their periodic mechanical words. In addition, we intro-
duce there a designated space of finite continued fraction expansions following the
lines of [3]. In Sect. 3, we present the standard Floquet—Bloch theory via transfer
matrices and the discriminant. Various useful identities of the discriminants are pre-
sented there. Section 4 describes the spectra of the periodic approximations and their
special combinatorial structure—first in general and then specializing for the case
V > 4. Section 5 applies the aforementioned combinatorial structure for the study
of the integrated density of states and the gap labeling for V > 4.

Acknowledgments. We are grateful for David Damanik and Michael Baake for
connecting some of the authors. First, in 2018, David Damanik introduced RB and
SB to the original work of LR, encouraging to further explore it, and suggesting
useful references along the way. Then, on December 2023, Michael Baake made the
physical connection and kindly hosted four of the authors in Bielefeld. We thank our
colleague Raphael Loewy who provided us with a critical and constructive viewpoint
on this work.

We thank Israel Institute of Technology and the University of Potsdam for provid-
ing excellent working conditions during our mutual visits. This work was partially
supported by the Deutsche Forschungsgemeinschaft [BE 6789/1-1 to S.B.] and the
Maria-Weber Grant 2022 offered by the Hans Bockler Stiftung. RB was supported
by the Israel Science Foundation (ISF Grant No. 844/19).
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2 The Sturmian Potential

This section is dedicated to studying the Sturmian sequence xji—q,1)(no mod 1),
which serves as the potential of the Sturmian Hamiltonian (1.1). In particular, we
will consider rational values of o, which give rise to periodic sequences and periodic
Hamiltonians. Most of the content of this section does not appear in [39] and our
main motivation for including it here is to use already in the current review some
tools and notations which are essential for [3].

2.1 The Space C of Finite Continued Fraction Expansions

Every irrational number o € R\Q has a unique continued fraction expansion [27],1.e.:
1
a=cy+ L
‘1 ot !

where ¢y € Z and ¢, € N for k£ > 1 and the sequence (cy, c1, ¢, . . .) is unique. If

a € Q, then there is a finite sequence (co, ¢y, . . ., ¢x) such that

1

a =co+ L
¢+
o
ck

and we refer to (co, ¢y, - . ., cx) as a finite continued fraction expansion of a.. How-
ever, the sequence (cy, ¢y, . . . , cx) is not unique for arational v, see [27, Chap [.4] and

Remark 2.1. Since we are only interested in « € [0, 1], we always have ¢y = 0. In the
current paper, we modify the conventional notation of continued fraction expansions
in two aspects:

e We add an artificial digit c_; = 0 to each finite continued fraction expansion
0, ¢y, ..., cx) and represent it by the string of “digits” [0, 0, ¢y, . .., cx].

e We allow the last digit ¢; of a string [0, 0, ¢y, . . ., cx] to attain also the values 0
and —1, namely, ¢, € N_; :=NU{-1,0}.

Summarizing the above, we defined the formal space of finite continued fraction
expansions to be

€ == {101, 10,0} U J{10.0,c1,-vehl = ervennvcimr €N, e € Ny
keN
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The purpose of these deviations from the conventional notation is mainly to describe

the different types of the spectral bands in Sect. 4.2. These types depend on the

particular choice of ¢ € C and not only on the rational number which is represented by

the continued fraction (more details appear in Sect. 4.2 and in [3, Proposition 2.10]).
For e = [0, co, ¢y, ...,cx] € C and m € N_;, we will use the notation

[c’ m] := [07 CO’ Cl’ AR Ck’ m] e C’

whenever it is defined. We use frequently in this work the condition [¢, m] € C. The
constraints this condition imposes are: if ¢ = [0], then m = 0 and if k € N, then
cr > 1.

We connect the set of continued fractions with rational numbers by introducing
the evaluation map ¢ : C — R U {oo}. Itis defined for all ¢ € C\ {[0], [0, 0, —1]} by

@0, co,c1 ..., k2, ck—1 —11), k>2and ¢ = —1,

0 ©([0, co, c1 ..., k2], keNandc =0,
SD([ y €0, Cly v v vy Ck]) L o + " 1 . , OtherWise.
il
k
2.1
In addition to that we set ©([0]) := oo and ([0, O, —1]) = —1. The first line in the
right-hand side of (2.1) is equivalent to substituting ¢; = —1 in the continued fraction

expansion. The second line is more delicate; if one allows taking ¢, € R then one gets

1 1
lim | ¢ + 1 =co+ s
cx—0 C1 —+ C1 4+
. 1 . 1
o Aol
which is the rationale standing behind the definition ([0, co,cy. .., cr—2,

Ck—1, O]) = QO([O, Co,Cl evny Ck_g]) in (21)

Remark 2.1 From the definition of the map ¢, we get Im(y) € (Q N[0, 1]) U
{—1} U {oc}. A basic yet important observation is that the map ¢ is not injective.
This may be seen already from its definition in (2.1). In addition,

©([0, co, c1 ..., k2, Ck—1, ks 1) = ([0, co, C1 . . ., Cr—2, Ch—1, Ck + 1]),

which is a common dual representation within continued fraction expansions
[27, Chap1.4]. Furthermore, one can check that

ple)=00 <& ce€{[0], [0,0,0] [0,0,1,—1]}.
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The motivation behind using continued fraction expansions is for approximating
irrational « € [0, 1]\Q by rational values, which allows to approximate aperiodic
Hamiltonians (1.1) by periodic ones. Specifically, given « € [0, 1] \Q with

a=cy+ . 2.2)

we define for each k € N,
¢ :=[0,0,c1,...,cx] and g = p(cr).

The values oy, offer an optimal way to approximate « in the sense limy_, o, @ = «,
and thus we refer to oy as the k-th convergent of a [27, Chap.1.3].

We further denote ”* := oy, where py, g € N are chosen to be coprime. It is
useful to extend this notation so that it includes also the values k € {—1, 0}. This is
done by setting

a1 :=¢((0]) =00, p_1=1, g1 =0,
oy :=¢(0,0)) =0, pp=0, go=1.

Note that for k = —1, we adopt the formal convention, a_; = % = 00. The reason
for introducing p_;, po.g—1 and qo is given by the following recursive formulas
[27, Theorem 1]: for k € Ny

Di+l = Ckp1 Pk +Pk—1 and Gyl = Ckr1qk + Gr—1- (2.3)

Remark 2.2 It is beneficial to make the analogy between the notations introduced
above and the notations in [39]. The notation (k, p), appearing first in [39, Proposi-
tion2.2], is replaced in this review by [0, O, ¢y, ..., ck—1, p] = [ex—1, p]. We do so,
since we find in [3] that it is essential to keep track of all numbers in the continued
fraction expansion simultaneously and consider values of ¢ € C which correspond to
different o ¢ Q. This matter is not raised in [39], where it is sufficient to fix a single
a ¢ Q and for that the notation (k, p) is adequate.

2.2 Sturmian Words and Mechanical Words

We present here a brief introduction to Sturmian words and mechanical words. For
elaborate surveys, see [5, 31].
We start by denoting for o € [0, 1] and n € Z,

wa (1) = X[1—a,h(nac mod 1). 2.4)
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Another equivalent representation of the sequence w, € {0, 1}Z is the following.

Lemma 2.3 ([8, 39], Lemma 1, Definition2.1) Let a € [0, 1] and n € Z. Then
wa(n) = [(n+ Da] — |nal, (2.5)

where | | is the floor function.

Proof First, observe that |a(n + 1)] — an] € {0, 1}, for all n € Z. Using that the
claim follows from

wen) =1 << na modl e[l —a,l)
< dmeZ:naem+1—a,m+1)
— la(n+ 1] — lan] = 1. U

‘We use the notation w,, for both rational and irrational values of «. The infinite
words defined by |a(n + 1)] — |an] are also called (lower) mechanical words (with
slope o) [31, Sect.2.1.2]. If a = Z € [0, 11N @, then it is elementary to see that w,,
is g-periodic, i.e., wo(n + q) = wy(n) for all n € Z. If o ¢ Q then w,, is called a
Sturmian sequence, which is not a periodic word. In this case, it is useful to study
the (g-)periodic words w,, as approximations of w, where oy = Z : are the kth
convergents of « and py, gx are coprime.

We have seen in (2.3) that there is a recursive formula which connects the period
lengths, g, for three subsequent k values. We show next that the periods themselves
(i.e., the finite sub-words of length g;) are also connected via a recursive relation.
We denote these periods by Wy € {0, 1}%, setting

Wi(@) :=we, (),  O0=i=gq—1 (2.6)

and claiming the following.

Lemma 2.4 The periods of the mechanical words satisfy the following:

Wy =0, W;=0...01.

c1—1

If k > 2 then
C[wiaws, k=0 mod 2,
“Tlwe Wi, k=1 mod2,

where the power means a concatenation of words.
In addition, for k > 1, these periods appear as the prefix of the infinite Sturmian
word w,, in the following sense:

o Ifk =0 mod 2 then w,(i) = Wi (i) forall0 <i < g — 1.
o Ifk=1 mod 2 then w,(i) = Wi(i) forall0 <i < g — 2.
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In fact, it will be shown in the following sections that we care of the words W
only up to a cyclic shift. In this sense, the expressions Wy_, W;* | and W* | Wy_,
are the same. Therefore, in the literature (and, in particular, in [39, Eq.(2)]) only
the expression W;* | Wy_, is used. Indeed, Wy equals to W, ; Wi_> up to a possible
cyclic shift is proven and used in various works, see, e.g., [8], [22, Proposition2.2]
and [12, Theorem2.15]. Another difference between the common viewpoint and
ours is that usually the periods W; of the mechanical words w,, are compared to the
Sturmian sequence w,, whereas we wish to compare between the various periods to
themselves, Wi, W;_;, and W;_,.

We decided to supplement the discussion in the current review by treating the
precise sub-word W;, as it is defined in (2.6), and not only up to cyclic shift. We
employ this exact representation in Sect. 7 when defining the finite-dimensional
Hamiltonian matrices (7.1) for the Floquet—Bloch theory. These matrices also play a
substantial role in [3]. For these reasons we have Lemma 2.4 as written here (and not
only up to a cyclic shift) and its proof. Statements which are similar to Lemma 2.4
can be also found in [32, Eq.(2.8)] and [31, Problem2.2.10].

The reader is referred to Sect. 6 for the proof of Lemma 2.4 and related results.

3 Transfer Matrices and the Discriminant

In this section, we study the spectrum of the operator H, y (1.1) while our main
focus lies on rational o € [0, 1]. In this work, we use the rational approximations o
to study the spectrumof H,, y fora € [0, 1\Q.If o = Z € [0, 1]isrational, then w,
is g —periodic. Hence, the spectrum of H,, y is given by Floquet—Bloch theory using
transfer matrices and the discriminant, as is described in the following. We note that
there is an equivalent approach to Floquet—Bloch theory by employing ¢ x ¢ Hamil-
tonian matrices which depend on the Bloch parameter. This equivalent approach (and
its connections to transfer matrices) is described in Sect. 7 and extensively used in [3].

3.1 The Spectrum of Periodic Operators Via Transfer
Matrices and the Discriminant

We briefly present here some basic Floquet—Bloch theory using the transfer matrix
formalism. We keep the exposition as short as possible and mainly intend to set the
notation and the tools to be used in the sequel. Two good sources for a more thorough
introduction to the one-dimensional discrete Floquet—Bloch theory are [43, Chap 5]
and [46, Chap.7].

Let V € Rand o € [0, 1]. The difference equations associated to H,, v are

Eumn)=umn—1)+umn+1)+Vw,(mun), E e€R, nelZ. 3.1)
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Solutions of this equation are studied via the so-called one-step transfer matrices

Au(”)(Ey V) = <E B Vlwa(n) _01> , E e R, n e Z.

Writing the difference equations in a matrix form, we obtain the following.

Lemma3.1 Let VeR a€l0,1], u:Z — Cand E € R be such that Egs.(3.1)
are satisfied for all n € Z.. Then we have for alln € Z

u(n) _fu(n+ 1) _
A.(n)(E, V) (u(n _ 1)) = < w(n) > and det(A,(n)(E,V)) =1.

Proof This follows by a short computation. (]

Letc € C with Z 1= p(c) € [0, 1] with p, g coprime. We observed in the previous

section that the potential w,, is g-periodic for rational « = 2’ . Thus, it is advantageous
to define the (g-step) transfer matrix

Mei=Ar(g—1)-Ar(g—2)...Ar(1)- A (0) (3.2)

and get the following immediate implication.

Lemma 3.2 LetV € R, ¢ € C with Z = (c) € [0, 1]. Then

WO\ _ ( ug)
Me(E, V) (u(—l)) = (u(q - 1))

holds for allu : 7Z. — C and E € R satisfying (3.1). In addition, det M, = 1.
Proof This is an immediate consequence of Lemma 3.1. (]

Lemma 3.2 extends to ¢ = [0, 0, —1] for which ¢(¢) = —1. To do so, we set
g = ’11 and apply the definition of the mechanical word from Lemma 2.3 to get for
alln € Z,

p

w-i(n) == [(n+ D(=D] = [n(=D)] = -1,

and
AL(E, V) = (E I ‘01) = Mo, 1(E, V). (3:3)

We continue by using the recursive structure of the Sturmian words, as expressed in
Lemma 2.4, in order to provide the recursive relations between the transfer matrices.
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Lemma 3.3 Let E € R and V € R. Denote

1-V
My (E, V) = <0 1 >,

andletc =10,0,c1,...,cx] € Cwith o(c) € [0, 1] U {—1}.

(a) Ifc = [0, 0], then
Moo (E, V) = <’f _01).

(b) Ifk € Nand c, € Ny, then

Mioo,cr,.co 11(E, V)% - Mioo.c, .. o1(E, V), k=0 mod 2,

M. (E, V)= .
Mio,0.c,...c;21(E, V) - Mpoo,ey,.oc; 1 (E, V)%, k=1 mod 2.
3.4
(c) Ifk € Nand ¢, € N_y, then
tr (Mc) =1r (M[O,O,cl...,ck,z] : M[O,O,cl,...,ck,l]clk) . (35)

Remark

(a) We clarify the lower recursive relations in Lemma 3.3 by explicitly writing
Mio,0.¢,1 = Moy - Mjo.o1 and  Mio,0.¢,.c,1 = M10,0.¢:1” - Mpo,01(E, V).

(b) In addition, we note that (3.4) does not hold for ¢, = —1 (or rather, should be
appropriately modified), whereas (3.5) does hold also for all ¢, € N_;. This
property of the trace is important and will be used in the next subsection.

Proof For k = 0, we get ¢ = [0, 0] and since wyj0,0) = wo = 0% we have go = 1
and

E —1
M0 = Agg(o) = (1 0 >,

proving (a).
Next, we prove (b). If k = 1, thenc¢ = [0, 0, ¢;] with ¢; € N, as otherwise (i.e., if
c1 = 0) ¢(c) = oco. Hence, ¢(c) = Cll and Lemma 2.4 implies

wi Owi(1)...w1(c; —2)we(c;p — 1) =00...01.
o o o
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Using the definition of the transfer matrix, (3.2), we get

Mooc=As (=1 A1 (1 =2)...A1(1)- A4 (0)
_(E-V =1\ (E-1\""
“L1 o o)l1o
_(1=V\ (E -1\ (E -1\"""
o1 )\t o)1 o0

= Mo - Mpo,0"",

which verifies the statement for k = 1 and ¢, € N. Note that the case k = 1 and
cx = Oresultsin ¢ = [0, 0, 0] satisfying (o(¢) = oo which is excluded by assumption.
If Kk > 2 and ¢ ¢ {—1, 0}, then (b) follows from Lemma 2.4.

Now, letk > 2andc; = 0. Wehavee = [0, 0, ¢y, ..., ck—2, ck—1, 0] and by defini-
tion of the evaluation map, we get o(¢) = ¢([0, 0, cy, ..., cx—2]). Thus, M. (E, V) =
Mio,0.c,....c.,1(E, V) follows since M, only depends on the evaluation ¢(c). In par-
ticular, (3.4) holds also for ¢; = 0 (regardless of the parity of k).

It is left to prove (3.5). As a matter of fact, the cyclic property of the trace yields
that (3.5) is a direct consequence of (3.4) if ¢; # —1.

If ¢, =—1 we have ¢ =10,0,cy,...,cr—1, —1] and @(c) = ([0, 0, ¢y, ...,
cx—1 — 1]) and by definition M. = Mo0.c,,....c, ,—1]- If kK > 2 we get

(
(
= tr((M[OOCl R M[OOLI cH]Ck") Mooy )
(
(

where in the second and fourth equalities we used (3.4) together with the cyclic
property of the trace (which allows not to distinguish between even and odd k’s) and
in the last equality we used that tr(M) = tr(M ~1) whenever det M = 1 (and this
holds for transfer matrices by Lemma 3.1). All is left is to check the case k = 1 and
cx = —1.Inthis case, ¢ = [0, 0, —1], ¢(c) = —1 and a straightforward computation
invoking (3.3) gives

tr (Mo Ml)) =V + E = tr (Myo.0.-1)) -
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By standard Floquet-Bloch theory (applied to one-dimensional Jacobi operators),
the spectrumof H» y (for f; = ¢(c)) may be described by the trace of M.. Therefore,
define the discriminant 7, for ¢ € C by

t(E, V) :=tr(M.(E, V))

and
oe(V) = te(-, V)1 ([=2, 2.

Example 3.4 Observe thatif ¢(c) = oo, thent.(E, V) = 2andso o.(V) = Rhold.
If ¢(c) = —1, then (3.3) leads to #9,0—1;(E, V) = E+V and so oy0,-1;(V) =
[-2—=—V,2—-V]forall V € R.

If p(c) # oo, we bring here a summary of useful properties which may be found,
for example, in [43, Sect.5.4], [46, Sect.7.1].

Proposition 3.5 Letc € C with p(c) ¢ {—1,00}and V € R.
Then the following properties hold:

(a) 0c(V) =0 (Hye.v)-

(b) Denoting f; = (c), the set t,(-, V)1 (=2, 2)) consists of exactly q open inter-
vals.

(c) The discriminant t. is monotone on each connected component of

te(, V)71 ((=2,2)).

The connected components z(-, V)~ ((—2, 2)) mentioned in Proposition 3.5 are
the interior of the so-called spectral bands of o.(V). The spectral bands are closed
intervals whose edge points are givenby z.(-, V) ™! ({—2, 2}). In general, it is possible
that different spectral bands overlap at their endpoint. However, this is not the case
for the approximations of the Sturmian Hamiltonian if V # 0, see Proposition 4.1.

Remark We were trying to keep the notation here close to the one in [39] and, in
particular, use the notations M and ¢ for the transfer matrix and its trace (discrim-
inant). Nevertheless, we deviate in the subscript notation, using M, instead of M
and ¢, instead of #(_ ,). The reasons for this change are exactly the ones which are
specified in Remark 2.2.

3.2 Algebraic Identities of the Transfer Matrices and Their
Traces

In this subsection, we develop some identities for the traces f.. These identities
will be used in the following sections to derive spectral properties of the periodic
operators H,(),v. Some of these identities can be found in [8, 39]. However, we use
here a slightly different notation (to fit [3]) and, in particular, use the mechanical
word sequences wy for all values of ¢ € C, rather than a single fixed Sturmian
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sequence w,, which is the approach used in [8, 39]. For the sake of a self-contained
presentation, we provide here complete proofs of all the relevant identities.

We start by noting a basic property of the discriminant ¢, = tr(M,): even though
it is a function of ¢, it depends only on the value (c¢). This fundamental property
deserves an explicit mention here, as it is substantially used in the sequel.

Lemma 3.6 Letc, ¢ € C be such that o(¢) = ¢(€), then

t.(,V)=1t(-,V) and o.(V) =0x(V) forallV e R.

Proof This property is immediate from the definition of M., (3.2), which depends
purely on the value of p(¢), if ¢(c) # oo. For p(¢) = oo, the matrix M. does depend
onc € {[0], [0, 0, 0], [0, 0, 1 — 1]}. However, a short computation gives #.(E, V) =
2 if p(¢) = oo. The statement o.(V) = ox(V) follows directly from the equality of
the traces. (]

For the sake of representation, we write 7, instead of #.(E, V). As an immediate
corollary, we get

Corollary 3.7 Let [0, co, c1, ..., ck] € C with ¢y € N. Then the following identities
hold:

t[O,L'(),...,Ckfl,Ck,O] = t[O,CQ,...,L‘k,]]
10.co,wscimr e, =11 = 10.covncimr e —1]

10,0, er-1,00, 11 = H[0,¢0,00nscxo1,ci 110

Proof This is an implication of Lemma 3.6 together with the identities

w([e, 0) = ([0, co, - - -, k1], w(le, =11 = ([0, co, - - -, Ch—1, cx — 1]),
and ¢([c, 1]) = ([0, co, . .., ck—1, cx + 1]) fore = [0, co, . . ., cx]. O

Lemma 3.8 ([39, Proposition2.2]) Letc € C andm € Ny such that [c, m] € C. Then

tem+1] = Leliem] — Hem—11-

Proof Letc’ e Cand ¢, € Ny be such thate = [/, ¢]. Observe that A> = tr(A)A —
det(A)1, for complex 2 x 2 matrices (this is actually a special case of Cayley—
Hamilton theorem). In particular, we will use this identity for the transfer matrices,
for which det (M,) = 1 by Lemma 3.1. With this at hand we get
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e,m+1] = tecoom+1] = r(Mie ¢ .m+17)
= tr(Me M")
= tr(Me M M)
= tr(Me M ' [tr(Me) M, — det(M,)1,])
= tr(M)tr(Me M™) — tr(Me M)
= tr(Mc)tr(M[c,m]) - tr(M[c,mfl])

= lelle,m) — Hem—11)
where in the second and sixth lines we used (3.5) of Lemma 3.3. (I

Next, we aim at generalizing Lemma 3.8. To do so, we introduce the dilated
Chebyshev polynomials of the second kind S; : R — R (see [36, Eq. (18.1.3)]). These
polynomials are inductively defined by

S 1(x):=0, So(x):=1, S§(x)=xS1(x)—S2(x). (3.6)

Section 8 contains an elaborate account on these polynomials, their connection to
the “usual” Chebyshev polynomials of the second kind and various useful identities
which are used in this review as well as in [3].

Lemma 3.9 ([39, Proposition2.2]) Letc € Candm > 1 > —1 such that [c, m] € C,
then

teon+1] = Siw1 T te,m—n1 — Si(t) e, m—1-11-

Proof We fix m € N_; and prove the statement by induction over / € N_;. For
I = —1, we use Lemma 3.8 to get

So(t) tie,m—11 — S—1(tie,m—1-1] = 1 - tiem+11 + 0« te,m] = Hem+1]-

Now assume the statement is correct for m > [ > —1. We then get

tre,m+1] = Si41 (t)tie,m—n — Si(Te)tie,m—i-11
= Sps1(te) [tetiem—i—1) — tiem—i-21] — Si(t) e m—i-1]
= [teSi41(te) — Si(te) ] tiem—i—1) — Siz1 () tiem—i-2]
= Sip2 (t) e m—a+1)1 — Si+1 U e.m—+1)—115

where we used Lemma 3.8 in the second equality, and the Chebyshev polynomial
recursion in the last equality. (]

In the following, an extra parameter £ € {—1, 0} is introduced. Later in this review
so-called spectral bands I in o, of backward type A and B are introduced that are
defined by adding to ¢ the digit O if /. is backward type A and —1 if I, is backward
type B, see Definition 4.10.
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Corollary 3.10 Letc € C and m € N be such that [c, m] € C. For £ € {—1, 0}, we
have
tie,m) = Sm—t—1(t) e, 1460 — Sm—t—2 (1) te.0)-

Proof This is a direct consequence of Lemma 3.9. O

We proceed to apply this corollary to get another useful identity involving Cheby-
shev polynomials and the traces.

Lemma 3.11 Letc € C and m € N be such that [c, m] € C. For any & € {0, 1} and
L e {—1, 0}, we have

Sm—1-¢(te) [tem—1) + (=Dt 1501] = [Sm—2—e(te) + (= D] [tiem) + (=D tje.e1] -

Proof First, we use twice the recursion relation for the Chebyshev polynomials to
get

Si(x)S1—2(x) — S1—1(x)* = X811 (X)S)—2(x) — Sj—1 (x)? — Sj_2(x)?
= 81 (x)S)_3(x) — S (x)*.

In particular, we get that this expression is independent of / and therefore
Si(0)S1-2(x) = Si-1(x0)* = Si(0)S-1(x) = Sp(x)* = ~1.

Using this identity, Lemma 3.9 and Corollary 3.10, the lemma follows by straight-
forward computation. For example, for £ = —1,

S (te) [ten—1) + (= Dtc.01]
= S (te) [Sm—1 () tie.0) — Sm—2(t)tie,—17 + (= D’te.01]
= S (t)Sm—1te)e.0) — S (1) Sm—2 (1) e~ 11 + (= 1)*Sp (e) tie.0)
=S, {t)Sm—1)e,01 — [S,anl(fc) =1 tie1 + (=1, (t)e.0)
= Su(t)tie.0) [Sm—1(te) + (= 1] =[S}, (te) — 1] tre.—1)
= [Su-10t) + (= D] [Su @ t1e.0) = (Sm-1(t0) + (=1)*") f1e,-1)]
= [Sn-1(te) + (=D ] [Sm (te)tte.01 = Sm—1 (te) .11 + (1) tre, 1]
= [Su-1(te) + (= D] [ean + (=D te. 1] -
The statement for £ = 0 follows the same lines except that the case m = 1 needs

to be treated separately (since we used Corollary 3.10 moving from the first to the
second line, which cannot applied if £ = 0 and m = 1). (]



A Review of a Work by L. Raymond: Sturmian Hamiltonians ... 17

3.3 The Fricke-Vogt Invariant

The Fircke—Vogt invariant serves an important role in the spectral analysis of Stur-
mian Hamiltonians. We review here this well-known part of the theory, and rephrase
it according to our convention to use the space C.

Denote by [-,-] the matrix commutator [A, B] := AB — BA. Note that
tr ([A, B]) =0, as tris linear and tr(AB) = tr(BA).

Lemma 3.12 ([39, Proposition2.3]) Ler V € R, ¢ = [c_1, cp, ..., ck] € Cwithk €
N_jand[c,m,n] € Cwithm € Nyandn € N_,. Then
a2
[Mic.m, McM}, 0] = V21,
where 1, is the 2 x 2 identity matrix.

Proof Denote A := [M[c,m], MM ] As for each 2 x 2 matrix (e.g., as a special

[c,m]
case of Cayley—Hamilton theorem) we have

A% = tr(A)A — det(A)1, = — det(A)1,,

where in the second equality we used that zr (A) = 0. Hence, to validate the statement
we need to show det(A) = —V2. Computing the determinant gives

det(A) = det (Mc,m MM, MM, Mic.m))

[e,m] — [e,m]

= det (M[c,m]Mc - McM[c,m]) det(M[c,m])n
= det ([M[c,m], Mc]) s

where we used that the determinant of a transfer matrix is one by Lemma 3.2. To
finish the proof, we use induction over k € N_; to show det ([Mie,m), Mc]) = —V?
(for any [¢,m] € C and ¢ = [c_y, cp, - . ., ¢]). For the induction base, we observe

E —1 1-V 1-V\[(E —1
(Moo, Mio] = (1 0 ) (0 1 ) N (0 1 ) (1 0 >
_(E-VE-1\_ (E-V-I
1 -V 1 0
_(V-VE
—\0 -V )’
and indeed det ([ M(o,0, Mj0;]) = — V2. For the induction step, suppose the statement
istrue for k € N_;. Note that for 2 x 2-matrices B and C, wehave [B, C] = —[C, B]

and det(—B) = det(B). Thus, the previous identity on the determinant of the com-
mutator yields
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det ([M[c,cHl,m]a M[c,cHl]]) = ([M[C,CHl]’ M[c,cHl,m]])

det
det ([Mic.c,..1. MeMig o, 1)
det

[e,cxt1]

([M[C:C'Hl]v Mc]) = —VZ,

where in the second equality we used (3.4) of Lemma 3.3 assuming k is odd. If k is
even, as similar computation leads to the result. O

Proposition 3.13 ([39, Proposition2.3], Fricke—Vogt Invariant) Let V € R, ¢ € C
and m € Ny such that [c,m — 1] € C, then

124t F oy — lellemiten—1) =4 + V2.
To prove this proposition we use the following algebraic identity.
Lemma 3.14 Let A, B be two real 2 x 2 matrices such that det(A) = 1. Then
tr(AB) = tr(A)tr(B) — tr(A™' B).

Proof Since Aisa?2 x 2 matrix with det(A) = 1, we conclude A + A~! = 1r(A)1,.
Hence, tr(AB) = tr (ir(A)B — A™'B) = tr(A)tr(B) — tr(A™'B). O

Proof of Proposition3.13 Let ¢ € C and ¢; € Ny be such that ¢ = [¢/, ¢;]. Denoting
A :=[M,, McM!"] and applying Lemma 3.12 yields
r(A%) = tr(V?1,) = 2V2.

On the other hand, a direct computation of r(A?) gives

tr(A?) = tr (McMe M — Mo M?1)?)
= tr(McMe M™)?) + tr((Me M) — 2tr(Me Mo M Mo M)
= 2tr(Me MI"™)?) — 2tr(Me M Mo M F2).

For the first term we use the identity B? = tr(B)B — det(B)1, for the 2 x 2-matrix
B = MC/M,Z”+1 and then Lemmas 3.3(c), 3.3(c) and 3.8 lead to

(Mo M2Y?) = (tr(Me MIHY)? =2

2
= liemtn) — 2
= (tetiem) — liem—17)> — 2

2.2 2
= teliem F lem—1y — 2letiemitiem—11 — 2.
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For the second term, we apply Lemma 3.14 and Lemma 3.3 (c) to get

tr(Me M Mo M%) = tr(Mo M) tr(Me M) — tr((Me M) ™' Mo M)
= Hem)fe.m+2) — ”’(Mcz)
= tie.me.m+2] — tcz +2
= te.m (telent1) — tem) — o + 2
= leliemeant1] — lpm — Lo +2
= fetiem) (eliem) = Hem—11) = ljem — e +2

2.2 2 2
= Ieliem — tellemifiem—1] — e — Ie + 2,

where in the third equality we used the identity B? = tr(B)B — det(B)1, with B =
M., and in the fourth and sixth equalities we used Lemma 3.8.
Combining the identities above provides the statement of the proposition. (]

4 The Spectra of Periodic Approximations of Sturmian
Hamiltonians

We start applying the tools from the previous section in order to study the spectral
bands of the periodic approximations of the Sturmian Hamiltonian, as is done in
[39, Sect.3.1]. We start by providing general results for all Sturmian Hamiltoni-
ans (Sect. 4.1) and then restrict to V > 4 where further analysis may be obtained
(Sect. 4.2).

4.1 Basic Spectral Properties for all V # 0

We provide basic properties on the spectrum of a periodic approximation of a Stur-
mian Hamiltonians, i.e., H» . To do so, we mainly use the transfer matrices and the
discriminant, as was introduced in the previous section. The results in this subsection
appeared already in [8, 10, 44]. Since the results here apply for all V # 0, we tend
to omit (only in this subsection) the notation V from the proofs.

The following proposition is a refinement of Proposition 3.5 for the operators
H INE Its first part appears in [39, Proposition 3.1,(1)].

Proposition 4.1 Let V # 0 and ¢ € C with g 1= @(c) # oo and p and q coprime.
Then the following assertions hold:

(a) The spectrum c.(V) = o(H {;,v) consists of exactly q connected components
which are closed intervals.
As usual, we call these intervals, the spectral bands of Hr v (or of o(H>r y)).
q q
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(b) The restriction of the discriminant t, to each of the spectral bands is strictly
monotone.

Proof We need to prove only the first part of the proposition, as the second part
is classical (see, e.g., [43, Theorem5.4.2]). By [43, Theorem 5.4.2] the spectrum
of a g-periodic Jacobi operator (such as H» y) consists of g closed intervals,
which might overlap only at their boundaries. Assume by contradiction that E is
such a point where two intervals overlap. By [43, Theorem 5.4.3] this implies that
M (E) = £1,, for ¢ € C such that p(c) = 2’. Substituting this in Lemma 3.12 gives

V21, = [Mie,my, McM! ]2 =0, for any m, n € N. Hence, we get V =0 and a

. . [c ’ m]
contradiction. O

Next, we rephrase a statement from [8, Proposition4] and immediately apply it
to connect the spectra o.

Lemmad4.2 LetV #0andc =1[0,cp,c1,...,cr] €C. Let E € Randi < k. If
|t[0,co,cl,...,cl,2](E)| > 2 and |t[0,co,cl,...,cl,1](E)| >2

then there exists C > 1 such that foralli < j <k,
©([0,co, c1y ..., il = ;f with p;, q; coprime.
) ; ;

l[o,c-o,c-l,...,c-f](E)| > 2C%, where

Proof This follows from [8, Proposition4] by fixing an « € [0, 1]\Q such that the
first digits of the continuous fraction expansion of « coincide with ¢y, ¢y, ..., cx. O

Lemma 4.3 ([39, Proposition 3.1,(ii)] spectral monotonicity property) Let V # 0
and let ¢ = [0, cg, ¢y, ..., cx] € Cwith p(c) > 0 and k € Ny. Then

UC(V) g U[O,L'Q,L'l,...,C](,z](v) U O‘[O,C(],C],...,Ckfl](V)'
In addition, if [c¢, —1] € C, then

oe(V) C o1e,00(V) U e, —11(V).

Proof We start by proving the first inclusion. If £ € 0(0,¢.¢,.....c a1 Y T[0.co.¢11mmce115
then Proposition 3.5 implies

|t[0,C0,C1,...,C](,z](E)| > 2 and |t[O,L'(),Cl,...,C](,d(E)| > 2'

Thus, Lemma 4.2 leads to |t.(E)| > 2 and by Proposition 3.5, E ¢ o, which proves
the first inclusion.

To prove the second inclusion, note first that if k = 0 and ¢ = [0, 0], then the
inclusion is trivial as o) = oo = R. Suppose now k > 1. Then the condition
[c, —1] € Cimplies thatc; > 1 (in particular ¢, ¢ {—1, 0}). We assume first that ¢; >
1. Then, by Corollary 3.7, tc = fjo,¢y.c/,....ci—1,1] and therefore oc = 070,¢,c1,....co—1,1]-
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Applying the first part of the lemma on € = [0, cg, ¢y, ..., ¢, — 1, 1] gives
O¢ = 0[0,cy,c1,...,cx—1,1] - 010,¢0,¢1,..5¢k—1] U 010,cp,¢1,...,ck—11»

and this yields the second part of the lemma since #(c.0; = #[0.co.cy.....cc_;] a0d t{e,.—1] =
10.¢o.c1.....co—1] Dy Corollary 3.7 and Proposition 3.5. To complete the proof assume
that ¢, = 1. In this case fic.0] = #0.cp.c1,...c0 1] AN fe,—1] = H[0,c0,c1.....ce_»] (the latter
is by applying twice Corollary 3.7) and once again the second part of the lemma
follows from the first. (]

We end by connecting the spectrum of an aperiodic Sturmian Hamiltonian, H,, v,
with o ¢ Q with the spectra of periodic operators which approximate it. To do so,
we apply the following result from [8].

Proposition 4.4 ([8]) Let « € [0, 1]\Q with infinite continued fraction expansion
(¢i)2y- Then

o(Hyy) = {E e R : {to.cpcrncel (E) }ken is a bounded sequence } .
Proof This is proven in [8]. O

Corollary 4.5 Let o € (0, 1)\Q with infinite continued fraction expansion (c;);o.
Then we get forall k € N

o(Huv) € 010,0,c1,..01(V) U 010,0,01,.oc001 (V)

Proof Let E € 0(H,, v) and assume by contradiction that there is some k € N such
that £ ¢ 0[0!0301!””5,(](‘/) @) U[O,O,L'l,---,c'kﬂ](v)' By Proposition 3.5, t[(),(),cl_wck](E)| >
2 and |t[0,0,cl,,,,,CM](E)| > 2. Applying Lemma 4.2 we get that there exists C > 1
such that

110,0.c1.....cs](E)] > C? foralln € N.

In particular {f0,0.¢,.....c,1](E) }en is an unbounded sequence, but this contradicts E €
o(H,,v) by Proposition 4.4. (]

Both Lemma4.3 and Corollary 4.5 provide monotonicity statements of the spectra.
In addition to those, we also have the following spectral convergence result.

Proposition 4.6 Let V € R and o ¢ Q with infinite continued fraction expansion
(¢i)2y- Fork € Ny, sete;, =10,0,c1,...,ck] € C. Then

0 (Ho,y) = lim oo, (V) = lim o6, (V) = [ (06, (V) Uore, (V).
kENQ
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Proof By [9, Theorem 1], the spectral map [0, 1] > 8 +— J(Hg,v) is continu-
ous at all irrational 8 € [0, 1] and for all V € R. Observe that limy_, » p(c;) =
limg_, » ([ck, 1]) = a where ¢ is the evaluation map. Thus,

o (Hav) = kll)ngo e, 1(V) = kll)ngo e (V)

follows using o ¢ Q and 0(V) = o (H\'p(c),V) for ¢ € C proven in Proposition 3.5.

Set Ap(V) := 0, (V) U o, 17(V) fork € Npand V € R. Lemma 4.3 and Corol-
lary 4.5 imply o (Ha,V) C Apy1 (V) € Ap(V). Thus, o (Haﬁv) C ﬂkeNU Ay (V) fol-
lows. By the convergence of o7, 17(V) and o, (V), we conclude that {A;(V)}en,
converge monotonically in the Hausdorff metric to o (Ha,V)- Thus,if E ¢ o (Ha,v),
then there is an e > O such that B.(E) := {E’ € R : |E — E’| < €} does not inter-
sect 0 (Ho,v). Then the Hausdorff convergence of {Ax (V) hien, t0 0 (Ha,v) implies
that there is a ko € Ny such that B.,»(E) N Ag(V) =@ for all k > ky. Hence,
E ¢ ﬂkeNo Ay (V) is derived proving ﬂkeNU A(V)=0 (Ha,V)- O

4.2 Spectral Bands Structure for Large Coupling Constant,
V>4

From this point on until the end of the paper, we specialize our discussion for the
case V > 4. Under this assumption, one can prove quite a few useful connections
between the periodic spectra, {o¢}cecc-

We start with the three-intersection-property. This observation can essentially be
found in [10] for the Fibonacci Hamiltonian and was generalized in [39, Proposi-
tion 3.1,(iii)]. This property starts failing if | V'| < 4 and this is one major obstacle to
treat the small coupling regime.

Proposition 4.7 ([10, 39]) Let V > 4, ¢ € C and m € Ny such that [c,m — 1] € C.
Then
oc(V)Noem(V)Nogem1(V) =0.

Proof Assume by contradiction that there is some E € o¢(V) N ope.m(V) N
ote.m—11(V). By Proposition 3.5, we obtain

|2e(ED I, 1tie.mi (EDI, |te,m—11(E)| < 2.
Substituting this in Proposition 3.13, V' > 4 yields
20 = 12(E) + iz ) (E) + 1oy 1) (E) = te(E)ljem) (E)tjen—11(E) = 4+ V? > 20,

a contradiction. O
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Corollary 4.8 LetV > 4,andc € C suchthat[c, —1] € C.IfE € 0.(V), then either
E copoV) or E € op—11(V),

but not both.

Proof Assume E € o.(V).By Lemma4.3,we get E € oc01(V) U gpc.—17(V). Now,
apply Proposition4.7 withm = 0 and getthateither E € oco)(V)or E € ojc.—11(V),
but not both. (]

Proposition4.9 Let V > 4, and ¢ € C such that [c,—1]1€ C. If I Co.(V) is a
spectral band, then I is either contained in a spectral band of ojc0(V) or in a
spectral band of o(c,—1;(V), but not in both.

Proof Since [ is a spectral band, we conclude that [ is closed and connected. Now
both I N oyc,0;(V) and I N o, —1;(V) are closed too and according to Corollary 4.8,
we have the following disjoint union I = (I N o7e,0] (V)) u (I N a[c,,I](V)). Since 1
is connected, one of the closed sets I N o(c,0;(V) and I N o, —173(V) must be empty
and the other equals to /. Hence, I is contained in either ¢ (V) or ope,—1;(V).
Using the same argument we may conclude that / is contained in a single connected
component (spectral band) of o7¢,0;(V) or ojc,—17(V). (I

Proposition 4.9 motivates a classification of the spectral bands into two types.
We start employing such a dichotomy of the spectral bands and see that it leads to a
hierarchical structure of the spectral bands from different spectra, o.. This structure
is developed and described in detail in the rest of this section.

Let I = [a, b] and J = [c, d] be two closed intervals. We say that [ is strictly
included in J and denote I Cg; J if ¢ < a and b < d. Note that this implies the
(weaker) inclusion I C J.

Definition 4.10

Let V € R and ¢ € C be such that p(c) € [0, 1] and [c, 0], [¢, —1] € C. A spectral
band I (V) of o.(V) is called

e backward type A

if there exists a spectral band J (V) in oy¢,0)(V) such that I (V) Cg J(V).
e weak backward type A

if there exists a spectral band J (V) in oyc,0)(V) such that I (V) € J(V).
e backward type B

if there exists a spectral band J (V) in oy¢,—11(V) such that I (V) S J(V).
e weak backward type B

if there exists a spectral band J (V) in oj¢,—1;(V) such that I (V) C J(V).
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Remark In [39, Definition 3.2], a spectral band of weak backward type A is called a
type 111 band, and a spectral band of weak backward type B is called a type /I band.
After that, the notations A and B (for such bands) also appeared in the literature, see,
e.g., [15, 20, 28]. We prefer to use here (and also in [3]) the notations A, B for visual
reasons and to distinguish those from the notation G introduced in the sequel for
spectral gaps. In addition, only the notions of weak backward types appear in [39,
Definition 3.2] (though not in this name). We introduce here also the stronger notion
of (non-weak) backward types and use them to prove slightly stronger statements,
since those are needed in order to obtain further results for V < 4 in [3].

In [39, Definition 3.2] also the notion of type I gap is introduced being a spectral
band I (V) in oy 1;(V) that is contained in oy¢ 1,—17(V) (so a weak backward B band).
By Proposition 4.9, I1(V) No.(V) = and so I(V) is contained in a spectral gap
of 0.(V). As mentioned before, we omit this terminology here but when coding the
spectrum in Sect. 5.2 the label G is rather used. These bands are a placeholder for
the corresponding B band one level higher, confer Definition 5.3.

Using Definition 4.10 and Proposition 4.9 we conclude the following.

Corollary 4.11 Forall V > 4 and ¢ € C with ¢(c) € [0, 1], every spectral band in
0.(V) is either of weak backward type A or weak backward type B, but not both.

Proof This is just a reformulation of Proposition 4.9. (]

We note that according to Definition 4.10, whether a spectral band is a (weak)
backward type A or B (or not at all) depends on the value of V. We see later (Theo-
rem 4.22) that as long as V > 4, the type of a spectral band does not depend on the
value of V. This statement is generalized in [3, Theorem2.15] for all V 7 0. Note
that there is no use to consider the backward type properties for V = 0, as in this
case all spectra of all operators H,, y are equal to [—2, 2].

If ¢ € C with p(¢) € (0, 1) and [¢, 0], [e, —1] € C, then there are ¢, ¢3, ..., ¢ €
N for some k&N such that either ¢=1[0,0,c¢,...,cx +1] or c¢=
[0,0,cy, ..., ck, 1]. Indeed, the rational number ¢(c) has exactly two different con-
tinued fraction expansion [27, Chap1.4]. Then the weak backward type of a spectral
band in o, depends on the chosen representation. More precisely, a straightforward
computation using Corollary 3.7 (see details in [3, Proposition 2.10]) yields

e [ (V) is of weak backward type A in 019,0,c,,....c,+1](V) if and only if
I (V) is of weak backward type B in gj0.0.c,....c,.11(V) and

e [ (V) is of weak backward type B in 0y 0.c,.....c,+1](V) if and only if
I1(V) is of weak backward type A in oj0.0.¢,,....,,11(V).

We note that this duality does not show up in [39]. There one considers a fixed
a € [0, 1\Q with a fixed infinite continued fraction expansion (¢ )xen, and rational
number oy, = ([0, 0, ¢y, ..., ¢cx]). Hence, o has a unique finite continued fraction
expansion. Here and in [3], we consider all elements of C and this is why this duality
is evident.
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We demonstrate the classification of spectral bands to weak backward types, by
explicitly computing a few spectral bands in the following.

Example 4.12 According to Example 3.4 we have for V € R,
o1(V) = 010,00(V) = 01001,-11(V) =R and opo,0-11(V) =[-2—-V,2-V].

We examine oyo,0)(V) = [—2, 2] and wish to determine its backward type. To
do so we need to examine oy,0,01(V) = Rand 000 -11(V) =[-2—-V,2 - V]. By
Definition 4.10, we see that for all V # O the spectral band Ij,0)(V) := [-2, 2] is
of backward type A but not of weak backward type B.

A few additional spectra are

010,011(V) =[-2+V,2+ V] and o0,0,1,00(V) = op0,00(V) = [-2,2].

Given these spectra, one sees that for all V # 0, the spectral band Ijp0,1;(V) 1=
[-24V,24+ V] of 010,0.11(V) is of backward type B but not of weak backward
type A.

The spectral bands considered in this example are actually of a well-defined back-
ward type and not just weak backward type. This is stronger than what is currently
proved in Corollary 4.11. This stronger version indeed holds, in general, for all
spectral bands as we prove in Theorem 4.22.

Next, we extend the classification of spectral bands into types by adding forward
types to the backward type (later we show that they are actually the same).

Let I = [a,b]and J = [c, d] be two closed intervals. We say that [ is to the left
of J (or J is to the right of I) and denote I < J ifa < ¢ and b < d. Moreover, we
say [ is strictly to the left of J (or J is strictly to the right of I) and denote I <y, J
if b < c. Observe that I <y J holdsifandonlyif I/ < Jand I NJ = 0.

Definition 4.13 Let V € R\{0}. Let ¢ € C and m € N be such that [¢, m] € C. A
spectral band 1. (V') of (V) is called of m-forward type A with M = m — 1 (respec-
tively, m-forward type B with M = m) if the following holds.

(A) There exist M spectral bands of ope,1(V) (denoted I} ., (V). ..., I} (V)
which satisfy

(A1) L,y (V) Sou (V) forall 1 <i < M.

c

In particular, these bands are of backward type A.

(A2) I[i !m](V) is not of weak backward type B forall 1 <i < M.

c

(B) Foreachn e N, there exist M + 1 spectral bands of o7¢ (V)
(denoted I, ,,, ., (V). ..., It'F} (V) which satisfy

[e,m,n]
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B I (V) S Iy (V) forall 1 < j < M + 1, where I, (V) =
I.(V).
In particular, these bands are of backward type B.

(B2) I’ (V) is not of weak backward type A forall 1 < j <M + 1.

[e,m,n]

(I) Foreachn € N, we have

Lemm V) < ey (V) < I (V) < g (V) o< I (V) < IEEL (V).

[e,m,n] [e,m,n]

We say I.(V) satisfies the stronger interlacing property if (I) is replaced by

Lemm ) <str Loy (V) <str Ly (V) <ot -+« <ste Lty (V) <se Tt (V).

[e,m,n]

(sr)

Remark Definition 4.13 rephrases the content of [39, Lemma3.3]. A few notes
should be made about the similarities and differences of both. First, as is commonly
done in this review, we use the notation ¢ € C rather than (k, p) asin [39]. Second, we
state the lemma from [39] as a definition here, since in [3] we need to keep the sepa-
ration between backward types and forwards type for the sake of some of the proofs
(even if at the end we realize that both concepts are equivalent). Third, Definition4.13
introduces a slightly stronger notion of forward type than the one which appears
explicitly! in [39, Lemma3.3]; the strengthening is by using everywhere the strict
inclusion gy rather than € and also by having in (B1) Ij,.,,, ,;(V) Ssir Lty o1y (V)
for all n € N rather than just I}, , (V) Sg I (V). This strengthening is crucial
in [3], and that is why we choose to deviate from the original exposition in [39,
Lemma3.3].

Our next task is to show that indeed each spectral band has a well-defined forward
type as in Definition 4.13. Actually, we will see that if a spectral band is of weak
backward type A (respectively, B) then it is also of m-forward type A (respectively,
B) for all m € N. This will be stated in Proposition 4.18. But before doing so, we
need to prove two preparatory lemmas (Lemmas 4.14 and 4.16).

Lemma 4.14 LetV > 4. Letc € Candm € N be such that [c,m] € C. Let I.(V) be
a spectral band in o.(V) of weak backward type A with M = m — 1 (respectively,
of weak backward type B with M = m). Then the following holds (compare with
Definition 4.13):

!'In the original paper [39], the strict inclusion and strict order were implicitly assumed without an
explicit proof.
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(a) There exist exactly M spectral bands of oicm(V) (denoted I[lc’m] v,...,
I[ZCV{m](V)) which are contained in I.(V).
These spectral bands satisfy properties (Al) and (A2) from Definition 4.13.

(b) There exist exactly M + 1 spectral bands of o¢.m,1)(V) (denoted I[lcﬁm’” v, ...,

M (V) which are contained in 1. (V). These spectral bands satisfy

[e,m,1

(1) I[]c.,m,l](v) C I.(V), forall 1 < j <M + 1. In particular, these bands are
of weak backward type B.
(2) I[jc’mﬁl](V) is not of weak backward type A forall1 < j <M + 1.

(c) The following interlacing property holds:

ey V) <ste oy (V) =<str A V) <5t Loy (V) <str B0 (V) <5t 1L (1)

[e,m,1

Remark We can colloquially phrase Lemma 4.14 as follows: if the spectral band
I.(V) is of a weak backward type A (or B), then for all m € N it is “partially”
m-forward type A or B, correspondingly. By “partially” we mean that I.(V) fully
satisfies properties (A1) and (A2) (in Definition 4.13), but it satisfies properties (B1),
(B2) and the strong interlacing (I, ) only forn = 1 and property (B1) is satisfied only
in its weak version, i.e., that all / [jcm j are of weak backward type B. Another differ-

ence between Lemma 4.14 and Definition 4.13 (m-forward type) goes in the other
. : M+1
direction: in this lemma we state that the spectral bands {I[’c ml }M , and {I[/c mnl }
= =1
are unique, which is not part of Definition 4.13.

Proof First, we fix the value of V > 4 throughout the proof, but for brevity we
omit V from the various notations (for example, writing just / and o). We fix the
following auxiliary variable:

0, I is of backward type A,

0p = 1, [ is of backward type B,

which allows us to prove the lemma simultaneously for both these cases. Note that
with this notation M = m — 1 + dp, for the value M which is introduced in the
statement.

We introduce two other notations which will help throughout the proof. Given
¢ € C and a spectral band I, C o, we know by Proposition 3.5 that #.(1.) = [—2, 2]
and t¢|,, is strictly monotone. Hence, for each x € [—2, 2] we may denote by El(x)
the unique value in I, such that t.(Ek (x)) = x.

The proof consists of four steps, which we briefly summarize before going into
the details. To obtain the candidates for the spectral bands I/ . in property (A) and

; [e,m]
the spectral bands I[jc’m’ 17 in property (B), we indicate specific energy values {A; }f‘i |
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and {B; }M +1in I and find the spectral bands of oy, and oyc,»,1; Which contain
these values. This forms the first two steps of the proof. The third step would be to
prove property (I) by observing the order between the aforementioned energy values
{A; } —, and {B; }M +1 The last step is to show that there are no other spectral bands
in (¢ m and oyc .11 Which satisfy those properties, implying the uniqueness which
is mentioned in (A) and (B).

Step 1: Defining the spectral bands {}, ,,}/, and proving (A2) and partially (Al):
Define A, := Ek ) for i=1,....m—1+0p= satisfying
te(A) = 2cos(m+5

show later that those are exactly {I{, ,,}*, from Definition 4.13(A).
Corollary 3.10 (applied for £ = —dp) implies

m+6
). We use these values to define spectral bands in oy, and

Tie,m] (At) = Sl‘)‘l*l‘i’(SB (IC(Ai))t[C,lfrig] (Al) - SmfZJr(sg (IC(Ai))t[C,f(sg] (Al)
The dilated Chebyshev polynomlals satisfy S;(2 cos 0) = ““(’*61)9 see Lemma 8.3.
Using this and 7, s 6 ), we evaluate the dilated Chebyshev polynomials
which appear in the last equation:

i )) B sm<(m+53 m+63) B

SmflJr(s (tc(Ai)) = Sm71+5 <2 Cos <7 =0,
B B m+ 6p sin (m+5 )

and

im
Si—2+1s5 (te(A) = Sin—245, (2 cos (m + 0p >)

sin <( mizrrsg )
in(:5)

. . T
s (lﬂ' — m+53)
n ()

sin(im) cos <m+0 ) — cos(im) sin (m+5 )

in ()

—cos(im) = (—=1)*.
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Combining the computations above gives
fem (Ai) = (=1)fie,—5,1(A7).

Since I has a well-defined weak backward type (either A or B), by the defini-
tion of §p we get that | e, _5B]| L | < 2. Since A; € I, the equation above implies

[tre,m) (Ai)] < 2. ThlS means that {A;}”
may denote by 7!

iz1 € O(¢,m)- Hence, foreach 1 <i < M we

(. the spectral band in oyc,,») Which contains A;. At this point, we

note that it could be that different A;, # A;, giverise to the same spectral bands I

and I['cl - However, we prove below in step 3 that A;, 7 A;, implies I[c ml = I[c ml-

We show now that for each i the spectral band I e.m] 18 of weak backward type A and
not of weak backward type B. By Corollary 4.8, we have that either A; € o m.0) = 0c
or A; € ope,m, -1 Since A; € I. € o, we getthat A; ¢ 0(c.m,—1]- By Proposition 4.9,
we have that I[c m] is either contained in a spectral band of oyc,», 0] or of ojem,—1]-
But, since A; ¢ 0(c.m,—1] the former option holds and we get that [c ml is contained
in /.. In particular I le.m] 18 of weak backward type A and not of weak backward type
B. This shows property (A2), but it does not yet show property (A1) since we only
proved that /, [ic 18 of weak backward type A. We will complete the proof of property

] and that

[e,m]

(Al) in step 3, where we also prove that A;, # A;, implies I[c m 7 L
they satisfy (Al).

[e,m
Step 2: Defining the spectral bands {/}, ,, ,,}""}":

We proceed similar as in step 1. Define B; := E’c 2 cos(mM 7)) for j =1,

m+ 0p = M + 1 satisfying t.(B;) = 2COS(m+() —7)- Similar to the previous step in

the proof, we will now use these values to deﬁne spectral bands in oc s, 17. Corollar-
ies 3.7 and 3.10 (applied for £ = —{p) lead to

fle.m.11(B}) = tem+11(B;)
= Siys, Te(Bj)te,1-5,1(Bj) — Simysp—1Ec(Bj))te,—5,1(B)).

sin(/+1)6

The dilated Chebyshev polynomials satisfy §;(2 cos ) = ==, see Lemma8.3.

Using this and 7.(B;) = 2 cos(;: o +1) we evaluate the dilated Chebyshev polyno-
mials which appear in the last equation:

)

in )) B sin((m+63 + 1)#7;“)

Sm+53(tc(Bj)) = Sm+63 <2005 <m Tog+1

. j7T
sin (Grs5577)

and
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Sint05-1(te(Bj)) = Sm+o,-1 (2 cos (#Z;.Jrl))
sin ((m +6p) #&)
sin <m+63+1)
sin (jﬂ' - #ZH)
sin (#&)
sin(j ) cos (#) — cos(jm) sin (#ZH)

: Jjm
Sin (m+53+1 )

= —cos(jm) = (—1)/*".

Combining the computations above gives
tiem 11(Bj) = (= 1)/ tie—5,1(B}).

Since I, has a well-defined weak backward type (either A or B), by the defini-
tion of dp we get that | t[c,_53]| ! | < 2. Since B; € I, the equation above implies

|tie.m.11(Bj)| < 2. This means that {Bj}?gl C Ojem.1)- Hence, for each 1 < j <

M + 1 we may denote by I[ the spectral band in oj¢ s, By which contains B;.

c,m,1]
Now, similar to the argument in step 1, we deduce that each I[ is of weak back-
ward type B and not of weak backward type A.

We note that just as in the previous step, we should still prove that 17 fem1] & I i

if jo # j1).

Step 3: Band interlacing: As mentioned before, the interlacing follows by the
{ }MJrl

c,m,1]

c,m,1]

corresponding interlacing of {A;}), and The interlacing of {A,;}!, and

{B j }1;/::1 results from the interlacing of the zeros of two successive dilated Cheby-
shev polynomials, as these belong to a family of orthogonal polynomials. Writing

J Jj+1
this explicitly, we note that0 < - +2 < iyt < yo <mforalll < j < M,sothat

1
the sets { interlace. The sets {A;}, , {B_,-}jg] are obtained as

M j +
M+1} -1’ [M+2]j:1
a monotone function acting on these sets and hence also interlace. Indeed, to see this

recall that A; := E} (2cos(w /. |)), Bj := Ek (2 cos(m Mj+2)) and note the strict

monotonicity of the cosine on [0, 7] and the strict monotonicity of #. on /. together
. —1

with EL = (tcl,c)

Hence, we get that either

Bl <A <By<:---< Ay < By, “4.1)
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or
B >A >By>---> Ay > By1. “4.2)

Whether (4.1) is used or (4.2) is determined by sign(té| Ic) which is indeed
constant (see Proposition 3.5). We now draw a few conclusions from this inter-
lacing. In the previous two steps we have seen that {A,~}f‘i1 C 0¢ N Of¢,m) and
{Bj};il C 0¢ N Ofe.m.11- Applying Proposition 4.7 with ¢’ = [¢, m, 1],m’ = Oyields
0c(V) N oem(V) Noem11(V) = 0 (as always, for V > 4). We get, in particular,
thatforalli, A; ¢ o(cm,17andall j, B; ¢ o ). We use this to observe that for some
ip # i1, the spectral band I[c m) € Ole,m) cONtains A;y, the spectral band I["c"m] C Ofe,m
contains A; , and by the interlacing ((4.1) and (4.2)) there is some point B; ¢ a[c m)

between A;, and A;,. This means, in particular, that all the spectral bands {I le.m] }l N
defined in step 1, are distinct. In exactly the same manner we conclude that all

M+
the spectral bands il[c m. 1]} . , defined in step 2, are distinct. By Proposition 4.7,

I[’c m] N I[c m1] = = ¢ holds for all i, j since both are contained in o.(V). Thus, the

desired strong interlacing property (Iy,) of Definition 4.13 follows for n = 1. We
should just note that if the interlacing of the sets {A;}*, { B; };/::1 is asin (4.2), we
should reshuffle the indices in order to get the interlacing as in (4.1). Namely, we
permute the indices of {A-}M byl < M,2 < M — 1, ..., and permute the indices

of {B; }MJrl byl < M +1,2 < M, and so on. ObV1ous1y, this affects the indices

M+1
of the spectral bands {1} fe. m]} and ’I[c m. 1]] , and we get the strong interlacing

property of Definition 4.13, (Im) forn =1.

Using the interlacing property we may also deduce that the spectral bands [c ml
are of backward type A. We already obtained in step 1 that they are of weak backward
type A. But, thanks to the interlacing property there is another spectral band to the

left and to the right of each [, which is also included in /.. Hence, each I[’c m]

[c m]

is strictly included in I, and it is of backward type A. Thus, { fe.m] }M satisfy also

(Al).

Step 4: Uniqueness of the bands: We show now that the spectral bands { (e }Ai .

M+1

are the only spectral bands of oy ,,) which are contained in /. and that ll[c m1] ]
=1

are the only spectral bands of oy ,,1; which are contained in /.

Let J € 0yc,m) such that J € . We will show that A; € J forsome 1 <i < M and
conclude that J = I[’c 1> Which proves the uniqueness in property (A).

Due to Corollary 4.11, I, has a well-defined weak backward type (either A or
B). By definition of Jp, we therefore get that I, C o, N o|¢,—s,]. Hence, also J C
0c N 07¢,—5,1- Then Proposition 4.7 implies o¢(V) N 0(c,1-5,1(V) N Ofe,—5,1(V) =0
for V > 4 and so we conclude J N oyc 1—s,1 = ¥. Thus, Proposition 3.5 leads to
|tic.1—,)(E)| > 2 for all E € J. Similarly, we have o¢(V)N0opem—13(V) N
Orem}(V) =0 for V >4 by Proposition 4.7 and so J € o.M 0opem)- Thus,
|tie.m—11 (E)| > 2 follows for all E € J.
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Since t¢,1—5,] and f(c.,,—17 are continuous in E, the signs of #¢, 1,1 (E) and fi¢ ;m—17 (E)
are constant for all E € J by the previous considerations. Thus, we can choose an
& € {0, 1} such that

fem—11 (E) + (=1)* fjc.1-5,1 (E) #0  forall E € J.
Since J C I. C 0j¢,—5,], We have |t[c,,5B](E)| <2 for all E € J. In addition,
|tiem(E)| = 2 if E is the left or right edge of J. Note that the sign of #c(E)

changes if E is the left, respectively, the right edge of J. Therefore, by the interme-
diate value theorem there exists Ey € J such that

te.m) (Eo) + (= 1) tie,—s,1 (Eo) = 0.

Then Lemma 3.11 (applied for £ = —dp) gives

Sm—1+55 (te(E0)) | tiem—11(E0) + (= 1)* tie.1-5,1(Eo)

#0as EgeJ

=[S+ (e(E0)) + (=] | tiemi(Eo) + (=1)* ti¢, 5,1 (Eo)

=0

We conclude S, 146, (tc(Eo)) =0for Eg e J C 1.

Since by definition of the dilated Chebyshev polynomials Sp = 1, we getm — 1 +
0p # 0.Hencem — 1 4+ 05 > 1 and we conclude |7, (Ep)| < 2, since dilated Cheby-
shev polynomials do not vanish outside (—2, 2), see Lemma 8.2(f). Therefore, there
exists some 0 € (0, m) such that ¢, (Eg) = 2 cosf and

sin ((m + dp) 6)

0= Sy—1+4s, 2cosh) = oy

’

im
m+0p

somel <i <m — 1+ dp. Therefore,1.(Ey) = 2COS( in ) or,equivalently, £y =

m+dp
E!(2cos(-Z-)). But this is exactly the definition of A; in the beginning of the proof,
and so Eg = A;. Thus, J = I\, . follows proving the uniqueness in (a).

i
m+dp
[e,m]

where we used Lemma 8.3 in the last equality. We conclude that 6 = for

. M+1
In order to show the uniqueness for the spectral bands [ L) } , we repeat the

m 1y
arguments above, mainly replacing m with m + 1 and using ¢ m.1] = Ofe.m+17 and

Ole,m,1,—1] = O[e,m,0] by Lemma 3.6. Briefly, if we assume that J is a spectral band
of o(¢,m,17 such that J C I, we are able to conclude that there exists 1 < j <m +

0p such that Ey := 2 cos (#1&;) € J. Thus, Eg = Bj forsome | < j <m + dp
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") . i .
follows where {B i }":1 * where defined in step 2. Hence, J = I[jc!m! ) follows proving
the uniqueness in (b). [l

In the course of proving Lemma 4.14, we have gained some information regarding
the location of the spectral bands I[ic,m]‘ We state this here as a separate corollary,
since it is useful in a proof which appears in [3, Eq. (7.11)].

Corollary 4.15 Let V > 4, ¢ € Cand m € N be such that [c,m] € C. If I.(V) is a
spectral band in o.(V) of weak backward type B. There exist unique {E;};' | C I,
such that )

te(E;) = 2cos (%) - sign(te(L(L))),

m

where L(I,) is the left edge of I.. In addition, forall 1 <i <m, E; € I}

le.m] where
| are the spectral bands from Lemma 4.14 (also Definition 4.13).

Ii

[e.m

. M+1
In order to upgrade Lemma 4.14(b) to the spectral bands ’I[jc,m,n] } - (asrequired
j=

in (B) in Definition 4.13), the following lemma is used.

Lemma4.16 Let V > 4. Letn € N, [¢/,n] € C and I be a spectral band in o )
of weak backward type B. Then there is a unique spectral band J in o 41y such
that J Cg, 1. In particular, J is of backward type B.

Proof The proof of this lemma follows fromLemma4.14. Let I C oy¢ ) be aspectral
band of backward type B. Applying Lemma 4.14 for ¢ := [¢/, n] gives that there
exists a unique spectral band J C oj¢ 1) such that J Cg, I. Equivalently, J is a
spectral band of backward type A when J is considered a spectral band of o¢ 1.
Nevertheless, since o(¢ .1 = Oj¢',n+1], W€ may consider J as a spectral band of
Ol¢',n+1] SINCE O(¢' 5,1,0] = O[¢',n+1,—1] by Lemma 3.6 Thus, J is of backward type B
as a spectral band of o(¢ ,41) for the same reason, since J Cg, 1. [l

Lemma4.16 implies that every spectral band of backward type B of oy ,j contains
another (unique) spectral band of backward type B of ojcn+1;. This construction
continues indefinitely by recursion, and hence we call it the tower property.

Corollary 4.17 (Tower property) Let V > 4, [¢’, 1] € C and I|¢ 1) be a spectral band
of o, 11(V) of weak backward type B. Then there are unique spectral bands Iio ;) in
o1 .n1(V) of backward type B for alln > 2 such that Iie: j+1) Sar Lier, jyforall j € N.

Proof This follows directly from an induction over n > 2 and Lemma 4.16. O

Proposition 4.18 Let V > 4 and c € C with [c, m] € C forallm € N. Let I.(V) be
a spectral band in o.(V) of weak backward type A (respectively, weak backward
type B). Then 1.(V) is of m-forward type A (respectively, m-forward type B) for all
m € N. In addition,
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(a) The spectral bands {I["Lm](V)}[Ai1 mentioned in the m-forward definition (Def-
inition 4.13) are the only spectral bands in oy ,)(V) which are included in
I.(V).

M+1
(b) The spectral bands { ic.m. n](V)] mentioned in the m-forward definition
=1

(Definition 4.13) are the only spectral bands in ojcm.n1(V) which satisfy prop-
erties (Bl) and (B2) (in Definition 4.13).
(c) The strong interlacing property (lg:) holds.

Proof As before, we omit all the V dependencies here but note that the proof relies

on various results using V > 4. Combining Lemma 4.14 with Lemma 4.16 implies
M+1

the existence and uniqueness of the spectral bands { fe.m] }M and { fem.1] } ,and
=1

these spectral bands satisfy properties (A1), (A2) and (I ), see Definition 4 13. Let
1 < j <M+ 1. Then Corollary 4.17 (applied for ¢’ = [¢, m]) asserts that for all
n € N, there exist a unique spectral band I[c m.n) Such that

J J
I[cm n Ssir I[c,m,n—l] Sstr - -+ Sstr I[c,m,l] C I.

By construction /] ic.m.n] s of backward type B foralln > 1 and notof weak backward
M+1

type A by Corollary4.11. Thus, forall n > 1, the spectral bands il[c mn] } satisfy

=1

properties (B1) and (B2). All that is left to show is I[c’m’l] Csr e forall 1 < j <
M + 1.
Let E_ < E, be chosen such that I, = [E_, E]. Thus, |t.(E+)| = 2 holds by

Proposition 3.5. In addition, Lemma 4.14 implies I[lc,m,l] <str + - <sir 1[ﬁ4m ) and

Ifi,m, & I.. Therefore, it is sufficient to prove |#(c .11 (E+)| > 2 in order to conclude
that I/, | Sy L forall 1 < j < M + 1.

As |tc(Ey)| =2, Lemma 8.2 implies [S;4; (tc.(E+x)) | =1 + 2. Thus, applying
Lemma 3.9 and the reversed triangle inequality gives that form > [ > —1,

|t[c,m,1](E:i:)| = |t[C,m+l](E:i:)| (43)
= [Si1 (te(E1)) tie,m—11(Ex) — S; (te(E1)) tie,m—1—17(E+)]
>+ Dltiem—n(ED)| — I+ Dltiemi—11(Ex)].

We continue estimating the previous term by a suitable choice of / depending whether
I.(V) is of weak backward type A or B.

If I.(V) is of weak backward type A, set/ = m — 1. Note that I.(V) < oyc.01(V)
(since we assume now that I.(V) is of weak backward type A) and therefore
lte,01(E+)| <2. Then Ex C 0c(V) Noje,01(V) leads to Ex ¢ opc,11(V) by Propo-
sition4.7 and V > 4. Thus, |#¢,1j(E+)| > 2 is concluded from Proposition 3.5. Sub-
stituting |#(c,01(E+)| < 2 and |fjc,1)(E+)| > 2 in Eq. (4.3) gives
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[te,m 11 (Ex)| = (m + Dt 11(Ex) — m|tico)(Ex)| > 2

finishing the proof in this case.

If I.(V) is of weak backward type B, set! = m and note that |fjc —1;(E+)| < 2.In
addition, |fjc0;(E+)| > 2 holds as E+ € I.(V) and I.(V) is not of weak backward
type A by Corollary 4.11 and V > 4. Then Equation (4.3) leads to

[fe.m 11(E)| = (m + D)|tie,0/(Ex)| — (m + Dlte—11(Ex)| > 2

finishing the proof. (]

Proposition4.18 is comparable to [39, Lemma 3.3]. Nevertheless, Proposition4.18
is slightly stronger in three aspects: using everywhere the strict inclusion Cg
rather than C; stating the properties for all m, n € N; and also by having in (BI)
L1V Sstr Ly (V) for all n € N rather than just I, (V) Se I (V).
This strengthening is crucial in [3], and that is why we choose to deviate from the
original exposition in [39, Lemma 3.3].

Proposition 4.18 shows the implication between (weak) backward type and for-
ward type. Therefore, we are motivated to include both in one definition (Defini-
tion 4.19) and to prove their equivalence if V > 4, see Theorem 4.22.

Definition 4.19 Let V > 4 and m € N. Let ¢ € C such that [c, m] € C. A spectral
band I, of o.(V) is called of

o type A if I is of backward type A and it is also of m-forward type A forallm € N.
e type B if I is of backward type B and it is also of m-forward type B forallm € N.

Before proving the main theorem—that each spectral band is of type A or B, we
provide a useful corollary of Proposition 4.18 for which the following example is a
warm up.

Example 4.20 Let V > 4. Then a short computation yields that o (V) =
[—2,2] =: Ijp,0;(V) is of backward type A and ojo,0,11(V) =[-24+V,2+ V] =
Ki0,0,11(V) is of backward type B, see also Example 4.12. Thus, Proposition 4.18
implies that 7jo0;(V) is of type A and Ko 0,1;(V) is of type B. Moreover, Proposi-
tion 4.18 and Lemma 4.16 imply for all n > 2 that there are {I[io,o,n] (V) }::11 of type
A and one spectral band K|o,0.,(V) of type B such that

n—1
010,0,n] = U I{O,O,M(V) U Ki0,0,1(V),  K0,00(V) Sstr Kj0,0,1—11(V) for2 <1 <n,

i=1

and
6.0 V)Y <sie 10,0 (V) <str - =<str Lo (V) < Kio.0m (V).

The structure is sketched in Fig. 2.
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B B A
910,0,2,11(V) : H— f
cp =2 I[u,u.z,l](v> I[u,w,l](v)
i B
2(V P F
U[o,o,z]( ) I (V) X, v
=2 0,0,2] 0.02(V)
B
10,0,1](V) ' y
=1 . -2+V Kjo,0,1(V) 2+V
a10,0/(V) |
Tio,01(V) 2

Fig. 2 The first spectral bands defined in Example 4.20

Corollary 4.21 Let V > 4 and ¢’ = [0, cg, ¢y, - .., cx] € C be such that ¢, > 1 if
k > 1and p(c") € [0, 1]. Consider a spectral band J in o, (V).

(a) If J is of weak backward type A, then J is of backward type A and either

e J=[-2,2]and ¢(¢) =0, or

e there is a unique spectral band I, in o.(V) with ¢ = [0, cg, ¢y, ..., cx—1] and
al <i <M (where M = ¢, — lif I, isof type A and M = ¢y if I is of type
B) such that J = I[[c,m] with m = ¢, where the latter is the unique i th spectral

band associated with /. defined in (A).
(b) If J is of weak backward type B, then J is of backward type B and either

o J = Kjo,0,n] from Example 4.20, ¢(c) = rll andk =1, or

e there is a unique spectral band /. in o.(V) with ¢ = [0, cp, ¢y, ..., ck—2] and
al<j<M+ I(where M =c¢;_ —lif I.isof type A and M = ¢, if I,
is of type B) such that J = I[Jc,m,n] with m = ¢;_1, n = ¢, where the latter is
the unique jth spectral band associated with I, defined in (B).

In addition, there is a unique spectral band /jc ¢, .17 in O(c.¢, ,.11(V) of type B
such that either J = I, (ifcy =1)or J Sy I (ifcx > 1).

[e,cr—1,1] [e,cx—1,1]

Proof Define ¢ = [0, ¢, ¢y, ..., Ck—1].
(a) Let J € o¢ (V) be of weak backward type A. Note first that oy o1 (V) = [-2, 2],
where the corresponding spectral band is of type A, see Example 4.20. If p(¢) €
[0, 1], we conclude k£ > 1 and ¢([¢/, 0]) = ¢(c) > 0. Then there is a spectral band
I. € 0.(V) with J C I.. By Corollary 4.11, I, is either of weak backward type A or
B. Thus, Proposition 4.18(a) implies the statement and, in particular, the uniqueness
of the bands {I["c’m](V)}?i1 form = cy.
(b) If k =0, then ¢’ = [0, 0] and the spectral band in oj0(V) is of type A, see
Example 4.20. If k = 1, then ¢ = [0, 0, n] with n > 1 by assumption. Thus, the
only spectral band J C oo (V) of weak backward type B is the spectral band
K100, described in Example 4.20. Hence, J = K|o,9,,] follows satisfying K{9,0,,] €
K[O,O,l] =[-24V,24+V]= 0[0,0,1](V), where K[()!()!l] is of type B. Note that
K[O,O,n] Cor K[()!()!l] if n > 1 and else K[O,O,n] = K[O,O,l]'

Next, we treat the case k > 2 with ¢ > 1. If ¢, = 1, then oj¢,—11(V) = 0 (V)
holds by Lemma 3.6. Thus, there is a spectral band I, € o¢(V) suchthat J Ty L. Set
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m = cx—1. Observe that J is a spectral band in oy¢ n,1)(V). Thus, Proposition 4.18(b)
implies J = I, ., forsome 1 < j < M + 1.

If ¢, > 2, then op¢.—1](V) = 0le.p_1.ci—11(V) Where ¢, — 1 > 1. Thus, there is a
spectral band J;,_; in ojc.¢, ,.c,—11(V) = 01¢.—17(V) with J C J,,_;. Since V > 4,
Corollary 4.11 asserts that J.,,_ is either of weak backward type A or B. We claim that
Je,—1 1s of weak backward type B. Therefore assume toward contradiction that J.,
is of weak backward type A. Then J.,—1 C 0O(c,c, 1, c—1,01(V) = 07¢,01(V) follows.
Thus, J C o (V), J C oj¢.0(V), and J C oj¢,—13(V) while J # ¢, contradicting
Proposition 4.7 using V > 4. Hence, J.,_; is of weak backward type B. Thus, we
can inductively conclude that there are spectral bands J; in ojc, (V) of weak
backward type B forall 1 </ < ¢t — 1 such that

JC U1 SIS ... C L

Since J; € 0yc.¢,,.11(V) is of weak backward type B, J; is included in a spectral band
Icinoc(V).Setm = cx—1 andn = c;. Observe that J is a spectral band in o¢ p,2) (V)
and . is either of weak backward type A or B. Thus, Proposition 4.18(b) implies

J = I["c!m!n] forsome 1 < j < M + 1. Inparticular, J = I,  ifn =c¢; =1and

J Ce I/ ]ifn=Ck>1. O

[e,cx—1,1

Theorem 4.22 ForallV > 4andc € Cwith[c, m] € Cforallm € N, every spectral
bandin o.(V) is either of type A or B and its type is independent of the value of V > 4.
In addition, for every spectral band 1.(V) in 0.(V) and all m,n € N, the spectral

. . M+1
bands {I[’c’m](\/)}j‘:1 and {I[/c’m’n](V)}j:1 mentioned in the m-forward definition

(Definition 4.13) are unique and the strong interlacing property (Iy) holds.

Remark Theorem 4.22 collects all the previous statements of this section. This
result is comparable to [39, Lemma 3.3], as was discussed before. The independence
of the spectral band type in the value of V > 4 was not explicitly mentioned in
[39, Lemma 3.3]. Showing this is based on combining a continuity argument and the
three intersection property (Proposition 4.7). Further discussions on the role of this
independence may be found in [3].

Proof Let V > 4 and ¢ € C be such that [¢, m] € C for all m € N. Let I.(V) be a
spectral band in 0. (V). By Corollary 4.11, we have that /.(V') has a well-defined weak
backward type (either A or B) for all V > 4. Suppose I.(V) is of weak backward
type A (respectively, B). Then Proposition 4.18 implies that 1.(V) is of m-forward
type A (respectively, m-forward type B) for all m € N. In addition, Corollary 4.21
asserts that I.(V) is also of backward type A (respectively, B). Hence, I.(V) is of
type A (respectively, B).

According to the previous considerations, I.(V) is either of type A or B for each
V > 4. We explain now why this type is independent on the value of V (as long
as V > 4). Therefore observe that it suffices to prove that if I.(Vp) is of type A
(respectively, B) for one Vy > 4, then I.(V) is of type A (respectively, B) for all
V > 4. Assume toward contradiction this is not the case. Then there is a Vy > 4 and
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a sequence {V, },en € (4, 00) such that lim,,_,» V, = Vp and the type of I.(Vp) is
different to the type I.(V,) for all n € N. Without loss of generality assume /.(Vj)
is of type A and I.(V,) is of type B for all n € N (the other case is treated similarly).
In particular, I.(Vo) C oyc,01(Vo) and I.(V,,) € 01c,—17(V,) for all n € N. In order to
continue, we need the following observations.

Let ¢’ € C. For V € R, the preimage f¢ (-, V) ! ({£2}) coincides with the edges
of the spectral bands, confer the discussion at Proposition 3.5. Thus, if J(V) =
[a(V), b(V)]is a spectral band of g (V), then |to (a(V), V)| =2 = |t (b(V), V).
From the definition of 7., itis immediate that (4, 00) > V + a(V) € Rand (4, c0) >
V = b(V) € R are continuous. Note that indeed these edges are continuous on
V e R\ {0}, see also adiscussionin [3, cor. 3.2]. Thus, (4, 0c0) 3 V > g (V) is also
continuous (as a finite union of intervals with continuous edges) in the Hausdorff
metric.

Let I.(V) = [a(V), b(V)]. By assumption, we have a(Vy) € I.(Vo) € oyc,0(Vo)
and a(V,) € Ic(V,) C 0(c,—17(V,,) for all n € N. By continuity of V = a(V), V
o1e.00(V) and V = opc.—13(V), we conclude

o1e,01(Vo) 3 a(Vp) = nILII;OG(Vn) € nlilgo Ote,~11(Vy) = e, —11(V0).

Thus, a(Vy) € oc(Vo) N o1c.01(Vo) N ofc,—17(Vo) follows contradicting Proposition
47and V > 4. [l

5 The Integrated Density of State for Sturmian
Hamiltonian

A Sturmian Hamiltonian, H, v with o ¢ Q givesrise to periodic Hamiltonians H»
p

whose spectra converge to o (Ha, V) (Proposition 4.6). The spectra of these periodic
operators exhibit a special structure, as is described in the previous section and
summarized in Theorem 4.22. We employ it in this section in order to study the
integrated density of states of H, y for V > 4.

5.1 A Light Introduction to the Integrated Density of States
and Its Gap Labels

We briefly introduce the integrated density of states for the Sturmian Hamiltonian,
H, v. First, restricting H, y to 2{1,. .., n}), we obtain a Hermitian n x n matrix,
denoted by H, v |[1,,]. We denote its set of n eigenvalues by o (Ha,V |[1,n]) and use it
to define

#!)\EO’ Hu, \ )\SE}
Na,V(E) = hm ( V|[1, ])

n— 00 n

5.1



A Review of a Work by L. Raymond: Sturmian Hamiltonians ... 39

The limit in (5.1) is known to exist for all @ € [0, 1]\Q, V € R and E € R, see,
e.g., [16, 25, 42]. The function E — N, v (E) is called the integrated density of
states (IDS) of H, v. There are a few equivalent ways to define the IDS in our
case. Here, we choose the way which is computationally the most convenient within
the framework developed in this paper. This definition of the IDS is common in the
physics literature. Within the mathematics literature, it is also known by the name the
integrated (normalized) empirical spectral distribution. Two fundamental properties
of the IDS in our setting are

(IDS1) TheIDS N,y : R — [0, 1]is amonotone, non-decreasing, and a continuous
function.

(IDS2) We have E € R\o(H,,y) if and only if there exists an € > O such that the
restriction N, y is constanton (E — ¢, E + ¢).

In particular, we have that the IDS is constant on the spectral gaps, i.e., on the
connected components of R\o(H,, v). The values that the IDS attains at the gaps
are also called the gap labels. The gap labeling theory is a general theory [1, 4, 17],
which predicts the set of all possible gap labels of an operator. Applying the gap
labeling theory to H,, v leads to the following assertion.

Proposition 5.1 Forall o € [0, 11\Q and V € R\{0},
{Na,V(E) : Ee€ R\J(Ha,v)} C{la mod1 :1eZ}U{l}.

The question which was raised by Mark Kac (though in the context of the almost
Mathieu operator) is whether there is an equality above, or in his words, “Are all
gaps there?”. Since then this problem was given the name “The Dry Ten Martini
Problem” [42]. It is shown in Theorem 5.25 that there is indeed equality if V > 4
(in [3] this result is extended to all V # 0).

As a first step toward the proof of Theorem 5.25, we show how the definition
of the IDS in (5.1) may be restated in terms of the spectral bands of the periodic
approximations H Py, as presented previously. Therefore, note that {E} = [E, E] is
an interval and so we can use the notation I <, {E} for another interval I.

Proposition 5.2 Let V € R\{0} and « € [0, 1]\Q with continued fraction expan-
sion (Ck),fio. Consider its convergents ([0, co, ..., ck]) = Z: ,k e N with py, qr
coprime. Then for all E € R, we have

# ’I : 1 is aspectral band of o (H v ) with [ <y« {E}]
ar’

Ny v(E) = lim

k— 00 qk

5.2)

Proof We start by noting that the words (wq(l),...,wa(qr)) and

(w n(l),...,wn (qk)) are equal up to a cyclic shift. This can be deduced, for exam-
ak Ik

ple, by combining Lemma 2.4 with [31, Proposition 2.2.24] (using that our words W
are the words s in [31, Proposition2.2.24] up to a cyclic shift). This means that the
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matrices Ha,V|[lqu] and Hﬁf*v‘ 1 are unitarily equivalent (since their diagonals

are equal up to a cyclic shift). Usingk this observation and passing to the subsequence
ny = gk, k € N, in the limit of (5.1) yields

#{reo(Havl,,,) : A=< E
Nov(E) = lim o
— 00

qdk
#{/\ea<mkv‘ ) :)\sE}
. a1 [1,gx]
= lim .
k— o0 Clk

At this point the reader is referred to Sect. 7 and, in particular, Proposition 7.1
where the Floquet-Bloch theory is summarized. Assigning to each Hn  a gx X
k-
qx-Hermitian matrix H,, v(0) with 6 € [0, 7], the union (over 6 € [0, 7]) of these
matrices eigenvalues equals to o¢, (V) = o(H» ), see Proposition 7.1. From now
qk

on, set @ = 0. The matrices H v‘
a " 1[1,qx]

using Eq. (7.1). Hence, the counting functions # {)\ €o (Hl’k V‘u ]> P A< E}
sk

%’

and H, v (0) differ by a matrix of rank two

and # {/\ €o (Hck,V(O)) T A< E} differ by at most two.? Hence, we may replace
the numerator in the limit above to get

Noy(E) = lim #{Aea(Hov(0) : A< E}.
o qdk

According to Proposition 7.1 and, in particular, Eq. (7.3), H,,,v (0) has exactly one

eigenvalue in each spectral band o, (V). Thus, the number of spectral bands [ in

0, (V) =0(Hn ) satisfying [ <y {E} differs at most by one from
qr

#{\ € 0 (Hev(0)) : A< E}. Hence, (5.2) follows. O
Remark The equivalence between (5.1) and (5.2) was conjectured in [10, Sect. 5].

An explanation of this equivalence is given at the end of Section 2 in [39]. The proof
above contains an elaborated argument.’

2 To be more precise, the difference is a traceless matrix of rank two. By appropriately applying
perturbation theory one can show that this results in at most a difference of one in the eigenvalue
counting, see, e.g., [3, CorollaryIIL.2].

3 The denominators in (5.1) and (5.2) may differ by one, even if E is in a spectral gap, as opposed

to what is written in [39]. This was also pointed out to LR by Mark Embree. However, this does not
affect the value to which the limit converges.
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5.2 Symbolic Representation (Coding) of the Periodic Spectra

Fix o ¢ Q and consider the spectrum o (Ha,yv) for V > 4. We use the spectra of
periodic operators to provide covers of o (Hu, V) allowing us to represent the IDS as
a power series, see Eq. (5.5) in Sect. 5.3. Toward this we define.

Definition 5.3 For ¢ € C with [c, 1] € C we define the level L.y by

Loo=17- I is a spectral band of o.(V) of type A or B or
&V = " I is a spectral band of oy¢,1;(V) of type B ’

We equip the set L. y with the order relation <, i.e., [a, b] <y [c, d]if b < c,
which was already introduced before Definition 4.13. This is in fact a total order
relation on L y if V > 4, as is shown next in Lemma 5.4.

Let us first consider some examples. The lowest levelis Ljo.0),v = {[—2,2],[V —
2,V +2]}. Observe that if V > 4, then [—2,2] <4 [V — 2, V 4+ 2]. A sketch of
Lio,0,v and other sets can be found in Fig. 3. Observe that Lo o;,v and Lo 0,1},v both
contain the interval [-2 4 V, 2 4 V]. Thus, these sets Lo o;,y and Ljo,0,1,v are not
disjoint, in general.

Lemma 5.4 LetV >4 andc,[c, 1] € C. Then, forall 1, I' € L.y, we either have
I =1 orINI' =0.Inparticular, (L.y, <) is totally ordered.

Proof Let I,I' € L.y. We only need to show that I N I’ = ¢, since then either
I <ge I"or I < I follows. If I, I’ are both spectral bands of o.(V), respectively,
O1e,11(V), then I NI’ = as they are disjoint connected components of the same
spectrum, see Proposition 4.1. Otherwise, assume I C o.(V) and I’ C oy 11(V).
Then I’ is necessarily of type B and, in particular, (by the backward type B property)

Al\ “J\ All‘ R Al\\Al,’\ 1; Al\l 71‘_‘ R
L0,0,1,2,3),v bt et —t = HHHH = HAHAH
c3 =3
] ) ( Al,’\
Lio,0,1,2),v b et ———i b
co =2
B
Lo,0,11,v } |
c1 =1
Al
Lio,0,v ‘ fo i
-2 2 24V 24V

Fig. 3 Visualization of the sets L,y for some ¢ € C. A label A, B or G®) is assigned to each
spectral band. This label assignment describes the coding map by from Proposition 5.8 for this
particular case
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there exists a spectral band J' C oy 1,—17(V) such that I’ € J'. But gy¢,,—1;(V) =
oc,01(V) and by Proposition 4.7 we have

oe(V) Nope,n(V) Nogeo(V) =0,

sothat INI'=INJ' NI =4@. O

Let a € [0, 11\Q with continued fraction expansion given by (cx)z—,. Define the
finite continued fraction expansions ¢ := [0, ¢y, ci, . .., ¢x] € C for k € Ny. In the
following, we say L., v isacoverofaset A CRif A C UIeL%V 1.

Lemma 5.5 LetV > 4and o € [0, 1]\Q with continued fraction expansion (ci)re
and ¢ := 1[0, co, c1, ..., ck] € C fork € Ny. Then the following holds.

(a) Forallk € No, L¢, v is a cover of L, v.

(b) Forallk € Ny, L, v is a cover of 0(Hq,v).

(c) For all keNy, Ap(V):=0,(V)Uop, (V)= U,GL%V 1. Furthermore,
limy_ 00 UleL%V I = ﬂk€N0 Ay (V) = 0(H,.v) where the limit is taken in the
Hausdorff metric.

Proof If I C oy, ,11(V) is of type B, thenitis containedin oyc,,,,1,—11(V) = ¢, (V)
using Lemma 3.6 and Corollary 3.7. Thus, L, v covers I and so L, v is a cover of
all spectral bands in oy, 17(V) of type B. If I C o, (V) is of type A, then it is
contained in oy, ,, 01(V) = o¢, (V) using Lemma 3.6 and Corollary 3.7. Thus, L, v
covers 1. If I C o, (V) is of type B, then Corollary 4.21(b) implies that there is
aJ C op.11(V) of type B with I € J. Thus, L¢, v covers I as well. Combined
with the previous considerations, we obtain that L, v is a cover of o, (V) and all
spectral bands in o7, 11(V) of type B, namely, L, v is acover of L,,, v. Thus, (a)
is proven.

Having this, (b) follows from Proposition 4.6.

By definition, we have | J IeLo.y I € Ayx(V). Moreover, every spectral band of

01¢..11(V) of type A is contained in o¢, (V). Thus, U,GL%V I = Ar(V) and now (c)
follows from Proposition 4.6. (]

By the first part of the last lemma, every spectral band of L, v is contained in
a unique spectral band of L¢_v. We may use this in order to construct a symbolic
representation (coding) of each spectral band in level L, v in terms of the spectral
bands in all previous levels in which it is recursively included.

Definition 5.6 Let « € [0, 1]\Q with continued fraction expansion (c)je, and
¢, :=[0,co,c1,...,c] €C for k € Ny. Consider the countable alphabet A :=
{AD i e NJU{G® : i e N} U {B}. A (finite or infinite) spectral-a-code is either
a finite sequence v = (7(0), y(1), ..., v(k)) € A**! or an infinite sequence v =
(7(0), ¥(1), ...) € A% satisfying the following:

(Z1) 7(0) € {AD, GP}.
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Fig. 4 Visualization of the Ak+1) g A0 @ a A ¢@ A@ qB)
properties (£2), (£3), (£4)
with ¢,y = 2. Each figure \V
shows the possible
descendants y(k 4 1) of (k) A6) felV)
(k) as well as from which
element in .A, the element ’
~(k) could come from
v(k—-1) AW or B al) AW or B
(22) (£3) (>4)

E)If ~v()e{AP:ieN} then ~(+DDe{dV:1<i< cjt1 — 1} U
(GO 1<i<cp).

(23) If y(j)=Btheny(j+ 1) e{A®:1<i< ch}U{G(i) 1 <i=<cjp+
1}.

(Z4) Ifv(j) € {GV :i e N}thenv(j +1)=B

The set of all infinite spectral-a-codes will be denoted as %,. Similarly, the set of all
spectral-a-codes in Ak i denoted by X, . Moreover, the set Eifec C X, is defined
as those v = ((0), ..., y(k)) € X,, who additionally satisfy

(25) v(k) € {AD :i e NJU{B}.
A depiction of conditions (£2) — (2£4) in Definition 5.6 appears in Fig. 4.

Remark 5.7 There is a merit in embedding all the codes defined above in a tree
graph. Our depiction of the codes in Figs. 4 and 5 uses this point of view. The tree
representation explicitly appears in [3] using a directed rooted tree with a strict (i.e.,
irreflexive) partial order relation defined on its vertex set. It is called the spectral-
a-tree in [3]. Here, we confine ourselves to the original presentation of [39] using
the symbolic representation of codes (and appeal to the tree only via the figures).
Finally, we note that in [3] the vertices of the tree graph are labeled only by A and
B, as opposed to using also the label G in the current paper.

The previous definition is in close relation with the forward property of a spectral
band, see Definition 4.13. This is made precise in Proposition 5.8. Before, we define
a partial order < on A := {A® : i e NJU{G® :i € N} U {B} by setting

GV <AV « G® « AP « ...

Let « € [0, 11\Q with infinite continued fraction expansion (cx)c. convergents
p(cx) and ¢, = [0, co, ¢y, ..., ck] € Cfork e Nyg. If v, m € |_|keN0 2, U X,, define

7(0) <n(0), or

Y<n = : : . . ,
!7(1) =n(j)and y(j + 1) <n(j + 1) for some j € No.
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This defines a partial order on |_| ren, e Tespectively, X,. We continue defining an
encoding of UkeNo Le,.v via the spectral-a-codes |_] ken, 2o, preserving the partial
order relations, the types, and inclusions. This statement deviates slightly from [39]
and follows the lines of [3, Proposition 7.1]. The reader is referred to Fig. 3, where
an example of some spectra is plotted together with the associated code as described
in the following proposition.

Proposition 5.8 Ler a € [0, 1]\Q with infinite continued fraction expansion (ci) e

and ¢, = [0, co, c1, ..., ck] € C for k € No. Then there exists for each V > 4, a
unique map
bV . I_l Eck — U Lck,V
kENQ k€N0

with the following properties:

(a) Foreach k € Ny, by bijectively maps X, onto L, v.
(b) Foreachk € N, we have forall y € X, , andn = (n(0), ..., n(k)) € X,

¥=mO),....nk—=1) & by Sbv(y) << bv(yNby(n #0.

(c) Letv,n € | |;en, ;- Then y < 7 if and only if by () <suw bv (7).
(d) If y € 2, for some k € Ny, then

(1) v(k) € AY if and only if by (7) C o, (V) is of type A.

(2) v(k) € Bifand only if by (y) € o, (V) is of type B.

3) vk € GY if and only if by (y) € oe,,11(V) is of type B and by (y) N
o, (V) =0.

Remark 5.9 Note that Proposition 5.8(d) asserts that the spectral band by (y) for
v € 2, is contained in a spectral gap of o, (V) if and only if v(k) = G for some
i € N. This, in particular, explains the notation G standing for a gap.

Proof We first note that every such map satisfying (a) and (c) must be unique since
2, 1s totally ordered and L,y is totally ordered by Lemma 5.4.

First, suppose that such a map exists and justify that the equivalence by () C
by (y) & by(y) Nby(n) # Pin (b) holds. Suppose by () N by (n) # P holds. Since
L, ,.visacoverof L v by Lemma5.5, we conclude by () € UleLcH_v I. Since
the spectral bands in L, , v do not touch (Lemma 5.4) and by () N by () # B, we
conclude by () € by (). The reverse implication is trivial.

We continue inductively defining the map by .

Induction base: If k=0, we have ¢y =[0,0], Zj0 = {(A"),(G?)} and
Leyv =1{[-2,2],[-2+ V,2+ V]}, see also Example 4.20. Define by (AD) =
[—2,2]and by (G®) = [-2 + V, 2 + V] satisfying (a)~(d) for V > 4 by construc-
tion.
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If k = 1, we have ¢; = [0, 0, ¢;] where c¢; € N. By Example 4.20, we have

c1—1

010.0.c0(V) = | T0.e0(V) U Kio.0.e,1(V)
j=1

where
1 2 1 —1
I[o,o,cl](v) <str I[o,o,cl](v) <str - -+ <str I[Lol,o,cl](v) <str K[O,O,cl](v)

and I[{),O,cl](v) C [-2, 2] are of type A and Kjo,0,c,)(V) € [-2+ V,24+ V]isof
type B. Since 010,0.¢,.1,-11(V) = 010.01(V ), every spectral band in o9 0.¢,,11(V) of type
B is contained in oyo,0) (V) = [—2, 2]. Applying Proposition 4.18 to the spectral band
[—2, 2] of type A withm = c; implies that the spectral bands of type B in 0y9,0.¢,.1;(V)
are {J"(V)}fl=1 with

JI(V) str I[{)YOYCI](V) <str JZ(V) <str - <str I[%l,a,lcl](v) <str JCI(V)
and J'(V) C [—2,2]. Thus,
Lev ={ljgpe)(V) 1 1 =i=er—=1JUL'V) 1 <i < a}U{Kooe (V)]

Since J(V) C[-2,2] and K0 (V) S[-24+V,2+ V], we conclude
JUV) <sr K10,0,¢,1(V) using V > 4. In addition, we have

e, ={(A(1),A“)) Cl<i §c1—1}u{(A(l),G(i)) Sl<i scllu{(G(z),B)].

With this athand, define by (A, AD)) := Ij , ..,(V), by (AP, G?D)) := J'(V),
and by ((G?, B)) := K{o,0,,1(V) satisfying (a)—(d) by construction.

Induction step: Letk > 2 be such that by : |_|f=0 X, — Uf:o L,.v satisfies (a)-(d).
We show how to extend by : X, — L, v.Let v =), ...,vk)) € Z,.
Ify(k) = AD, thenset M = c;,; — l andif y(k) = B, thenset M = c;,,. By the
induction hypothesis and property (d), by (7') € o¢, (V) is of type A if y(k) = AD
and of type B if (k) = B. Thus, Proposition 4.18 implies that there are exactly

, . M+1
{I’ },Ail C o¢,, (V) of type A and il[" } X C 0y¢,,,,11(V) of type B such that

[V Crt, 11
Kot 1 1] =

I I[Jckﬂyl] Sstr bV("Y/) and

Crt1”’

IM+1

1 1 M
Tig, 1y <str Loy <str oo < [cpnr 11"

<.
Ch+1 str

Furthermore, (£2) implies that all choices for y(k 4+ 1) are {A© : 1 <i <M} U
{GY : 1 <j <M+ 1}. Then define for v = (7(0), ..., v(k + 1)) € Z,,,,
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by () = Lo irkE D = AT
Vv = . i
Iy iy + 1) =GV

Thus, by (7) C by (7) holds, namely, this definition satisfies (b) as well as (d). Fur-
thermore, let i := (7(0), ..., y(k), y(k + 1)) and ~; := (y(0), ..., y(k), n(k +
1)) for k) e{A®, B} and ~k+1D,nk+1)e{A? :1<i<M}U
{GY : 1 < j < M+ 1}. By construction, we conclude

1<7 & by(m) < bv(m). (5.3)

If y(k) = G?, then the induction hypothesis and property (d) imply that by (7') €
Ole,.11(V) is of type B and by (") N o, (V) = . Thus, Corollary 4.17 asserts that
there is a unique spectral band J in o, (V) of type B with J C by (7). Note that
if cgr1 = 1, then J = by (/). Define by (7(0), ..., y(k + 1)) := J. This definition
satisfies (b) as well as (d).

By the previous considerations, we have defined the map by : X,,, — L, v
and by construction it is injective and it satisfies (b) and (d). Next, we prove that
by : Z¢,,, = L, v is also surjective. Therefore, let J € L, v.

IfJ C o, (V)isof type A, then Corollary 4.21(a) and k > 2 imply that thereis a
unique spectralband I, € o, (V) suchthatJ = I[c o for some 1 <i < M (where
M = cpqy1 — lif I isof type Aand M = cyq if I, is oftype B).Since by : X, —
L,.v is bijective by induction hypothesis, there is a v = (y(0), ..., y(k)) € X,
with by () = I,. Moreover, property (d) asserts y(k) = A if I, is of type A and

y(k) = Bif I, is of type B. Hence, 7' := (7(0), ..., v(k), AD) € Z,,, by (£2) or
(Z3)and by () =J = I[ck el

If J C ope,.,,11(V) isof type B, then Corollary4.21(b) and k > 2 imply that there is
aunique spectral band I, € o, (V)suchthatJ = I[c o 1] forsomel <i <M +1
(where M = ¢y — 1if I, isof type Aand M = ci4g 1f Ick is of type B). Since by :
¢, = L, v is bijective by induction hypothesis, there is a vy = (v(0), ..., v(k)) €
¢, with by (y) = I,. Moreover, property (d) asserts (k) = AD if I, is of type
A and y(k) = B if I, is of type B. Hence, 7' := (7(0), ..., y(k), G?) € &,,, by
(Z2)or(Z3)and by (y) =J = I[’ck I

If J Cog,, (V) is of type B, then Corollary 4.21(b) implies that there is a
unique spectral band Ij¢, 17 € 07¢,,17(V) of type B such that J C [, 1j. Since by :
¢, = L, v is bijective by induction hypothesis, there is a vy = (v(0), ..., v(k)) €
Y, with by (y) = Ii,.11- Moreover, property (d) asserts (k) = G, Thus, 7' =
(v(0),...,7(k), B) € X, by (Z4) and by (7)) = J.

It is left to prove that by : X¢,,, — L¢,,, v satisfies (c). Let v,n € X,,. We
need to treat two cases. If (k) = n(k), then the equivalence v < < by () <s
by (n) follows from (5.3). If v(k) # n(k), then there is a 0 <! < k — 1 such that
v¥(j)=n(j) for all j <! and v({ + 1) #n({ + 1). Since / + 1 <k, the induc-
tion hypothesis and (c) yield the equivalence v <7’ < by (Y') <g by (1)) where
v = ®O),...,7(€ + 1) and ' = (n(0), ..., n( + 1)). Thus, by (v") Nby (') =

Ch+1

Ch+1
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@ holds. By property (b), we have by () C by (7)) and by (n) € by (1'). Hence, the
previous considerations imply that v < 7 if and only if by () < by () proving (c)
for by : ¥¢,,, = L, v- O

Ch+1

Corollary 5.10 Let o € [0, 11\Q with infinite continued fraction expansion (cy)3e
and ¢, = [0, co,c1,...,cx] €C for k € Ny. For all V > 4 and k € Ny, the image
bV(ngec) equals to {I : I spectral band of o, (V)}.

Proof This follows immediately from Proposition 5.8 and Theorem 4.22 asserting
that every spectral band in o, (V) is either of type A or Bif V > 4. O

Now we can use the previous considerations, to assign to each infinite code in X,
an elementin o (Ho,v).

Lemma 5.11 LetV > 4anda € [0, 1\Q. Forally € X, the set ﬂk€N0 by (vlo.k)
contains exactly one element and mkeNU by (ylox) € o (Ha,V)~

Proof Consider the sequence {bV (Y110.61) } keNo of intervals. This is a decreasing
nested sequence of non-empty closed intervals, see Proposition 5.8(b). Applying
Cantor intersection theorem yields that [, N, bv (Yl10,67) 1s non-empty. Furthermore,
itmust be closed and convex (as intersection of closed and convex sets). Hence, it may
be either an interval or a single point. Lemma 5.5 asserts by (7y|j0.k)) < U IeLoyv I =
% (V) and

() bvOlow) € () Be(V) =0 (Hav) .

keNy keNy

According to [8], o (Ha,v) is of Lebesgue measure zero if V # 0. Thus, o (Ha,v)
cannot contain an interval, and therefore () ke, Ov (Y110,k1) 1s @ single point (which
is contained in o (Ha,V))- O

A consequence of this lemma is, that we now get a well-defined map E, v :
¥4 = 0(H,,y) by setting E, v () to be the unique element in ﬂkeNO by (vl0.x1)s
which exists by Lemma 5.11.

Lemma 5.12 LetV > 4and o € [0, 1]\Q. Then the map E, v : o — o(H,v) is
a bijection.

Proof Lety(cr), k € Nobethe convergents of a. Foreachk € N,wehave o (H,,y) €
U,GL%V I by Lemma5.5. Furthermore, if E € 0(H, v) is fixed, then foreachk € N,
there exists a unique / € L, v such that E € I, since the spectral bands in L,y
are disjoint. By Proposition 5.8, by : ¥¢, — L, v is a bijection for each k € N.
Thus, there exists a unique vx € X, for each k € N such that E € by (). Then
E € by(w) Nby(vkt+1) # O follows. Thus, Proposition 5.8(b) asserts by (7x+1) S
by () and the codes 7+ and vy, coincide on the first k + 1 digits. Hence, we induc-
tively conclude for all j > k, by (vy;) € by () and the codes v; € X; and v € X
coincide on the first k£ 4 1 digits. Since k and j were arbitrary, there is a unique
v € X, such that v and ~; have the same first k + 1 digits for all k € N. We claim
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E,v(y) = E. By definition of E, y, we get E, v () € ﬂkeNo by (k). On the other
hand, also E € [ keny, Ov (i) follows from our choice of ~x. The uniqueness from
Lemma 5.11 then yields E, y(y) = E. O

Lemma 5.13 Let V > 4 and a € [0, 1]\Q, then the map E.y : £, — 0(Hqa,v) is
order preserving, i.e., if v, m € X, then

Y<n < Eu,V(’y) < EaV(n)

Proof Let ¢(ci), k € Ny be the convergents of «. Also let v, € X, with v < n.
Then there is some k € Ny such that |0 x; < 7lj0.41- Thus, Proposition 5.8(c) leads
to

Eqov(y) € by (Ylj0,6) <se bv(Mlio.x1) 3 Ea,v (),

lmplylng EaV(’Y) < Eu,V(T/)'

Conversely, suppose E, v(v7) < E4 v (n), then v # n follows by Lemma 5.12.
Thus, there exists a ko € Ny such that for all k£ < ko, v|[0.61 = [0k and (ko) #
n(ko). Note that v(ko) # B # n(ko). Hence, either (ko) < n(ko) or n(ko) < (ko).
Since

by (Vloko1) 2 Eav(Y) < Eav(m) € by (nljo.x1) -

we conclude [0, < [0k, from Lemma 5.4 Proposition 5.8. Hence, v <7
follows. O

Lemma 5.14 Let V >4 and « € [0,11\Q with convergents ¢(ci), k € Ny.
Furthermore, let v € ¥, with E, vy (y) =: E. Then for all k € N, the image of
{77 exl i n< ’Y|[0,k]} under by equals {I : I is a spectral band of o, (V') with

I <str {E}}

spec

Proof Assumen € X, with 17 < |j0 4. Then by (n) is a spectral band of o, with
by () <sr by (Yljo.47)- In particular, by (1) N by (Ylj0,4) = ¥ follows from Proposi-
tion 5.8(b) and (c). By construction of the map E,, v, we have E € by (7|j0,1), which
shows

by ({n eTIC i< fyl[o,k]]) C {1 : Iisaspectral band of o¢, with I <sr {E}}.

To show the other inclusion, consider a spectral band I of o, with I <y, {E}. We
apply Proposition 5.8 to getn € T’ such that by (1) = I and by () N by (Yljo.4)) =
@. Combining E € by (v|px) and I <4 {E}, we get that by () < bv(Yl0.47)-

Hence, by Proposition 5.8 1 < 7|0 x; which finishes the proof. O

As a consequence of the considerations of this subsection, we conclude with the
following statement.
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Proposition 5.15 Let V > 4 and « € [0, 1]\Q with convergents gkk = @(cr), k €
No, where pi, qr are coprime. For each E € o(H,.v), there is a unique y € X, such
that E = E, v () and

 #{n ezl  n<ylon
Nov(E) = Noy(Eqy (7)) = lim { : }. (5.4)
k—o00 qk

Remark Note that the latter statement asserts that the value N, v (E,,v (7)) is inde-
pendent of V > 4 as the limit on the right-hand side is so. In fact, the value is
independent for all V > 0 as proven in [3, Theorem 1.9 (d)].

Proof Let E € o(H,. v). The existence of a unique v € X, such that E = E, y ()
is proven in Lemma 5.12. Thus, N, v (E) = N, v (E,, v (7)) holds. Proposition 5.2
leads to

# il : 1 is a spectral band of o(H r ) with [ < {E}}
Noyv(E) = klim % .
— 00 Clk

First note that o(Hn ) = o, (V) by Proposition 3.5. Let by : leeNo Y, —>
qi

UkeNU L.v be the map defined in Proposition 5.8 satisfying E = E, v(7) €
by (vl[0,x7) for all k € Ny. Thus, Lemma 5.14 leads to

by <{n € ngec 1< ’Y|[0,k]}> = {1 1 1 C o¢, (V) spectral band with I <gr {E}}.

Hence, Proposition 5.8(a) (asserting that by is injective if restricted to Ze- ) implies

t{n e =P . n<ylon}=1{I : I S oe (V) spectral band with I <y {E}}

Ck

finishing the proof. O

5.3 A Formula for the IDS Via the Spectral Coding

In this subsection, we use the hierarchical structure of the periodic spectra and its
coding in order to provide an explicit formula for the IDS, N, y. Proposition 5.15
is the starting point for the current subsection. Next, we provide some counting
arguments in order to express the numerator in (5.4) and to obtain a convenient
formula for the IDS, which is eventually proven in Proposition 5.21.

Example 5.16 We provide a guiding example to demonstrate some of the count-
ing arguments which are developed in this subsection. Let o ¢ Q whose contin-
ued fraction expansion that starts with (2,1,1,2,...) and consider, for exam-
ple, y=(G?®,B,G? B,G?,...) e X,. We would like to compute the IDS at
E := E, v (v) using the sequence in Proposition 5.2. Here we show how to compute
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G

Fig. 5 Visualization of the codes in Example 5.16 as an ordered graph. The rectangles mark all the
vertices in level 4 descending from a blue marked vertex in level j € {0, 1, 2, 3, 4}

the k = 4 element of this sequence. First observe that 153 = Zkk = ¢([0,0,2,1,1,2]).
Since bands and codes are in a one-to-one relation by Proposition 5.8, we can rather
think of codes and count the number of codes 77 € Zr° of length 5 with 1 < 7|04
We demonstrate this situation in Figure 5—to better illustrate the example, we adapt
here the tree formalism from [3], even though it did not originally appear in [39].
The beginning of the code ~ is marked red and we need to count the codes
n = m(0),...,1n4)) € T which correspond to spectral bands and which are to
the left of this path . Specifically, one needs to count the vertices in the fourth level
which are inside the rectangles, but only those vertices that are labeled A®) or B
should be counted since 7 € Xe'. To do so, we follow the red path and at each level
j €{0,1,2,3,4} we mark the vertices that branch off to the left. In Figure 5, we
marked them with blue squares. The set of paths ending at a blue square in level j
with label * = A if n(j) = A” and x = G if n(j) = G are denoted by I'; (v, *). For
instance, I'o(y, A) = {(A")} and I'y(y, G) = @. Then we use the evolution laws
(X2), (¥3) and (X4) to calculate how many codes of length 5 are descendants of

these blue squares and end with an A or an B. This number is denoted by d}(»),
see Definition 5.19. For instance, dg (A) =8and df(G) = 3. Then d;‘(*) I (7, *)
is the total number of codes ) € T¢,-- where 7)(j) has the label x and 1) < 70,4 since
n(j) <v(j). Let tth}(v) = d;‘(A) 40 (y, A) + d;.‘(G) -fT"; (v, G) be the sum of
these numbers for the different labels » € {A, G}, see Lemma 5.17 and Eq. (5.5). For
this specific example, we now can check directly in Fig. 5 that

D3 (1) =8-1+5-0 =8,
4D}y =2-0+43-0 0,
4D =1-1+2-1 3,
#D{(7)=1-0+1-0 0,
#D{(1)=1-1+0-1 =1,
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spec

and f {77 €, :n< 'y|[0,4]} = 12 coinciding with the sum of j:ID‘}('y). Thus,

#{77 € T 77<'y|[o,4]} 12

q4 13

follows.

In this subsection, we perform this counting in a general manner and the final
result is given in Proposition 5.21. Let o € [0, 1]\Q and v € %, an infinite spectral-
a-code. Define

Di(y) :={y e TP . /() <y()and Vi < j, ¥ () =)},
for all 0 < j < k. Notice that, in particular,
Di(y) = {7 € TP : 4(0) <1(0)},
and, for example, Dj(v) = @ if 7(0) = AD.

We intend to employ the sets Dljf () in order to compute the numerator in (5.4),
see, e.g., (a) in the following lemma.

Lemma 5.17 Let V > 4, a € [0, 1]\Q with convergents p(ci), k € Ny, and v €
Y. Then the following assertions hold.

(a) We have

k
{77 € X < ’Y'[O,k]} = |_| D/;(v).
i=0

(b) Let R’; P2y > e,y R’; (7) = 7ljo, j1 be the restriction map. Then

iy = ) #H(RHTopnEPF).

1ER} (D} (7))

(c) Ifne D{;(y), then (j) # B # 7(j). In particular D% = @ if 4(j) = B.
(d) Forany 0 < j < k, we have R’;(D’;(y)) =T;(v,A)UT;(v, G), where

P A) = [ e Se; s m <o 1. o, j—11 =l j—11. 1) € (4D i e W},

Ii(v,G) = {77 € Xe¢; 1 <7lo,j1> nlio,j—11 =0, j-11, n(J) € (G0 ie N}}-
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spec

Proof (a)Letn € Dljf(y) for0 < j < k.By constructionof < on X¢, , 7(j) < v(j)
implies 17 < 7y|j0,k). Thus

Di(y) Sy € = i <low)

followsforall0 < j < k.Forthe converse inclusion observe thatif n € T satisfies

1 < 7|10,, then either n(0) < «(0), or there is some 0 < j < k such that
n(j) <y(j) and n@)=~@G)forall0 <i < j.

(b) Let 1 € RE(D5(7)), so we have 1(j) <~(j). Thus, if 5 € (R})~"'({n}), then
l0.j1 = 1 holds and so ¥ < 7o« If, additionally, 5 € Z¢, then we 7 € D(7).
With this the claim follows.

(c) This follows (X4) in Definition 5.6 asserting that if v(j) = B, theny(j — 1) =
G for some i € N. Therefore, there is no code 1 € X, with n(j — 1) = v(j —
D), n(j) <~(j) and n(j) = B ory(j) = B.

(d) This follows directly from (c). [l

To continue the counting arguments, we find it useful to partition finite codes
according to their finite letter. Toward this we introduce another notation. Let o €
[0, 11\Q with continued fraction expansion (cx)pe, and ¢ = [0, co, ..., ck] € C.
Consider a subset £ C %, . Define

o€, A)=#{ne& : nk)y=A" forsomei € N},
o€, G) = #{77 €& : nk) =G forsomei € N} ,
o&,B):=#{ne& : nk)= B}.
For instance, o(€, A) is the number of those spectral-a-codes in £ which end on
an AD. Let [ € N. Then o((R{*)~!(&), A) is the number of those codes in T,
that are extensions of codes in £ and end with a letter A”). The next lemma provides
identities for counting the number of such code extensions. Therefore, recall that the

convergents ¢ = o(¢;), k € Ny, of a € [0, 1]\Q with py, g, coprime satisfy the
recursive relation (2.3).

Lemma 5.18 ([39, Proposition4.1]) Let « € [0, 1]1\Q with continued fraction expan-
sion (cp)pe, and convergents Z: = p(ck), k € Ny, where py, g are coprime.

(a) LetE C %, k € No. Then

k+1)~1
Q<(Rk ) (5)’6) 0(E,G)
o((RE) @, B) | =Tins | e B |
0 ((R17§+1)_1 (g) , A) Q(g’ A)
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where
Lo +1 0 g
Tivi =T (k)= 1 O 0
0 cq1 g1 —1

(b) If£ € N, then

e ((ngﬂ)_l OF G) 0(E,G)
o((RF) '), B) | =SS | 0. B)
0 (R11§+e)*1 &), A 0(&,A)

with Sy := Sk (¢x) := TiTi—1 ... T\ and Sy = I the identity matrix.
(c) The matrix Sy is given by

pr+ (—=DF ax — (—DF ak — px — (=¥
Sk = pk—1 — (=D Gr—1 + (=DF Gk—1 — pr—1 + (=DF
k= Pk—1 + D g — g1 — (D% g — g1 — p + pr—1 — (=DF

and its inverse S,:l equals to

1 — px Pi—1— 1 Pi—1+ pr—1
St =(-D* g — 1 I —qi1 1 —qr — qi
l—-pi—gi gk + =1 pe+pea+ g+ g — 1

Proof (a) This is a direct consequence of the defining properties (X2) to (X4).
(b) This is proven via induction over £ € N. For £ = 1 this statement is just part (a) of

this Lemma. Now assume the statement holds for an arbitrary £ € N. By observing

k+e+1 _ pk+t k041
Ry =R, o R, weget

(R @ = (REE T ((RED) T @),

Using (a) and our induction hypothesis then yields

(e (R ©.6)) = (o (REE) ™ (R ©).6))
= Thret (Q ((RIIEH)_I OF G))
= Thte+1Sk+e Sk_l (9 (€, G))
= Skes1 ¢! (0(£,6)).

(c) The stated form for S; can be computed inductively. Then one checks by direct
computations that S Uis given by the stated matrix. Occasionally, the formula
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Qi Pk—1 — PiGQr—1 = (=D¥ (see [27, Theorem?2]) is used. We leave the computa-
tional details to the reader. [l

Lety € X, such that y(j) = A® for some i. Then, for k > j, we wish to count
how many 7 € 7 there are such that 7|, j1 = 7. By the previous lemma, this
number depends only on j and k, but it does not depend on the particular v € X,

satisfying v(j) = A®. Indeed, using Lemma 5.18 we define
Definition 5.19 For « € [0, 1]\Q, define

(e

di(A):=(011)5s;"

— O

and

d5(G) = (011) 857" g

With this definition we may express the number of elements in the sets D’]‘.(v)
(which are used in Lemma 5.17(a)) ‘

#D%(7) = dj(A) - #T (7, A) + d5(G) - #T;(7, G), (5.5)

where the sets I'; (7, A), I'; (7, G) were defined in Lemma 5.17. To verify identity
(5.5) one first observes that the set D’; () may be decomposed into codes 1 € D’; (v)

for which 7n(j) = A® (for some i) and codes 1 € D?(v) for which n(j) = G®
(for some 7). This decomposition is thorough, since there are no codes n € Df(v)
for which n(j) = B, see Lemma 5.17(c). To count the codes n € Df(v) for which
n(j) = A, we notice that the prefix of each such code, (1(0), ..., n(j — 1), A®)
belongs to I'j (v, A) and there are exactly df(A) ways to extend such a prefix to get
an element in D’;. ”).

Next, we provide an explicit formula for df (A) and df (G) using the conver-
gents Zkk = p(cy), k € Np, of a with py, gx coprime. Therefore, we like to remind

the reader on the recursive definition of {p;}re_; and {gi}o_; in (2.3) with initial
condition:

p-1=1, po=0, g1 =0, g =1

Lemma 5.20 Let o € [0, 1]1\Q with convergents Zkk = @(ck), k € Ny, with py, qx
coprime. Consider the numbers

Pii=(=D’lgipe — pjgl  for —1<j <k
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Then
di(A) =P — P and dj(G) =P}

hold for0 < j < k.

Proof We sketch the computation of df (G). We have
1 .
S0 =178 g, —1
‘ 0

Performing this matrix multiplication and simplifying then yields

1
(010)-8587 -1 0 ) =(=1[gjpe-1 — pjgr-1 — (=DF],
0
1 .
(001)-85S87 - | 0 ) =(=1[pjge-1 +qjpx — q;pi1 — Pjge + (=D,
0
and hence
dj(G) = (=1)lq;px — pjqi] = P;.
To compute dj? (A), one proceeds analogously. O

Now, we have collected all the pieces in order to provide the promised formula
for the IDS N, v.

Proposition 5.21 Let V > 4, « € [0, 1]\Q with convergents Z: = @(ck), k € N,
with py, qx coprime. Then, for each y € X,

Nov(Eav() = Y (=D* () (gre — pr)
k=—1
where

p—1(y) == #Lo(y, A) and py(y) :=#Tk (v, G) —#T (v, A) +# 1 (7, A), k € Np.

Proof Let~y € %,. Our starting point is Proposition 5.15, to which we consequently
apply Lemma 5.17(a), (5.5) and Lemma 5.20,
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#{ne it n<y}
qk
k
— lim Zj:o #Dﬁ(V)
k—o00 Clk

k
1
=lim Y #0;(y, A) - d5(A) +#T;(7. G) - d4(G)
j=0

No,v(Eqv (7)) =k1inolQ

k— 00 C]k

. 1
=lim > #T(y. A) - (P5, — P +#T;(y.G) - P*
=0

k— 00 Qk

k
= lim ZPk (#T; (7, G) —#T;(7, A) + #Tj11(7, A))

1 1
+  PEL#HDo(y, A) = P #Ta(y, A)
qk gk ~—~~—

=0
—klggoq ,ZP 1 ()
= lim Z (=1 () - <quk —p,->,
k~>(>(>j:_1 C]k

=fi ()

where in the last two equalities we substitute 1;(y) from this proposition statement
and the 73;-‘ from Lemma 5.20.

oo
Accordingto [27, Theorem 4], the sequence { Z 2” } is monotonically increasing,
2 )=

oo
i Z 22,”1‘ } is monotonically decreasing and both sequences converge to «. Hence,
-1 =1

we conclude for all k € N,
(1)) <q.,~ P _ p_,) >0 forallj<k and (=1)* (qrer— pp) > O.
qdk

Since pj(y) >0 if j>1, we conclude fi(j)>0 for all j e N. Thus,
limg_, Zﬁ:q Jfx(j) converges absolutely using that the limit exists. For each
k € N, we alsohave f(2]) is monotone increasingin/ € Nand f» (2] — 1) is mono-
tone decreasing in / € N. Note also that limy_« fx(j) = (=1)7p1;(7) - (¢ — p;)
foreach j > —1. Hence, the monotone convergence theorem applied to the following
two summands separately leads to

2k 2k o0
N,y (Eq,v () = lim_ (Z f@i=D+)" f2k(21)) =Y =D i - (g0 - pj)
j=0 1=0 j=—1
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where we used in the first step that the limit exists and so we can pass to the subse-
quence of even numbers 2k. O

Remark 5.22 Recognizing the importance of the functions p (), k > —1 for the
representation of the IDS in Proposition 5.21, we wish to elaborate on their possible
values and their connection to the spectral code.
We have
(= [0 7@ =4,
7201 40 = 6.

For k € Ny one can read the value of pi () from the following table.

k=0 k>1
~(k) AD G AW B lel)
vk + 1) AW G B AW G AW G B
#i (v, A) 0 0 1 i—1 i—1 0 0 i—1
# (v, G) 0 0 0 i i 0 0 i—1
#lep (v, 4) | j—1] j—=1] 0 -l j=1] j=1] j=1] 0
e (Y) j-1] j=1] —1 J J j=-1] j=110

Therefore we can conclude for all k € N_;

pk(y) = 64 (k) +# ki1 (7, A) — ko

where
5a (k) = I %we{AV:ieN}jandk >0,
0 else.
Remark 5.23 Comparing the IDS formula in Proposition 5.21 to the formulain [39,
Theorem4.7] shows that they are similar up to an additional term of —a which appears
in [39, Theorem4.7], but not in Proposition 5.21. The source for this difference is the
connection between the coefficients 1 (), we used above, and similar coefficients
7 () in [39]. It can be checked that the connection between both type of coefficients
is given by
(7)) = p(y) + dr0-

We conclude this subsection by making a connection between the set of all possible
infinite codes, v € X, and the set of all possible infinite sequences, (i)gen_, - The
latter set is given by

p—1 €1{0, 1} andp—) =1 < po=-1,
o € f{—1,..., ci—1} andpp=c1—1 = 1 =0,

N_
M(x = {(Hk)kEN] € N,1]
wj €40, ..., cj+1} and pj = cjy1 = pj+1 =0forj >1

where (ci)ken 1s the continued fraction expansion of a.
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Lemma 5.24 ([39, Proposition4.4]) Let o € [0, 1]\Q. Then there is a bijection
between X, and M. The bijection is explicitly given by v — (i (7))ren_, Where

p—1(y) :==#To(y, A) and p(y) :=#T (v, G) — #Tk (v, A) + #T41 (7, A), k € Np.

Proof 1t is straightforward to verify that the map in the statement is well defined:
giveny € X, one can check that (114 (7))gen_, € M. To see this compare the defi-
nition of M, with Remark 5.22 which shows a table which characterizes (1 )ren -
To show that this map is a bijection, we take (ux)ren_, € M, and inductively com-
pute the corresponding (k). On the way, we prove that (k) is uniquely determined
by (-1, 05 -+ -5 fit1)-

To aid this computation confer the table in Remark 5.22 and recall that for all
ke N_;

i (Y) = 645 (k) + #Txq1 (7, A) — Gr -

First, if ©_, = 1, then we set v(0) = G® and otherwise if ;i_; = 0, then we set
4(0) = A,

If o = —1, then p_; = 1 and therefore 7(0) = G®. Now property (X4) from
Definition 5.6 implies (1) = B. Else, if o =i € {0, ...c; — 1}, then y(0) = AD
follows. If in addition p; = 0, then we conclude v(1) = G®, and if ;; # 0, then
(1) = A® holds. Notice that the code (7(0), v(1)) generated this way fulfills Def-
inition 5.6. This describes the induction base of the construction.

Now assume y was uniquely determined by p up to (k) for some k > 1. If
(k) was G@, then property (X4) yields again y(k + 1) = B. If (k) € {A©D :
i € N} U{B}, then (£2)and (24) imply y(k + 1) € {AD :i e NJU{G? :i € N}.
Assume gy = j. Then we get even v(k + 1) € {AY), GV} If ey =0, then
y(k + 1) = GY) and otherwise y(k + 1) = AY). Thus ~y(k), 1 and g1 uniquely
determine (k4 1). Observe again, that the code (v(0),...,~v(k+ 1)) fulfills
Definition 5.6. (I

5.4 Finding all the Gap Labels

Our aim in this subsection is to prove the following.
Theorem 5.25 Let V > 4. For a € [0, 11\Q we have

{Na.v(E) : E€R\0(Hyv)} ={ta mod 1 : £eZ}U{l}=(Z+ Za)NIO, 1].

A main tool in the proof of the theorem is Proposition 5.21. Therefore, we need
the following auxiliary lemma.
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Lemma 5.26 ([39, Proposition5.2]) Let « € [0, 1]\Q with convergents Z: = @(ck).
For each £ € Z, there is some kg € N and (1 = (1uj) jen_, € Mg such that pi; =0
for j > ko and

00 ko
E= Y (=g =Y (=1 p,q;. (5.6)

j=—1 j=—1
Moreover, if £ ¢ {—1,0, 1}, then pi, > 1.

Proof We prove the statement inductively over m € N that

(a) Forall £ € [—qom, qam—1) there is a ko < 2m and a p = (p1j) € M, satisfying
(5.6) 1i; = Oif j > ko.

(b) If pgy—1 = ck,» then £ € [—qi,, —qk, + qi,—1) if ko 1s even
and £ € [—ko,I + Gy» qko) if kg is odd.

To do this, we check the claim in an alternating manner on the positive and negative
part of these intervals. Also recall the recursive behavior of the sequence (gi)ken,,
that is:

g-1=0, go=1 and gr = cxqr—1 + qr— fork € N.

First, let m = 1 and consider £ € [—¢2, q1) = [—¢2, —q0) U {—q0} U (—q0, ¢q1) and
we separately consider each of the cases

te{—qo}, £€(—qo,q1) and £ €[—q2, —qo0).

If £{=—qgo=—1, then we choose ko =0=<2m —1 and p:= (u;)jen, =
(1,-1,0,0,...). In this case we get u € M, and

oo
W hgj=po=-1=t.
j=—1

For the second case, if £ € (—qo, q1) NZ = [0, ¢c;) N Z, choose kg =0 <2m — 1
and p := (0,£,0,0,...). Again, observe that u € M, satisfies (5.6). For the third
case we assume ¢ € [—qg», —qo). Notice that we can decompose this interval into the
¢, intervals

[—q2, —q0) = |_|[—q0 — (c2+ 1= g1, q0 — (c2 = ).
j=1

That is, there is a unique u; € {1, ..., ¢y} with

—qo—p1g1 <€ < —qo — (u1 — Dqi.
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Equivalently, we can write this as
—qo={l+mqg<—qo+q =c—1

If £ 4+ 11141 happen to be —gp = —1, then we can apply the first case to it and get

0
C+ g = Z (=1 s,

j=-1

with gy =1 and o = —1. Then p:= (1, —1, 41,0,0,...) e My and kg =1 <
2m — 1 satisfy (5.6) for the given £. We proceed similarly when

—qo <€+ pq1 <—qo+q=c — L

More precisely, if this holds, the second case yields

0
Cmgr =Y (=Dp;q;.

j=—1

with p—; = 0 and po = € + p1q;. Thus for p := (0, po, p£1,0,0,...) we have y €
M., as py # c; — 1 (we need this since p; # 0) and, by construction, y satisfies
(5.6) for the given £ and kyp = 1 < 2m — 1. This ends the induction base.

For the induction step suppose (a) and (b) hold for some m € N. Let £ €
[—g2m+2, g2m+1)- Again, we separately discuss the three cases

12 [S [_q2m+2a _q2m)a 12 [S [_q2ma q2m71) and ¢ S [qszl, q2m+1)-

For ¢ € [—qam, g2m—1) there is nothing to do, as (5.6) holds by the induction hypoth-
esis.

If¢ € [gom—1, @2m+1) = [G2m=1s Q2m—1 + Com+192m), then there exists some o, €
{1, ..., coams1} such that

Gom—1 + (pom — Dgam < € < qom—1 + L2mQom, (5.7)

or equivalently
— q2m + q2m—1 5 £ — Womqo2m < q2m—1-

In particular we observe £ — tomqom ¢ [—q2ms —q2m + qam—1). Thus the induction
hypothesis implies that there exists (p—1, - . . , am—1,0,0, ...) € Mg with iy, #

C2, such that
2m—1

€= pomgom = Y (=17 pjq;.
j=—1
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Note that if py,,—1 = cam, then the induction hypothesis for (b) and kg = 2m yields
£ — HomGom € [_q2ma —qm + q2m71)7 a contradiction.

Therefore we set i1 := (f—1, - - ., fhom—1, H2m, 0,0, .. .) and observe u € M,, as
om—1 # cam- Then (5.6) hold for the given £ and kg = 2m < 2(m + 1) — 1. Note
that if po, = com+1, 1-€., ko = 2m + 1 odd then (5.7) implies

e (gamt1 — G2m> Qom+1) = [—Gro—1 + Gy> Gio)-

This proves (b) if kg is odd for m + 1.

Finally, we suppose £ € [—gam+2, —qom) = [—Cam+292m+1 — q2ms —q2m). Then
there exists some fip,+1 € {1, ..., comso} such that

— 2mt1G2m+1 — Gom < € < —(2mt1 — DGomt1 — qom, (5.8)

or equivalently

— q2m 5 12 + HW2m+192m+1 < —42m + Qom+1 = —q42m + Com+192m + qo2m—1-

In particular, we observe €+ ptomt1qam+1 € [—qom + @2m+15 Qam+1). Thus, the
induction hypothesis implies that there are some (p—p, ..., tom,0,0,...) € M,
with o, # cam+1 such that

2m

L+ om1Qomy1 = Z (=17 g,
=1

Note that if py, = cam+1, then the induction hypothesis for (b) and kg = 2m + 1

yields € + tom+1g2m+1 € [—qam + G2m+1, @am+1), @ contradiction.

Therefore we set i := (f—1, - - -, fhom, om+1, 0,0, ...) and observe u € M,, as
Lom 7 Com+1- Then (5.6) hold for the given £ and kg =2m + 1 <2(m+1) — 1.
Note that if po,+1 = Ccom+2, 1-€., ko = 2m + 2 even then (5.8) implies

e [—qom+2: —Q2m+2 — Q2mt1)-

Thus, (b) holds if k is even for m + 1.

Note that p, > 0 holds for all kg > 1. The cases where ko € {—1, 0} and p, =
0 are exactly when £ € {—1, 0, 1}. Therefore £ € Z\{—1, 0, 1} and p, # 0 imply
Hiy = 1. O

Proof (Proof of Theorem 5.25) We start by recalling that the gap labeling theorem
[4, Proposition 5.2.4] already provides the inclusion,

G :={Nav(E): Ee€R\o(Hyy)} S{fa mod1 : £eZ}U({l}.
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First note that the spectrum o(H, v) is a compact subset of R. Then if £ <
inf o(H,,v),weobtain N, y(E) = 0.Similarlyif £ > supo(H,,v),then N, v (E) =
1 and so {0, 1} € G holds. We continue proving £& mod 1 € G for £ € Z\{—1, 0}.
The case £ = —1 will be treated separately at the end.

Let £ € Z\{—1,0} and let p = (p4—1, o, - -.) € M, be such that there is some
ko € Ng with £ = ﬁ‘;fl(—l)fujqj and p; = 0 forall j > ko + 1, which exists by
Lemma 5.26. In addition, Lemma 5.26 asserts that z, > 1. Then define

W= (=1, oy - - fg—1> (kg — 1), g2, 0, Chgtas 0, Chyts - - - ). (5.9)

Observe that i’ € M., using iz, > 1. Then Lemma 5.24 implies that there are unique
v,v € X, suchthat E := E, y(v) and E' := E, v (7) satisfy

Nov(E)= ) (=1)/pj(gja—py) and Nov(E)= Y (=D)/p)(g;a = p)).
j=-1 j==1

With this choice we get

[0. 115 Nav(E) = Y (=1)/pj(gja — p;)

j=-1

ko
= > (= uj(gja—p))
j=-1
k() ) k(] )
=Y (=ugja— Y (=1)/p;p;

j=—1 j=—1

=fla €Z

and therefore N, v (E) = £ mod 1.
We also claim E # E’. Assume differently, i.e., E = E’, then v =+ due to
Lemma 5.12. Hence, p;(y) = p; (") follows for all j € N_; by the definition of

(1) jen_, in Proposition 5.21. This yields a contradiction for j > ko.
Next we observe

INa.v (E") = No.v (E)] = (= DR (g a — pro) + (=D e o (grg 10— prgs1)

o
+ > (=Digja—ppl
Jj=ko+3
e .
= |0 20 = pror) + Y, (Do —p))].
Jj=ko+3



A Review of a Work by L. Raymond: Sturmian Hamiltonians ... 63

Using the recursion formulas for {p}ren , and {gx}ren , from Eq. (2.3), we induc-
tively conclude

[e¢]

(=D (Grgyane = prosan) + Y (=D p(gi0 = p))
j=ko+2n+1

oo

= (=D g2 = Prorawin) + Y (=DIpigja—p)pl,
Jj=ko+2(n+1)+1

for all n € N. Hence, we obtain

o0
INa.v (E') = Nov (E)| < Iy — prsanl + | Y (=D p(gjo— py)|.,
Jj=k+2n+1

for all n € N. Sending n — oo and using that the sum exists, we conclude
|Na,V(E/) - Na,V(E)| < nlin(;lo |qk+2na - pk+2n| < 07

by properties of the Diophantine approximation [27, Theorem9]. Therefore o
mod 1 = N, v(E) = N,.v(E’) while E # E’. Since the IDS is monotonously
increasing (IDS1) and constant on the gaps (IDS2), we conclude that (E, E’) is
completely contained in R\o(H,, v). That is for all E” € (E, E') we still get

Na,V(EH) = Na,V(E) ={a mod 1

and so we conclude £ mod 1 € G.

We now treat the last case £ = —1 and the gap label & mod 1 =1 — afor £ =
—1.Letpy=(1,-1,0,0,...)and ' = (0,¢; — 1,0,¢3,0,¢5...). By Lemma 5.24
there are again unique ~, v € X, such that u(y) = p and p(y") = 1. Following
similar computations as above, we get N, v (Eq.v (7)) =1 —a = Ny v (Eqav(Y)).
Since 7y # «/, Lemma 5.12 implies E, v () # E..v (7). Hence we also get in this
case ] —a € G. O

6 A Recursive Relation for Periods of Mechanical Words

This section is devoted to the proof of Lemma 2.4 and deriving a consequence of
its proof (given as Corollary 6.5). Let o € [0, 1]\Q with infinite continued fraction
expansion (cg)pl, and convergents ax = ([0, co, c1, ..., cx]) for k € Ny. Recall
from (2.6) the definition



64 R. Band et al.
Wi(@Q) '=wq, (@), 0=<i=<q—1,

for the period of those mechanical words w,,. Further recall the statement of
Lemma 2.4:
Wy =0, Wi =0...01,
——

L'1—1

and if kK > 2, then

Wk_zwkck_l, k=0 mod 2,

W, = .
Wkk_lwk_z, k=1 mod 2,

where the power means a concatenation of words. We now bring four auxiliary

lemmas (Lemmas 6.1, 6.2, 6.3, and 6.4) which are needed to prove Lemma 2.4.

Lemma 6.1 (Period prefixes) Let o € [0, 1]1\Q and k > 2.
(a) Ifk =0 mod 2 then

Wi(@i) = Wi (i) forall0 <i < qp-1 —2 (6.1)

and
Wi(@) = Wro(i mod qkfz) for all0 <i < qik—1 — 2. (6.2)

(b) Ifk =1 mod 2 then
Wi(@i) = W1 (i mod qkfl) for all0 <i < qi — 2 (6.3)

and
Wi (@) = Wia (i) for all0 <i < qik—2 — 2. 6.4)

Proof (a) Start by treating the case k = 0 mod 2. Since k is even, standard theory

of rational convergents ([27, Theorem 4]) implies % < Z : < %.

We start by showing that forall0 <i < g, — 1, LZ: i| = L% iJ from which

(6.1) of the Lemma follows when using Lemmas 2.3 and (2.6).
Assume toward contradiction that there exists 0 <i < g;_; — 1 such that

LZ: iJ # L% iJ. Clearly, i > 0 must hold. Using Z: < %, we infer that there
exists an m € N such that

Pk . Pr-1 .

i<m< i,

qk Gk—1

or, equiv alentl Yy,
< < _H

.= . (6.5)
qdk 1 Gik—1
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Since k is even, [27, Theorem 2] implies

Pt e
qk—1 9k Ge—19k

(6.6)

By (6.5), mqr — ipr > O holds and so mq; — ipy > 1. Thus, (6.6) andi < qz—1 — 1
lead to

Vo _Per peom _ pe_mge—ipe  mge—ipe 1

G-1qx Q-1 Q0 qk Lqr k19 Q19K

a contradiction.
Next, we show thatforall0 <i < q;_; — 1, L% iJ = U’kk iJ from which (6.2)
of the Lemma follows when using Lemmas 2.3 and (2.6).

Assume toward contradiction that there exists 0 < i < gx—; — 1 such that L% iJ =

LZ: iJ.Clearly,i > O must hold. Using % < Zkk,we infer that there existsanm € N
such that

Pk—2 . Pk .
i<m i,

qk—2 qdk

IA

or, equivalently,
m
Pk—2 - < Pk

. = . (6.7)
qk—2 l qk

Let (c¢i)ien, be the infinite continued fraction expansion of «. Since k is even, [27,

Theorem 3] implies

P P2 _ Gk 6.8)

qdk qk—2 B Qkafz'

By (6.7),mqy—> — ipr—>» > Oholds and so mqx_» — ipx—» > 1. Thus, (6.7) and (6.8)
lead to

Ck_ _ Pk _ Pea M P2 M2 —iPka M2 — iPka
QG2 Gk G2 0 G2 iqr— Gr—1Gk—2

Since k > 2, we have g;_, > 0 and so (2.3) and the previous estimate leads to

Ckqi— Crqi—
1 <mgi —ipra < K1 il <1,

qk Ckqk—1 + Gk—2

a contradiction.
(b) For the case k =1 mod 2, we get by standard theory of rational convergents

([27, Theorem 4]) that 2L < Px < Pi2
qk—1 Gk Qi

To prove (6.3) we need to show thatforall 0 <i <¢g; — 1, L% iJ = Ukk iJ,
which can be done similar to the way that (6.1) was proven above (but exchanging
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the roles of Z : and 2L ) Note that statement (6.3) is stronger than (6.1) in the sense
that we show equahty for a longer subset (up to gx — 2 rather than up to gx—; — 2).

Assume toward contradiction that there exists 0 < i < g; — 1 suchthat L% iJ =

\Ji J Clearly, i > O musthold. Usmg Lot Pxwe infer that there existsanm € N

i3
such that
Pk—1 m Dk
< <

qi-1 i g

Thus, gx—1m — pr—1i > 1 follows. Since k is odd, [27, Theorem 2] implies

e bt 1
qdk Gk—1 Qk—IQk.

Hence,i < g — 1 lead to

Lo PPt om Pt @im = peetl | qeeim = pead
Qk—19k gk Gk—1 i qr—1 iqk—1 qr—19k T qe1qr’

a contradiction.

To prove (6.4) we need to show thatforall0 <i < g, » — 1, U’kk iJ = L% iJ.

Next, we show that forall0 <i < gz, — 1, L% iJ = LZ: iJ from which (6.2) of
the Lemma follows when using Lemmas 2.3 and (2.6).

Assume toward contradiction that there exists 0 <i < gy — 1 such that
LM iJ # LZ: iJ. Clearly, i > 0 must hold. Using ;’: < =2 we infer that there

Gr—2 Gk—
exists an m € N such that
Pk - m < Pik—2

qk )

Let (ci)ien, be the infinite continued fraction expansion of «. Since k is odd, [27,
Theorem 3] implies

Ck _ Pk2 Pk _ P2 M Pl — Mg
dKq9k—2 -2 Gk G2 & iqk— .
Hence, i < gx—; — 1 and the recursive relation (2.3)
C _ Cil
1ZM>L>pk 21_mq1c2>0
dk 9k

Thus, px_2i — mqr—, = 0 follows or equivalently ’l” = % This contradicts i <
qr—> — 1 and py_1, gr_, are coprime. ) O

The proof of the previous lemma allows to conclude the following, which will be
used to prove the second part of Lemma 2.4.
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Lemma 6.2 (The period as a prefix of a Sturmian sequence) Let o € [0, 1]\Q and
k>2.

(a) Ifk =0 mod 2 then
wa (@) = Wi (i) forall0 <i < qr— — 2.
(b) Ifk =1 mod 2 then

wa () = Wi1(i mod gx—1) forall) <i <qp—2.

Proof For the first part of the lemma, we use that whenk = 0 mod 2 then Z kk <a<

% ([27, Theorem 8]). We have shown in the first part of the proof of Lemma 6.1 that

forall0 <i <qei—1, L"k iJ - LP— iJ. Combing this with # < o < 2= we
Gk Gk—1 Gk g,

getthat |[ai| = L% iJ, forall 0 <i < gr—; — 1. Now, the first part of the current

lemma follows when using the mechanical word representation as in Lemma 2.3.
For the second part of the lemma, we use thatwhenk = 1 mod 2 then % <a<

Zkk ([27, Theorem 8]). We have shown in the second part of the proof of Lemma 6.1

thatforall0 <i < g — 1, LMzJ = {”k iJ.CombingthiswithM <a< *we
Gk—1 Gk Gk—1 Gk

get that % i|=lai],forall0 <i < g, — 1. Now, the second part of the current

lemma follows when using the mechanical word representation as in Lemma 2.3. [J

Lemma 6.3 (Period suffixes) Let « € [0, 1\Q and k > 2.
(a) Ifk =0 mod 2, then
Wilgr — i) = Wie1(qe—1 — i) forall1 <i < qi. (6.9)

(b) If k=1 mod 2, then

Wilge — i) = Wia(gi— — i) foralll <i < gx_o. (6.10)

Proof Using (2.5) in Lemma 2.3 gives forall k > 1,

Wk(qk—l):L(qk—1+1)ka—L(qk—1)ka =1, (6.11)
qdk qdk

which provesthe casei = 1in (6.9)and (6.10).If ¢; = 1 and k € {2, 3}, we conclude
g1 = 1 from (2.3), and hence the statement holds in this case (as we have shown that
itholds fori = 1). Thus, in the sequel of the proof, when treating k € {2, 3}, we will
assume ¢y > 1.
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We show another auxiliary statement which aids in the proof—that the sub-word

_____ 4—2) 1s a palindrome, i.e.:

WiGi) = Wilge — (i + 1)) forall 1 <i < g —2. (6.12)

To prove this identity, observe for 1 <i < g — 2 and p, g coprime,

ootz
(el
ZLU+D2J_P2J

Thus, (6.12) follows from (2.5) in Lemma 2.3. We now proceed to prove the lemma
using the above.

(a) Assumethatk =0 mod 2. For2 <i < ¢g;—; — 1, we have
Wilgrk — 1) = Wi = 1) = Wiy (0 — 1) = Wi (g1 — 1),

where the first and third equalities follow from (6.12), and the second equality
follows from (6.1) in Lemma 6.1. To finish this part of the proof we only need
to show that (6.9) holds fori = gx_1, i.e., that Wi (qx — gx—1) = Wi—1(0) = 0.
Using [27, Theorem 2] we calculate

Pk 1 1
Gi-1 = (Gr—1Pk — Gk Pk—1) + Pr—1 = —  + Dr—1.
qdk 9k dk

Hence,

Wi(gr — qi-1) = | (Gx — gr—1 + 1)ka - {(Qk - Qk—l)ka
9k gk

1 Pk 1
=|Pk— Pk-1+ + — | Pk — Pr—1 +
qk qk gk

1 1
L)
L 4qk gk
follows where in the last equality we used that gy > py + 1, whichholdsifk > 2
orif k = 2 and ¢; > 1 (which we can assume since we have already dealt the

case k = 2, ¢; = 1 in the beginning of the proof).
(b) Assumethatk =1 mod 2. For2 <i < g;—» — 1 we have

Wilge —1) = Wi(i — 1) = Wi o (i — 1) = Wia(gk—2 — ©),
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where the first and third equalities follow from (6.12), and the second equality
follows from (6.4) in Lemma 6.1. To finish this part of the proof we only need
to show that (6.10) holds fori = g;_», i.e., that Wy (gx — gx—2) = Wi—2(0) = 0.
Using [27, Theorem 3] we calculate

Pk 1 Ck
Gi—2 =  (qr-2Pk — GkPk-2) + Px—2 = —  + Pr-2-
qk qk gk

Hence, we conclude

Wilgk —qr—2) = | (qk —qr—2+1) ka - {(Qk ) ka
gk gk

Ck | Dk Ck
=|Pk— P2+ + J - ka — Dk—2+ J
L qk qk qk

_ pk+CkJ_LCkJ
L 9k ar ]

To conclude Wi (qr — gx—2) = 0, we now show ;ﬁ < land ”kq—t"k < 1. Therecur-
sions (2.3) lead to

a _ la—q2 _

qk qk  qk—1

and

petcee (P + 1)+ pra <1

qk Ckqk—1 + Gr—2

where to get the last inequality we observe that for kK > 3 (recalling that £ >
2 and we consider now odd k values) pr—» < gx—» and py_1 + 1 < gx—1, and
equality in both of these may be achieved only if k = 3 and ¢; = 1 (which yields
p1=¢q1 = 1and pp + 1 = ¢ = ¢»), but we have already dealt with this case in
the beginning of the proof.

O
Lemma 6.4 (Sub-periods of the period) Let « € [0, 1\Q and k > 2.
(a) Ifk =0 mod 2, then
Wi(@) = Wi + qr—1 mod qr) foralll <i < q; —2. (6.13)

(b) Ifk =1 mod 2, then

Wi mod qx) = Wi + qr—1 mod q)  forall —qr—1+1<i < qr—qe—1 —2.
(6.14)
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Proof As before we use frequently (2.5) in Lemma 2.3.

(a)

(b)

Letk=0 mod 2. Let 1 <i < gy — 2. Since py, gx are coprime, we conclude
Jju ¢ Zand LJ'Z: — qlkJ = L]Z:J forall 1 < j < g — 1. Then

. . k . k
Wi (i +qr—1 mod g) = (l+1+4k71)p J —L(z+qk,1)p J
L qk qdk
. Pk Pk . Pk Pk
=({G+D "+ <(Ik—1 - Pk—l)J - {l + <¢Ik—1 - Pk—l)J
L Gk Gk Gk 4k

1 1
=la+nP - Jf{ip"f J
L a* @ & @

- (i+1)ka—Lika:Wk(i)
L @ a

follows where we used [27, Theorem 2] in the third equality.
Letk=1 mod 2. Let —qx—1 +1 <i < qr — qx—1 — 2.

Wil + gi1) = L(i +1 +qk71>”kJ - {(f +qk71>”kJ
qk 713

. Pk Pk . Pk Pk
= L(l +D° "+ (ﬂlk—l - I)k—l)J - \f + (6]#1 - Pkﬂ)J
qk qk dk 9k

1 1

:L(i+1)pk+ J—Lipk+ J (6.15)
gk gk 9k 4qk

Thus, it suffices to prove (quite similar to the proof of the first part) that for all

1+ 1S j<qgr—q1— 1,

peo 1 P
o al= Lo
qdk qk gk

Assume toward contradiction that Lj Z: + q]kJ £ Lj Z:J for some —q;_; +1 <
J < qx — qxk—1 — 1. This means that there exists m € Z such thatj‘;’: + qlk =m.
Therefore,

Jjpr=—1 mod g;. (6.16)

By [27, Theorem 2] —qx—1 pr + pr—1qx = —1. Thus, j = —gx— is a solution to
(6.16). In fact, since py, gi are coprime any solution to (6.16) satisfies j = —qi—1
mod g;. We now obtain a contradiction since there is no such value in the range
Jel—a—+1....qc —qu1 — 1}

O

We now combine the last three lemmas to prove Lemma 2.4.
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Y and

Proof (Proof of Lemma?2.4) A short computation leads to Wy = 0 with cig = 1

Wi =0...01withoy = b
c 1

We stlart by observing that the second part of the lemma follows quite straight-
forwardly from Lemma 6.2. To see this note that Lemma 6.2 connects w,, to Wy_;
(rather than to W;, as in the statement of Lemma 2.4), so an appropriate conversion
(and a switch of the parity of k) should be done. Further note that when treating the
case k =0 mod 2 we have by (2.3) that gx+1 > g + 1, which allows to conclude
that the equality for this case holdsforall 0 <i < g — 1 (by Lemma 6.2, (b) it holds
for0 <i < qi+1 — 2).

We proceed to prove the first part of the lemma and, as before, distinguish between
two cases according to the parity of k:

(a) Letk =0 mod 2. We first treat the case k = 2 and ¢; = 1. In this case, we have

Wo = 0 and W1 = 1. Then the recursion relation (2.3) asserts o) = ;’ 1‘ = 1 and
=" = Thus, W, =01...1 = Wy W;? follows as claimed by (2. 4) and
a2 Lz-‘rl —_———

(2.6). Therefore, we can from nowzon assume that if k = 2, thenc¢; > 1.

Next, observe that g;_; = gx—» can happen only for k = 2 and ¢; = 1 (as can
be verified from (2.3)). Therefore, we may continue the proof assuming that
qk—1 > qk—2-

Applying (6.2) in Lemma 6.1 establishes the required statement for the prefix of
Wi, ie.:

Wia = Wil

..... qGra—1} = s @k —CkGk—1—1} »

where we used gx—1 > gr—> and the recursive relation (2.3) of {gx}.
Applying (6.9) in Lemma 6.3 gives

Wilig, -1 = Wit

TGk~ Gk

The last equality together with (6.13) in Lemma 6.4 yields
Wi |{Qk*Cka—l =1} T chil g

and completes the proof of this part.

(b) Letk =1 mod 2.
Applying (6.10) in Lemma 6.3 establishes the required statement for the suffix
of Wi, i.e.:

Wi = Wkl{!ﬂ*%fzw -1 = Wil

-k {ekqr—1,--qr—1}
where we used the recursive relation (2.3) of {gx}. Applying (6.3) in Lemma 6.1
gives

Wilio,.. = Wi_1.

o qk-1—1}
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We observe that in this case we have k > 3 and g, > 1. Hence, the last equality
together with (6.14) in Lemma 6.4 yields
} = W/fk—l ’

----- Ckqr-1—1

and completes the proof.

O

Having proven Lemma 2.4, we use the arguments from the proofin order@ @ @ @
to draw useful insights on the corresponding dynamical system. We refer the reader
to [6, 7, 12, 13] for more background on the dynamical perspective.

Let A be a finite set (frequently called an alphabet). The set AZ = {w : Z — A}
is a compact metrizable space if equipped with the product topology. The shift
T : AZ — A” is defined by (Tw)(n) := w(n — 1) for all n € Z, and it is a home-
omorphism. Then we can define the action of the group Z on A%, where the shift
T is the generator of Z and hence (A%, T') defines a topological dynamical system.
Denote by Orb(w) := {T"w : n € Z} the orbit of w € A” under this action. For a
given « € [0, 1], the orbit closure Orb(w,,) is denoted by €2, where w,, € AZ is the
sequence defined in Eq. (2.4). Since €2, is shift invariant (i.e., T (2,) = ©,) and
closed, (£2,, T) is also a dynamical system. If « € [0, 1]\Q, then (2, T') is called a
Sturmian dynamical system. Using the previous results, we provide in the following
a representation of Qs for 8 € [0, 11N Q.

Consider the alphabet A = {0, 1}. A finite word is a concatenation vv; . .. U
of letters v, € A for 1 <n < k. For a finite continued fraction expansion ¢ =
[0,0,cy,...,ck] € C, with ¢ ¢ {—1, 0}, recursively define the finite words s, :=
sp(c) for —1 <n < k by

s =1, sg=0, s, =071, 5, = s 1 Sn— for2 < n <k,

where s denotes the m-times concatenation of the word s. The two-sided infinite
concatenation of the word s is denoted by s> € AZ . We further denote s(c) := si(c)
for a finite continued fraction ¢ = [0, 0, ¢y, ..., ck].

Given a rational number 3 € (0, 1) N Q, a finite continued fraction expansions
c satisfying (c) = 3 is not unique, see Remark 2.1. However, the corresponding
dynamical system €23 can be represented via s(c)* for any c satisfying ¢(c) = (3:

Corollary 6.5 Let 3 = Z € (0, 1) N Q be such that p, q are coprime. Fix a finite
continued fraction expansion ¢ = [0,0,cy,...,cx] € C, with ¢, ¢ {—1,0}, such
that p(c) = B. Then Orb(s(c)™) = Qg. Furthermore, Orb(s([0,0])*°) = Qo and
Orb(s([0,0, 1D*>®) = Q.

Proof 1f 3 = 0, then only ¢ = [0, 0] satisfies ¢(¢) = (. Thus, s(¢) = so = 0 and
wg = 0% proving the claim. If 8 =1, then only ¢ = [0, 0, 1] satisfies ¢(¢) = .
Thus, s(c) = s; = 1 and wp = 1°° proving the claim.
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Now, let 3 € (0, 1) N Q. We first note that there exist exactly two (using 3 € (0, 1)
and ¢, ¢ {—1, 0}) finite continued fraction expansions for (3 (a short and a long one)
denoted by

¢, =[0,0,¢c1,...,cm+1] and ¢ =10,0,c1,...,cm,1].

We first show that Orb(s(cy;)*) = Orb(s(c;)*). Since the continued fractions c;
and ¢; share the same digits up to m — 1, we have s; := sx(cy) = sx(¢;) for all k£ <
m — 1.Hence, s(c;) = s;,'"fllsm_g ands(¢;) = s," | Su—25m—1 follows by the recursive
definition. Thus, Orb (s(c;)*°) = Orb (s(¢;)*°) follows since s(cy)°° is a the same
word as s(¢;)* up to a shift (by the length of the word s,,_;).
Define
' ¢c m=0 mod 2,
€= ¢ m=1 mod?2.

Note that the words s(c;) and s(¢;) generate the same orbit by the previous consider-
ations. By construction, ¢ = [0, 0, ¢y, ..., ¢j]is atuple of an even length,i.e., j € N
is even. Choose a € [0, 1]\Q with continued fraction expansion (dj)ken, such that
¢=10,0,di,...,d;], namely ¢; = dj forall k < j. Applying [31, prop. 2.2.24] to
« yields wul[lyqf] =s([0,0,dy,...,d;]) = s(¢). Note that s(c) is a finite word of
length g; and let v; € {0, 1} be the letters of this word, namely s(¢) = v; ...v,;. Set
U=10V1...Vg-1, which is the prefix of s (¢) where we deleted the last letter. Since 3 =
¢(c) = a; and j € Nis even, Lemma 6.2 implies walj 4, 1) = W; = wa; |[0,q,—1]‘
Since o < 1, we have w,(0) = 0. Combined with the previous considerations, we

have wy, |[O,q/-71] = Ou, a word of length ¢;. Thus,

Q5 = Qa, = Orb ((0w)™®).

Since we wish to prove Orb(s(c)*°) = Qg, it suffices to show that vy, = 0, since
then s(c) = u0 and Orb ((0u)>°) = Orb ((#0)*°) holds trivially. The claim that the
last digit of s(c) is zero (i.e., v,; = 0) follows inductively from the definition of the
words using so = 0 and s; = s,ik_ 1Sk—2 and since j is even (such a statement also
appears in [31, problem 2.2.10]). ]

7 Floquet-Bloch Theory Via Finite-Dimensional
Hamiltonian Matrices

This section complements Sect. 3 by providing an alternative approach for the spectral
analysis of the periodic operators, H g In Sect. 3.1 the Floquet-Bloch theory is
described in terms of transfer matrices and the discriminant, whereas here we make
use of finite Hamiltonian matrices H, v (8). These matrices H, y (f) play a crucial
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role in [3] and henceforth it is advantageous to introduce them already here and make
the appropriate connection to the transfer matrices.

We use here the continued fraction notation, ¢ € C and denote the corresponding
rational number by 2’ := (c). The corresponding operator is

(Hr yp)(n) := 4+ 1)+ —1) + Vwr(n) P (n),

where the potential is given by the mechanical word,

ws(n) = X[lfg,l) <n§ mod 1),

which is g periodic (see Sect. 2.2). To describe the relevant Floquet-Bloch theory,
we define the following finite-dimensional auxiliary matrix

2 cos(0) + ng 0), qg=1,
Vwr(0) 1 4710
K 9 ) q = 25
L+e” Vwr (1)
—if
Hey®) =4 (Ver@ 10 .. e 1)
L Ve 1 ... 0
0 ! , q > 2.
: . 0
0 1
e'? 0 -0 1Vwr(g=1D

The characteristic polynomial of the matrix above is denoted by
Pev(0; E) :==det(E — Hev(0)).

Using the auxiliary matrices defined above, we get the following by standard Floquet-
Bloch theory (see e.g., [46, Sect.7.2], [43, Sect.5.3]).
Proposition 7.1 Let V € R and ¢ € C with Z = p(c) # .
(a) The spectrum of HZ'V is given by
o(Hryv) = | o(Hev ().

0el0,7]
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q
(b) Suppose p and q are coprime. Denoting the roots of P, v (6; -) by {)\l@ } ) we

have
)\;07)1 > )‘,(;:)1 > )\((;?2 > )\;OZZ > )\((107)3 > )\;7:)3 > ... (7.2)

and get that o (H Z*V) is the following union of q disjoint closed intervals
o(Hy ) = U AT A U A A U A2 AR ] a3

which are commonly called spectral bands.

The general statement of Proposition 7.1 within Floquet-Bloch theory is with weak
inequalities in (7.2) and possible intersections of the spectral bands in (7.3) at their
edges. Specifically, in our case where the potential is given by wr (n), this slightly
stronger version holds since p, g are coprime—a proof is found in Proposition 4.1
using transfer matrices.

Since Floquet-Bloch theory may be described either in terms of transfer matrices
(as in Sect. 3.1) and in terms of finite-dimensional Hamiltonian matrices (as in
this section), it makes sense to draw a direct connection between both. Hence, we
explicitly state the connection between the trace 7. of the transfer matrix (i.e., the
discriminant) and the characteristic polynomial P, y:

Lemma 7.2 Forall 6 € [0, 27],
P.yv(9; E) =1.(E, V) —2cos(d).

A standard way to prove the identity in the lemma is to develop the Floquet-
Bloch theory using both the discriminant ¢, and the characteristic polynomial P, v
and note that these two polynomials have common roots. See for example [43, The-
orem5.4.1,(iii)]. Nevertheless, we bring here a direct computational proof* which
exploits the structure of the matrix He y (6).

Proof As usual, denote ” := ¢(c), with coprime p, g. We first prove the statement
assuming g > 3 and at the end check that it holds also for the cases ¢ = 1 and
g = 2. Start by examining Py (6; E) + 2 cos(§) = det (E1 — Hy(0)) + 2 cos(6)
and decomposing it into summands. We use the Leibniz formula for determinants to
get

q
Pey(6; E) =) sign(o) [ [[E1 = Hev ()] n.om, (74)
o€eS, n=1
where S, is the set of all permutations on [¢] := {1, 2, ..., g}. We examine only per-

mutations with a non-vanishing contribution to the sum above. Let o € S, be such
permutation and n € [g]. We have that [E1 — He,y ()] .o # 0 only if o(n) €
{n — 1,n,n + 1} (noting that we consider a cyclic ordering of the indices in the set

4 An idea toward such a proof is also found in remark 3 after [43, Theorem 5.4.1].
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[¢g], such thatif n =1thenn —1:=qg andifn=qg thenn+1=1). If o(n) =
n + 1, then we can have either o(n + 1) = n or o(n + 1) = n + 2 (so that the cor-
responding product in (7.4) differs than zero). In the first case, we see that the per-
mutation o contains an involution, (n 7 + 1). The second case imposes that ¢ is the
cyclic permutation, ag;c =1 2 ... g—1 gq),asall other permutations which
satisfy both o(n) =n + 1 and o(n + 1) = o(n + 2) have a vanishing contribution
to (7.4). Explicitly the contribution of ajyc to this sum is
q—1
sign (o) (1'[ [E1— Hev(9)] n,nﬂ) [~Hev )], = (DI (=D (=) = .

n=1

If we repeat the arguments above for the case o(n) =n — 1 we get that either

o contains the involution (n —1 n) or that it is the cyclic permutation oy =

(g g—1 ... 2 1)whosecontributionto (7.4)is —e~'’. Hence, the contribution
of both of, . and o sums to —2cos(6). All other permutations with non-vanishing

contribution to (7.4) contain only involutions of the form (n — 1 n) or fixed points
(n). We denote the set of such permutations by S, and summarize the discussion so
far by writing

Py (8; E) +2cos(@) = > (=D ] (E — Vs (n - 1)), (1.5)

o3, neF (o)

where I (o) is the set of involutions (n n+1) of o and F (o) is the set of fixed points
of o.

Now, we consider #.(E, V) and decompose it into summands. To do so, we recall
(see Sect. 3.1) the definition of M (E, V) as the product of one-step transfer matrices,

Au)(E, V) = (E Veutr= D ‘01) ,
and write

te(E, V) = tr (Mc(E, V)) (7.6)

q
=tr (]—[ Aoy (n)(E, V)> (1.7)

n=1

q

= 2 [[AvemwE W], , . (78)

ve{l,2}9 n=1

where we have the interpretation v, := v due to the cyclic property of the trace. In
the sum above, a summand which corresponds to v € {1, 2}¢ is non-zero if and only
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if there is no n such that v, = v, ; = 2. We denote the set of all such v € {1, 2}4
with non-vanishing contribution by A, so that

q
t(E,V) =" [[[Avw®m)(E, 0] P (7.9)
1/6./\7q n=1

For the last part of this proof, we show a bijection / : S — N such that the con-
tribution of o € S to (7.5) equals the contribution of h(o) to (7.9). We explicitly
construct this bl]CCthIl as follows: for any fixed pointn € F (o) we set

h(o)n = h(0)nt1 =1,
and for any involution (n n + 1) € I (o) we set
h(o), =1, h(@)pt1 =2, h(@)ps2 =1.

First, the map 4 : S — Xf is well defined, as no two subsequent entries of /(o)
may be equal to 2. Furthermore one can see that it is a bijection and foreach v € N
one can uniquely construct the corresponding o € S such that (o) = v. Fmally,
it is also not hard to check that the contribution to the corresponding sum ((7.5) or
(7.9)) is preserved under the map #.

We end the proof by checking that the statement holds for the particular cases of
g =1and g =2.

For ¢ = 1 we have

Pey(0;E)=E — (2cos —1—ng(0))1

and

t(E, V)= tl"(AZ(l)(E’ V)) — (E - VW«I;(O) —1

. 0>=E—w5(0).

For ¢ = 2 we have

—Vwr(0) — (14e77)
Pe.v (0; E)_det( (1+¢%) E- ng(l))

- (E ~ Vuwr (1)) (E ~Vur (0)) — 2 —2cos(6),

and
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t(E, V) = tr (AZ(Z)(E, V) Ar(I)(E. V))

B E—Vwr(1) =1\ (E~Vwr(0) ~1
B tr[( 1 0 ) ( 1 0 )]
= tr[(@ - VWg(l)) (E - ng(O)) —1-E+ Vw5(1)>}

E—Vuwr(l) —1

_ (E . ng(l)) (E - VwZ(O)) —2.

8 Dilated Chebychev Polynomials of the Second Kind

In this section we collect proofs to the statements and identities around the dilated
Chebychev polynomials of second kind. Recall that we defined these polynomials
recursively by setting

S—1(x):=0, Sp(x):=1 and S§,(x):=xS,_1(x)—S§,_2(x) foralln € N.

We also remind the reader that the classical Chebychev polynomials of second kind
can be defined using the recursion formula

U_1(x):=0, Up(x):=1 and U,(x):=2xU,_1(x) — U,—»(x) foralln € N.
Lemma 8.1 Foralln € N_; and all x € R we have S,,(2x) = U, (x).

Proof We perform a proof by induction over n € N_;. For n = —1 and n =0
the statement follows directly from the definition. Therefore let n € N and assume
Si—1(2x) = U,—1(x) and S,_»(2x) = U,_»(x) for all x € R. Then we get

Sn(2x) = 2x8,-1(2x) — $—2(2x) = 2xUp—1(x) — Up—2(x) = Un(x).

Lemma 8.2 Let x € R and n € Ny. Then the following holds.

(a) We have Sy11(x)Su—_1(x) — Sp(x)? = —1.
(b) If |x| =2, then sign(x)"~'S,_|(x) = n.

(c) If x| = 2, then 2|S,(x)| — [Sp—1] > 0.

(d) If |x| = 2, then sign(x)" S, (x) = |S,(x)| and

sign(x)"xS,-1(x) = 2[S,-1(x)|.
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(e) If |x| = 2, then
sign(x)" (S,() = $,1(0) = 1.

(f) If1x| = 2, then |S, (x)| > 1.
(g) If Ix]| > 2andn > 1, then

. x
mgn(x)”(Sn(x) — 2S,,,l(x)) > 1.

Proof We prove each statement by an induction over n.

(a) Forn =0and n = 1, observe
S1(x)S_1(x) = So(x)* = —1> = —1,

and
SQ(X)SO(X) - S]()C)2 = (xz — 1) —X2 - 1.

Suppose the statement is true for n € N and n — 1, then

Sut1Sn—1 = 87 = (xSy = $p-1) Su1 = Sy
= Sy (xSu—1 — Sp) —=Sp_,
N — e
=Sy
=8,8.0—8,=—1

follows.
(b) Let |[x|] =2.Forn = 0 and n = 1, observe in these cases

sign(x)"'S_;(x) =0 and sign(x)’Sy(x) = 1.
Suppose the statement is true for n € N and n — 1, then

sign(x)" 18,41 = sign(x)" ' (xS, — S,_1)

=lxlm+1)—n=2mn+1)—n=m+1)+1.

(c) Let |x| = 2. If n = 0, then 2|S,| — |S,—1] =2 — 0 > 0. Suppose the statement
is true for n € Ny. Then

2|Sn+1| - |Sn| = 2|xSn - Sn71| - |Sn| 22|x| : |Sn| - |Sn71| - |Sn|
>4[Su] = |Sn—1] = |Sal
>2[8,1 = |Su-11 = 0

by induction hypothesis.
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(d) Again, let |[x| > 2 and consider n = 0 and n = 1 for the induction base. Then
sign(0)?So(x) = 1 = |So(x)| and sign(x)! S1(x) = sign(x) - x = x| = [S1 ().
Suppose it holds for n € N. Then

sign(x)"* 18,41 (x) = sign(x)" 1 (xS, — S_1)
= |x| - 1Sl = 1Su—1] = 2[S,;] = [Su-1] = 0,

where the last follows by the previous induction. Hence, sign(x)"“SnH x) =
| Sn+1(x)| follows proving the first part of (8.2). Moreover, this and |x| > 2 lead
to

sign(x)"x S,—1 (x) = |x][S,-1(0)] = 2[S-1(x0)|

proving the second part of (8.2).
(e) Let |x| > 2 and suppose n = 0 for the induction base. Then

. 0 X
sign(0)” (So(r) = S-1(0) = 1.
2
Suppose the statement is true for n € Ny. Then
: n+1 X
sign(x)" (S0 (x) — 2Sn(-x))

) x . x x2 . .
=s1gn(x)2 mgn(x)”(Sn (x) — 2Sn,l(x)) + ( 4" 1) sign(x)" S,,,l(x))

S—— ——
>1if |x|>2 > >0 by (b)

X X
Zsign ()" (8, () =, §,-1())

follows. Thus, the induction hypothesis implies the desired claim.
(f) Let |x| > 2 and n € Ny. Then (d) and (e) imply

|S,(x)] = sign(x)" S, (x) > 1 + sign(x)";S,,,l(x) > 1.

(g) Let|x| > 2.Ifn = 1, then

sign(x)! (Sl(x) — ;So(x)) = sign(x)(x — ;) = %l > 1
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follows. A similar computation as in (e) leads to
: n+1 x : n X
sign(x)"* ! (Sp41(x) — ZSn(x)) > sign(x)" (S, (x) — 2S,H(X)) > 1,

where the last estimate follows by the induction hypothesis.

Lemma 8.3 ([36, (18.5.2)]) Foralln € N and all 0 € R we have

sin(n + 1)0

S, (2cosf) = U,(cosb) = <in 0
i
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