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Abstract. We prove upper and lower bounds for the number of zeroes of linear combina-
tions of Schrödinger eigenfunctions on metric (quantum) graphs. These bounds for general
graphs are distinct from the bounds for both the interval and manifolds. We complement
these bounds by giving non-trivial examples for the lower bound as well as sharp examples
for the upper bound. Furthermore, we show that every tree graph di�ers from the interval
with respect to the nodal count of linear combinations of eigenfunctions. This stands in
distinction to previous results which show that all tree graphs have the same eigenfunction
nodal count as the interval.

1. Introduction

1.1. Historical background.

The rigorous study of the zero set of eigenfunctions of second-order di�erential operators
originated in the 19th century, with Sturm's oscillation theorem on the interval being the
�rst major result. The subject now encompasses graphs and manifolds, and while certain
results hold true for all these objects, other properties of the nodal set are highly dependant
on the dimension.

For instance, Sturm's theorem asserts that the n-th eigenfunction of any Sturm-Liouville
operator on an interval has exactly n− 1 zeroes [26].

For quantum graphs, the n-th eigenfunction of the Laplacian with Neumann-Kirchhho�
continuity conditions has between n − 1 and n − 1 + β zeroes1 [7, 14], where β is the �rst
Betti number, i.e. the number of graph cycles. In particular, the n-th eigenfunction of a
tree graph (which is a graph with β = 0) has exactly n − 1 zeroes, exactly as the interval.
Furthermore, tree graphs are the only graphs such that the n-th eigenfunction has exactly
n− 1 zeroes for all n [2].

On manifolds, Courant's theorem [12] states that when we remove the zero set of the n-th
eigenfunction of the Laplace-Beltrami operator on a connected smooth manifold M , we are
left with at most n connected components (also known as nodal domains). This implies
that the zero set has at most n− 1 connected components. However, there are examples of
eigenfunctions on the sphere and the square where the nodal set has exactly one connected
component [25].

A lesser-known generalization of Sturm's result was published in the same year [27]: let

F :=
∑k

i=j aifi, where fi is the i-th Sturm-Liouville eigenfunction on an interval [a, b] with
Dirichlet boundary conditions. Then, F has at least j − 1 and at most k− 1 zeroes in (a, b).
We refer to this as the Sturm-Hurwitz theorem. An interesting survey on the story of this
result and its proofs can be found in [5, 6].

1Under the assumption that λn is simple and the eigenfunction is non-zero at interior vertices.
1
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In the case of manifolds, no such bounds can be found in full generality: there are metrics
on the torus and the sphere and linear combinations of eigenfunctions of the corresponding
Laplace-Beltrami operator such that their nodal set has in�nitely many connected compo-
nents [4, 11]. We also note that the Sturm-Hurwitz theorem is true for the isotropic quantum
harmonic operator in dimension two [4, proposition B.1].

1.2. De�nitions.

The modern interest in quantum graphs (�rst, as a paradigm of quantum chaos) arose in
[17, 18]. Since then, some reviews and books on quantum graphs have been published, for
example [8, 15, 19, 20]. The reader can �nd there many relevant aspects of the spectral theory
of quantum graphs. Here, we only provide the concise de�nitions which will be relevant to
this work.

• We denote by Γ = Γ(V,E) a graph with vertices V and edges E. We will assume throughout
the paper that the graph Γ is connected and has a �nite number of edges, each of which
has �nite length.
• Each edge e ∈ E is identi�ed with the interval [0, le], where le is the length of the edge.
• We set Ev as the multi-set of edges e which are connected to a vertex v, where each loop
appears twice (once per direction).
• The degree of a vertex v is de�ned as |Ev|, and will be denoted by deg(v).
• Vertices of degree one are boundary vertices. The set of such vertices will be denoted Vb.
• Vertices of degree two or higher are inner vertices. The set of such vertices will be denoted
Vi.
• For any x, y ∈ Γ, we set d(x, y) as the usual shortest path distance between x and y, which
is always well-de�ned since Γ is connected, making it a complete metric space.
• β denotes be the �rst Betti number of the graph, so that β = |E| − |V | + 1 since Γ is
connected. It also represents the number of independant cycles, or the number of edges
that one has to cut to turn the graph into a tree.
• L2(Γ) :=

⊕
e∈E

L2(e), C1(Γ) :=
⊕
e∈E

C1(e) and H2(Γ) :=
⊕
e∈E
H2(e)

• Let f ∈ C1(Γ). If f is continuous at inner vertices, for any v ∈ V we de�ne f(v) as the
common limit of f(x) as x approaches v on any edge e ∈ Ev.
• The normal derivative of a function f at a vertex v in the direction of e ∈ Ev will be
denoted by ∂ef(v) and de�ned by taking the right limit at 0+ of f ′ when the edge e is
identi�ed with [0, le] and v is mapped to zero.
• We set HΓ as the space of functions f ∈ H2(Γ) with the following continuity conditions at
the vertices:
(1) If v ∈ Vb, f(v) = 0 (Dirichlet boundary condition).
(2) If v ∈ Vi,

(2a) f is continuous at v.
(2b)

∑
e∈Ev

∂ef(v) = 0.

Conditions (2a) and (2b) together are called Neumann-Kirchho� continuity conditions.
• We say that a function has a degenerate edge if it is identically zero on that edge.
• Let W : Γ → R be a continuous function. We de�ne the Schrödinger operator
HW : H2(Γ)→ L2(Γ), HW := − ∂2

∂x2
+W .
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• The operator HW restricted to HΓ is self-adjoint and has an increasing sequence of eigen-
values λ1 ≤ λ2 . . ., numbered with multiplicity.
• To each eigenvalue λi we associate an eigenfunction fi such that any two di�erent fi are
orthogonal in L2(Γ).
• The number of zeroes of a function f which are distinct from the boundary vertices will
be denoted by N(f).
• We say that a graph Γ is W -generic if all eigenfunctions of HW do not vanish at any inner
vertex. We note that by continuity of eigenfunctions, this assumption implies that any
eigenfunction of HW does not have a degenerate edge and that every eigenvalue of HW is
simple. Indeed, if there is a multiple eigenvalue, given any vertex v ∈ Vi it is always possible
to choose a function in the linear space of eigenfunctions associated to this eigenvalue that
is zero at v.
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2. Results

Our main result is a two-sided bound on N(F ).

Theorem 2.1. Let Γ be aW -generic graph with �rst Betti number β. Let fk be the eigenfunc-
tions of HW = − ∂2

∂x2
+W with Dirichlet boundary conditions on Vb and Neumann-Kirchho�

continuity conditions on Vi. Let ki be a strictly increasing sequence and F (x) =
∑M

i=1 aifki(x)
where each ai is not zero. We have the following bounds:

(2.1) k1 − 1− (M − 1) (|Vb|+ 2β − 2) ≤ N(F ) ≤ kM − 1 + β + (M − 1) (|Vb|+ 2β − 2) .

Remark 2.2. By setting Γ as the unit interval, we recover Sturm's original theorem.

On the interval, N(f1 + f2) = 0 or 1. On a 0-generic tree, N(fk) = k − 1. On any tree
graph, we construct examples of linear combinations of f1 and f2 with more zeroes that f2.

Theorem 2.3. Let Γ be a 0-generic tree that is not an interval. Let s be the highest degree
of any vertex of Γ. Then, there exists a(Γ) such that N(f1 + a(Γ)f2) ≥ s− 1.

We claim that there exist tree graphs that saturate the upper bound in Theorem 2.1.

Theorem 2.4. For any M > 0 and s ≥ 3, there exists a 0-generic star graph with s edges
and a linear combination of the �rst M eigenfunctions of − ∂2

∂x2
with M − 1 + (M − 1)(s− 2)

zeroes.
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Remark 2.5. Theorem 2.3 shows that all tree graphs are di�erent from the interval in terms
of the nodal count of linear combinations of eigenfunctions. This behaviour is completely dif-
ferent than the nodal count of individual eigenfunctions - all tree graphs have exactly the same
eigenfunction2 nodal count as the interval [2, 21, 24]. Also, Theorem 2.4 shows that certain
star graphs (with appropriately chosen edge lengths) can possess linear combinations whose
nodal count is substantially higher than the number of zeroes of the highest eigenfunction.

We now give examples of graphs with linear combinations that have much less zeroes than
the lowest eigenfunction in the linear combination.

Theorem 2.6. For any m ≥ 2, there exists a 0-generic graph with β = m and a(m) ∈ R
such that N(f2) = m, N(f3) = 2 and N(f2 + a(m)f3) = 2.

While this is not a proof that the lower bound in Theorem 2.1 is sharp, it shows that a
linear combination F can have much less zeroes than fk1 , unlike for the interval.

3. Proof of Theorem 2.1

3.1. Extension in two variables.

Let Γ be a W -generic graph, HW = − ∂2

∂x2
+ W and fk be the eigenfunctions of HW .

Let F (x) =
∑M

i=1 aifki(x). We de�ne g : Γ × R → R as g(x, y) :=
∑M

i=1 aie
−λkiyfki(x).

The function g is a solution to ∂g
∂y

= ∂2g
∂x2
−W (x)g.

For �xed y, we will denote gy(x) := g(x, y). Note that g0 = F .

Since the eigenvalues are simple, lim
y→−∞

gye
λkM y = aMfkM and lim

y→+∞
gye

λk1y = a1fk1 . Also,

since each eigenfunction is non-zero at inner vertices, as y → −∞ the zeroes of gy will
converge to the zeroes of fkM and as y → +∞ the zeroes of gy will converge to the zeroes of
fk1 .

3.2. Strategy of the proof of Theorem 2.1.

First, we will describe in section 3.3 the local behaviour of the zero set of g. Then, starting
at y = −∞, we will follow N(gy) as y increases. We will look in section 3.4 at all possible local
behaviours of the zero set of g which would cause N(gy) to change as y increases. Finally,
we will combine all these observations in section 3.5 to complete the proof.

3.3. Local behaviour of gy near a zero.

First, we state the following fact about the zeroes of g:

Lemma 3.1. The function g does not have an isolated zero.

2Here, we mean the nodal count of individual eigenfunctions rather than the nodal count of linear combina-
tions.
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The proof of Lemma 3.1 will be postponed to Appendix A.

Now, the behaviour of zeroes of solutions of parabolic equations is well-understood. How-
ever, since on each edge, the function g does not obey homogeneous boundary conditions, we
will extend it to the whole real line so we can use already-known results.
For an edge e ∈ E (remember that e is identi�ed as [0, le]), we de�ne W

e as

(3.1) W e(x) :=


W (x) x ∈ [0, le]

W (0) x < 0

W (le) x > le

Now, for n ∈ N, we de�ne f en as the C2 solution of −(f en)′′ +W ef en = λnf
e
n on R such that

f en ≡ fn on [0, le]. By our choice of W e, we know that on (le,+∞),
(f en)′′ = (W (le) − λn)f en. Therefore, we have three options: if (W (le) − λn) > 0, f en is a

linear combination of e−
√
W (le)−λnx and e

√
W (le)−λnx, if (W (le) − λn) = 0, f en is a linear

function and if (W (le) − λn) < 0, f en is a linear combination of cos(
√
W (le)− λnx) and

sin(
√
W (le)− λnx).

Let ce,n :=
√
|W (le)− λn|+ |W (0)− λn|+ 1.

By the preceding discussion, there is a constant Cn such that for any x ∈ R,

(3.2) |f en(x)| ≤ Cne
ce,n|x| .

Remark 3.2. Note that since Γ is W -generic, any f en cannot be identically zero on either
(−∞, 0) or (le,+∞).

We now de�ne ge(x, y) :=
∑
aie
−λkiyf eki(x). The function ge is de�ned on R × R and

coincides with g on [0, le]× R. It is C2 and solves

(3.3)
∂ge

∂y
=
∂2ge

∂x2
−W ege

on R × R. Also, the bound (3.2) guarantees that f en grows at most exponentially in |x|.
This ensures that for each y, gey grows at most exponentially. Finally, by Remark 3.2, as
y → −∞, on any compact set the zeroes of gey will converge to the zeroes of f ekM .
The following Theorem summarizes theorems A, B, 5.3, 5.5 and 5.6 from [1]:

Theorem 3.3. [1] Let ge : R × [0, T ] be a non identically zero C2 solution to
∂ge

∂y
= ∂2ge

∂x2
+ W e(x, y)g with W e ∈ L∞ and |ge(x, y)| ≤ AeBx

2
for some constants A and

B. Then, ge has the following properties:

(1) For each y ∈ (0, T ), for each x ∈ R, there is a neighbourhood of x where gey has �nitely

many zeroes3.
(2) For each zero (x0, y0) of ge, there is at least one continuous curve (x(y), y) of zeroes

of ge for y ∈ [0, y0] such that x(y0) = x0.
(3) If ge(x0, y0) = ∂ge

∂x
(x0, y0) = 0, then there exists δ0 such that for any δ < δ0, g

e
y0+δ has

at most one zero in [x0−δ0, x0+δ0] and gey0−δ has at least two zeroes in [x0−δ0, x0+δ0].

3This statement is a by-product of the proof of Theorem 5.6 in [1].
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(4) Let x1(y) and x2(y) be two continuous curves of zeroes of ge for y ∈ [0, y1].
If x1(y1) < x2(y1), then x1(y) < x2(y) for all y ∈ [0, y1].

From this result, we can deduce several properties of the zero set of g. Let Z be the zero set
of g, S the set of singular zeroes of g (where g and ∂g

∂x
are zero) and

S ′ := {(v, y) | g(v, y) = 0 and v ∈ V }.
First, for any y ∈ R, gy has �nitely many zeroes in [0, le]. Indeed, for any y, we have a

covering of R with open sets where gey has �nitely many zeroes. By compactness, there is a
�nite subcover of [0, le] by such open sets, which implies that gey has �nitely many zeroes on
[0, le].
Second, since equation (3.3) does not change under a shift in the y-direction, every zero

in Z is included in a continuous curve of zeroes with three possible types of endpoints : at
y → ±∞, at a point in S or at a point in S ′. We will call a nodal line the restriction of a
connected component of Z\(S ∪ S ′).
Third, if (x, y) is a regular zero of g, then by the implicit function theorem there is exactly

one nodal line of g that intersects (x, y). Also, g has to change sign when we go across a
nodal line.
Finally, if e ∈ Ev, we say that m nodal lines come into (v, y) on e if there is a δ0 such

that for all δ < δ0 and any small enough neighbourhood O of v in Γ, exactly m nodal lines
intersect the set {O ∩ e} × (y − δ, y). Similarly, we say that m nodal lines come out of (v, y)
on e if there is a δ0 such that for all δ < δ0 and any small enough neighbourhood O of v in
Γ, exactly m nodal lines intersect the set {O ∩ e} × (y + δ, y). By the fourth statement in
Theorem 3.3 at most one nodal line can come out of (v, y) on each edge in Ev.

3.4. Possible events.

By the results of the previous section, since there are no isolated zeroes the only values of
y such that N(gy) may change is when there is a singular zero (x, y), or when a nodal line
hits a vertex at (v, y). We will call either of these occurences an event. By Theorem 3.3, here
are all the possible behaviours of the zero set of g around singular zeroes or vertices:
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(E1) x /∈ V

vi

y

vi

y

(E2) v ∈ Vb

vb

y

(E3) v ∈ Vi

vi

y

vi

y

By the results of the previous section, events E1 and E2 must decrease N(gy) at y0. We
now examine what happens when one (or more) nodal lines comes into an inner vertex. Let
us �x an inner vertex v and set gv(y) := g(v, y). This is well-de�ned since g is continuous at

inner vertices. There exist coe�cients ai(v) such that gv(y) =
∑M

i=1 ai(v)e−λiy (speci�cally,
ai(v) := aifki(v)). A nodal line (one or more) comes into (v, y) when gv(y) = 0. To count
the number of y values for which a nodal line can come into (v, y), we will use the following
bound on the number of zeroes of a linear combination of exponentials:

Theorem 3.4. [22, part V, Chapter 1, problem 77] Let h(x) =
∑n

i=1 aie
bix with ai 6= 0 and

bi+1 > bi for any i ≤ n. Let C(h) be the number of times that ai+1 and ai have di�erent
signs. Then, the number of zeroes of h is less or equal than C(h).

This implies that for any v ∈ Vi, gv has at most M − 1 zeroes. We now look at what can
happen to N(gy) at each of these zeros when y increases.

Lemma 3.5. When a nodal line comes into an inner vertex v, the nodal count can increase
by at most deg(v)− 2 as y increases.

Proof. Assume that g(v, y′) = 0. For each e ∈ Ev we now de�ne In(v, y′, e) as the number
of nodal lines that come into (v, y′) on e and Out(v, y′, e) as the number of nodal lines that
come out of (v, y′) on e. By the fourth statement in Theorem 3.3, Out(v, y′, e) ≤ 1.
We will treat two cases separately. If gv changes sign at y′, since g changes sign once when

going across a nodal line then for all e ∈ Ev, In(v, y′, e) + Out(v, y′, e) is odd. This means
that for each e ∈ Ev there is me ≥ 0 such that either 2me nodal lines come into (v, y′) from e
and one comes out, or 2me + 1 nodal lines come into (v, y′) and none come out. Therefore,
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the maximum increase of the nodal count happens if one nodal line comes into (v, y′) from a
single edge in Ev and it comes out on every other edge in Ev. This increases the nodal count
by deg(v)− 2.
Similarly, if gv does not change sign at y′ then for all e ∈ Ev, In(v, y′, e) + Out(v, y′, e) is

even. Therefore, for each e ∈ Ev there is me ≥ 0 such that either 2me + 1 nodal lines come
into (v, y′) from e and one comes out, or 2me nodal lines come into (v, y′) and none come
out. In both of these cases, the nodal count does not increase. This completes the proof of
Lemma 3.5.

�

Combining Theorem 3.4 and Lemma 3.5, we get the following characterization of nodal
lines coming into inner vertices:

Lemma 3.6. Event E3 can happen at most M −1 times at each inner vertex, and each time
it happens the nodal count can increase by at most deg(v)− 2.

3.5. Global bounds.

We will combine the lemmas of the previous subsection in order to prove Theorem 2.1.
We start with N(fkM ) zeroes at y = −∞. As y increases to zero, the only event which

increases N(gy) is a nodal line coming into an inner vertex. By Lemma 3.6, for each inner
vertex v this can happen at mostM−1 times and each time it happens it can increase N(gy)
by at most deg(v)− 2.

Similarly, when y goes from zero to +∞, the maximum increase in N(gy) is at most
(M − 1)(deg(v)− 2) for each inner vertex v. As y → +∞, gy has N(fk1) zeroes. This gives
us the following two-sided bound:

(3.4) N(fk1)− (M − 1)
∑
v∈Vi

(deg(v)− 2) ≤ N(F ) ≤ N(fkM ) + (M − 1)
∑
v∈Vi

(deg(v)− 2) .

We are ready to �nish the proof of Theorem 2.1.

Proof of Theorem 2.1. The nodal count of any eigenfunction fk of HW satis�es the bounds
(see [8, Theorem 5.2.8]):

(3.5) k − 1 ≤ N(fk) ≤ k − 1 + β .

Now, recalling that β = |E| − |V |+ 1 and
∑
v∈V

deg(v) = 2|E|, we have the following:

∑
v∈Vi

(deg(v)− 2) =
∑
v∈V

deg(v)− |Vb| − 2|Vi| ,

= |Vb|+ (2|E| − 2|V |) ,
= |Vb|+ 2β − 2 .(3.6)

Combining (3.4), (3.5) and (3.6) completes the proof of Theorem 2.1.
�
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Remark 3.7. It is clear from the proof that the condition that Γ is W -generic can be replaced
by the condition that the eigenfunctions in the linear combination (rather than all eigenfunc-
tions in the spectrum) are non-zero at inner vertices. Furthermore, one can see how the proof
could be adjusted to allow for Neumann or mixed Dirichlet-Neumann boundary conditions.
First, the bounds (3.5) also hold. Second, one could re�ect the potential and eigenfunctions
across boundary vertices and then apply a suitable extension step as in Section 3.3. Finally,
by a suitable application of Theorem 3.3 to that extension, one could show that events E2
can only decrease the nodal count, just like in the Dirichlet case.

4. Proof of Theorem 2.3

Let Γ be a 0-generic tree and s be the highest degree of any vertex of Γ. Recall that we
want to construct a linear combination of f1 and f2 with at least s− 1 zeroes.

Proof of Theorem 2.3. By [7, 21, 24], N(f1) = 0 and N(f2) = 1. Let x0 be the position of
the single zero of f2 and v be any vertex of degree s. Let p be the path connecting x0 to v
without self-intersections. Let e′ ∈ Ev such that p∩ e′ = v and x′ be any point in the interior
of e′ such that f2(x′) 6= 0.

x0

vp
e′x′

Since f2(x′) 6= 0, there exists a ∈ R such that (f1 + af2) (x′) = 0.

Consider the function g(x, y) := f1(x)e−λ1y + af2(x)e−λ2y. We have that g(x′, 0) = 0 and
for y′ large enough, g−y′ only has one zero on the same edge as x0. By Theorem 3.3, the zero
set of g is connected. This implies that there exists y0 ∈ (−y′, 0) such that g(v, y0) = 0.
Since Γ is a tree, at y = y0 a single nodal line comes into v and then comes out of every

other edge in Ev (see an argument in the proof of Lemma 3.5). Since deg(v) = s, we get that
s − 1 nodal lines come out of (v, y0). Taking ε small enough, this means that gy0+ε has at
least s− 1 zeroes.

�

5. Saturating examples for the upper bound - proof of Theorem 2.4

Let G(s, ε) be a star graph with s edges - one edge of length 1 and s− 1 edges of length ε.

Figure 5.1. G(s, ε) for s = 8

This graph has some interesting properties if ε is taken small enough:

Lemma 5.1. For any s and M we can take ε small enough such that the following occurs:

(a) The �rst M eigenvalues of G(s, ε) are all simple.
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(b) The �rst M eigenfunctions are all invariant with respect to permutations of the small
edges.

(c) For any n ≤M , each eigenfunction fn of H0 = − ∂2

∂x2
has exactly n− 1 zeroes on the

long edge and no zeroes on the small edges or on the inner vertex.

Proof. By [9, Theorem 4.5], as ε → 0 the eigenvalues of G(s, ε) converge to those of the
unit interval with Dirichlet boundary conditions. Therefore, for any M ∈ N and δ > 0
small, there exists ε0 > 0 small enough such that for any 0 < ε < ε0 and 1 ≤ n ≤ M + 1,
|λn(G(s, ε)) − π2n2| < δ. Hence, the �rst M eigenvalues are simple for any ε < ε0. As a
consequence, for any 1 ≤ n ≤ M and any permutation P of the small edges, fn ◦ P = ±fn
(since fn ◦ P is an eigenfunction with the same eigenvalue as fn). Fix ε < ε0 such that for
1 ≤ n ≤ M , ε

√
λn < π/2. This implies that for 1 ≤ n ≤ M , fn does not have a zero inside

any small edge or at the inner vertex. Consequently, for any permutation P of the small
edges, fn ◦P = fn (as fn ◦P = −fn implies a zero at the inner vertex). Finally, by Courant's
theorem for nodal domains [16], since λn is simple fn has at most n− 1 zeroes. These zeros
must be on the long edge, by the argument above. �

We use Lemma 5.1 to construct linear combinations of eigenfunctions of G(s, ε) with a
high nodal count:

Proposition 5.2.

For any M, s > 0, there exists ε1(M, s) small enough such that for any ε < ε1(M, s) and
any L ≤ M , there exist linear combinations of the �rst L eigenfunctions of G(s, ε) with
exactly L− 1 + (L− 1)(s− 2) zeroes on the small edges.

Proof. We choose ε1(M, s) such that Lemma 5.1 applies and ε < ε1(M, s). For any L ≤ M
we can choose F :=

∑
n≤L anfn such that F has L − 1 zeroes on a chosen small edge of

G(s, ε)4. Since these fn are symmetric with respect to permutations of the small edges, so
is F . Therefore, F has exactly (L− 1)(s− 1) = L− 1 + (L− 1)(s− 2) zeroes on the small
edges. �

We note that the graph G(s, ε) is not 0-generic, since it is possible to �nd eigenfunctions
which are zero at the inner vertex (for instance by choosing λ = π2ε−2). We take care of the
genericity by constructing a perturbation of G(s, ε) and linear combinations of eigenfunctions
that have the same behaviour as in Proposition 5.2:

Lemma 5.3. There exists a star graph Gδ(s, ε), which has s edges and satis�es the following
properties:

• Gδ(s, ε) is obtained by perturbing the edge lengths of G(s, ε) by at most δ.
• Gδ(s, ε) is 0-generic.
• For any L ≤M , there exists a linear combination Fδ of the �rst L eigenfunctions on
Gδ(s, ε) such that N(Fδ) = L− 1 + (L− 1)(s− 2).

This construction immediately implies Theorem 2.4.

4This is always possible since by Lemma 5.1, the �rst M eigenfunctions are not identically zero on the small
edges, and their restriction to small edges are sine functions with di�erent frequencies.
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Proof. First, we choose ε > 0 such that Lemma 5.1 applies to G(s, ε). For 1 ≤ L ≤M , take
a linear combination F =

∑
n≤L anfn with L − 1 zeroes on each small edge of G(s, ε), as is

done in Proposition 5.2.

Now, we use the fact that for a given graph, there exists an arbitrarily small perturbation
of the edge lengths such that the spectrum of the Laplacian is simple and no eigenfunction
vanishes on a vertex [10, Theorem 3.6]. Hence, for any δ > 0, it is possible to �nd a graph
Gδ(s, ε) with one edge of length 1 and s edges ei of length lei ∈ (ε, ε + δ) such that Gδ(s, ε)
is 0-generic. Furthermore, as δ → 0, the eigenvalues of Gδ(s, ε) converge to those of G(s, ε)
(see for instance [3, Appendix A], [9, Theorem 3.6] or [23, Theorem 4.15]).

We de�ne the map φδ : Gδ(s, ε) → G(s, ε) that �xes the long edge and sends x ∈ ei to
(ε/lei)x. Let fδ,n be the n-th eigenfunction on Gδ(s, ε). We know from [8, Theorem 3.1.4] that
eigenfunctions depend analytically on perturbations of edge lengths. Therefore, since the �rst
M eigenvalues of G(s, ε) are simple, as δ goes to zero, εn(δ) := sup

x∈Gδ(s,ε)
|fn(φδ(x)) − fδ,n(x)|

will go to zero for any 1 ≤ n ≤M .

Let Fδ : Gδ(s, ε) → R, Fδ :=
∑

n≤L anfδ,n with the same coe�cients an as F . Since F
is continuous and its zeroes are discrete, if we take δ small enough, Fδ will have at least as
many sign changes as F on each small edge. By the mean value theorem, N(Fδ) ≥ N(F ).
Also, since Gδ(s, ε) is 0-generic, N(Fδ) ≤ L − 1 + (L − 1)(s − 2) by Theorem 2.1. Hence,
N(Fδ) = L − 1 + (L − 1)(s − 2), which completes the proof of Lemma 5.3 and of Theorem
2.4.

�

6. Examples of non-trivial lower bounds - proof of Theorem 2.6

Now, let I(m, ε) be the following graph: start with two edges of length 1/2 and connect
them with m parallel edges of length ε. This graph has 2 boundary vertices and 2 inner
vertices of degree m+ 1.

We will de�ne the involution ψ : I(m, ε)→ I(m, ε) as the re�ection across the dotted line
in �gure 6.1.

Figure 6.1. I(m, ε) for m = 5

Lemma 6.1. For any m, there exists ε small enough such that I(m, ε) has the following
properties:

(a) The �rst three eigenvalues are simple.
(b) N(f2) = m.
(c) N(f3) = 2.
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Proof. As in the proof of Lemma 5.1, by [3], [9] and [23], when ε goes to zero the eigenvalues
of I(m, ε) converge to the eigenvalues of the unit interval with Dirichlet boundary conditions.
Since all the eigenvalues on the interval are simple, by taking ε small enough the �rst three
eigenvalues of I(m, ε) are simple. The simplicity of the eigenvalues implies that for i = 1, 2, 3,
fi ◦ψ = ±fi. By Courant's theorem [16], f2 has two nodal domains. Therefore, f2 ◦ψ = −f2

and the only zeroes of f2 are at the center of the small edges. Hence, N(f2) = m. Finally,
since as ε → 0, λ3 → 9π2, for ε small enough f3 has a zero on each long edge. Again, by
Courant's theorem, f3 has at most three nodal domains, which implies that it does not have
any other zero. As a consequence, N(f3) = 2.

�

As the zeroes of f2 and f3 are away from the vertices, there exists a(m) small enough
such that N (a(m)f2 + f3) = N(f3). Since the graph I(m, ε) is not 0-generic, we will slightly
perturb it without changing the nodal count to complete the proof of Theorem 2.6.

Proof of Theorem 2.6. As in the proof of Lemma 5.3, we can construct a δ-small perturbation
Iδ(m, ε) of I(m, ε) which is 0-generic. Let fδ,n be the n-th eigenfunction on Iδ(m, ε). By a
similar argument to the one in the proof of Lemma 5.3, we can choose δ small enough such
thatN(fδ,2) = N(f2) = m, N(fδ,3) = N(f3) = 2 andN(a(m)fδ,2+fδ,3) = N(a(m)f2+f3) = 2,
which proves Theorem 2.6. �

Appendix A. Proof of Lemma 3.1

We wish to show that the function g(x, y) =
∑M

i=m aie
−λkiyfki(x) does not have isolated

zeroes.
The maximum principle for parabolic equations (see for instance [13, Section 7, Theorem

8]) implies that g cannot have an isolated zero inside an edge.
The proof of the maximum principle for solutions of parabolic equations in the plane hinges

on three arguments.

• First, if we assume that there is an isolated minimum (x′, y′) of g in the interior of
a domain of the form (a, b) × (c, d), then there is a neighbourhood Y of y′ with the
following property: if y ∈ Y , then the minimum of g(·, y) is attained in (a, b). This
ensures that at any global minima (x′′, y′′) of g(·, y), ∂xg(x′′, y′′) = 0 and ∂xxg(x′′, y′′) ≥
0.
• Second, if a local minimum of g(·, y) is attained at (x′′, y′′) ∈ (a, b) × Y , then
∂yg(x, y′′) > 0 for any x in a neighbourhood of x′′.
• Finally, by a covering argument, this implies that the minimum value of g(·, y) on

(a, b) has to increase as y ∈ Y increases, which contradicts the fact that the minimum
of g(·, y) in (a, b) goes to 0 as y increases to y′.

We will follow similar steps for the proof in the case of graphs, accounting for the behaviour
of g at inner vertices.

Proof of Lemma 3.1. Let v be any inner vertex and assume that (v, y0) is an isolated zero
of g. Without loss of generality, assume that g is positive in a punctured neighbourhood of
(v, y0).

Let m := max
Γ

W and G(x, y) := g(x, y)e(m+1)y. The function G satis�es
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(A.1) ∂yG = ∂xxG+ (−W (x) +m+ 1)G .

Since (v, y0) is an isolated zero of g, it is an isolated zero of G as well.

Now, choose δ1 > 0 such that G(x, y) > 0 if d(x, v) ≤ 2δ1 and |y − y0| ≤ δ1.

Let A := min
δ1
2
≤d(x,v)≤ 3δ1

2
|y−y0|≤δ1

G(x, y).

By the continuity of G, we can choose δ2 < δ1/2 such that max
d(x,v)≤δ2
|y−y0|≤δ2

G(x, y) ≤ A/2.

Therefore, for any y ∈ (y0−δ2, y0+δ2), the minimum of Gy on the set Γ′ := {x|d(x, v) < δ1}
is attained inside the smaller set Γ′′ := {x|d(x, v) ≤ δ1/2}. This completes the �rst part of
the proof.
Now, let H(y) be the minimum of Gy on Γ′. By assumption, H(y0−δ2) > 0 and H(y0) = 0.
Our goal is to show that H(y) is increasing in (y0 − δ2, y0).
First, we will show the following simple fact:

Lemma A.1. If y′ ∈ (y0−δ2, y0) and if x′′ ∈ Γ′ is any local minima of Gy′, then ∂yG(x′′, y′) ≥
H(y′).

Proof. First, assume that x′′ is not a vertex. Then, since x′′ ∈ Γ′ is a local minima of Gy′ ,
∂xGy′(x

′′) = 0 and ∂xxGy′(x
′′) ≥ 0. By equation (A.1), ∂yG(x′′, y′) = ∂xxG(x′′, y′)+(−W (x′)+

m+ 1)G(x′′, y′) ≥ H(y′) since −W (x) +m+ 1 ≥ 1 and G(x′′, y′) ≥ minx∈Γ′ G(x, y′) = H(y′)
.

Now, assume that x′′ is a vertex. In order for (x′′, y′) to be a local minima of Gy′ , then for
each e ∈ Ex′′ , ∂eG(x′′, y′) = 0.

Also, since for each eigenfunction fn, f
′′
n is continuous, then ∂xxGy is also continuous. This

implies that lim
x′→x′′

∂xxG(x′, y′) ≥ 0. Finally, ∂yG is continuous on Γ× R.
This gives us the following:

lim
x′→x′′

∂yG(x′, y′) = lim
x′→x′′

∂xxG(x′, y′) + (−W (x′) +m+ 1)G(x′, y′) ,

≥ 0 + (−W (x′′) +m+ 1)G(x, y′) ,

≥ H(y′) .

Since, ∂yG is continous, this implies that ∂yG(x′′, y′) ≥ H(y′), which completes the proof
of Lemma A.1.

�

Now, at each (x, y′) such that G(x, y′) = H(y′), ∂yG(x, y′) > H(y′). Since ∂yG is continu-
ous, for each such x there exists an open neighborhood of x where ∂yG > H(y′)/2. Let U(y′)
be the union of all these open neighbourhoods.

Since Γ′ is closed and bounded, V (y′) := Γ′\U(y′) is compact. Therefore, by the de�nition
of A and δ2 and the continuity of G, there exists ε > 0 such that G(x, y′) ≥ H(y′) + ε for any
x ∈ V (y′). Furthermore, there exists δ3 > 0 such that G(x, y) ≥ H(y′) + ε/2 if x ∈ V (y′) and
0 ≤ y − y′ ≤ δ3.
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Also, since ∂yG is continuous, there is a δ4 > 0 such that ∂yG(x, y) > H(y′)/4 if x ∈ U(y′)
and 0 ≤ y − y′ ≤ δ4. Hence, for such (x, y),

G(x, y) ≥ G(x, y′) + (y − y′)H(y′)/4 ≥ H(y′) + (y − y′)H(y′)/4 .

By taking δ5 := min(δ3, δ4), if y ∈ (y′, y′ + δ5),

H(y) ≥ min(H(y′) + ε/2, H(y′) + (y − y′)H(y′)/4) > H(y′) .

This implies that if y′ ∈ (y0 − δ2, y0) and H(y′) > 0 then H is locally increasing. To
complete the proof of Lemma 3.1, we note that H(y) > 0 if y ∈ (y0 − δ2, y0) and H(y0) = 0,
a contradiction.

�
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