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ABSTRACT. We study the spectral statistics of quantum (metric) graphs whose vertices are
equipped with preferred orientation vertex conditions. When comparing their spectral sta-
tistics to those predicted by suitable random matrix theory ensembles, one encounters some
deviations. We point out these discrepancies and demonstrate that they occur in various
graphs and even for Neumann-Kirchhoff vertex conditions, which was overlooked so far. De-
tailed explanations and computations are provided for this phenomena. To achieve this, we
explore the combinatorics of periodic orbits, with a particular emphasis on counting Eulerian
cycles.

1. INTRODUCTION

Since the seminal paper of Kottos and Smilansky [KS97] it is known that quantum graphs
[BK13l Berl7, IKN23, BG18|, [GS06l, [Kur24] are a suitable class of systems on which chaotic
properties can be tested. One of the accepted conclusions is that the spectral statistics of
quantum graphs fall into several universal classes, in particular, that the Gaussian Orthog-
onal Ensemble (GOE) distribution can be observed only if the system exhibits invariance
with respect to the time reversal. One aim of this paper is to challenge this ‘rule’ by pro-
viding examples of graphs having the GOE eigenvalue statistics despite being time-reversal
asymmetric.

To give an example, one may consider a quantum particle living on an octahedron of incom-
mensurate edge lengths assuming that the boundary values of the wavefunctions and their
derivatives at each vertex are matched through the conditions,

i1 — Y5 +i(Yi +945) =0, j=1,2,3,4 (mod4), (1.1)

which are obviously non-invariant with respect to complex conjugation that represents time
reversal.

We denote by {k,},—; the square roots of the eigenvalues of such a quantum graph (see
a detailed description of the model in Section |2 ' First, we consider the nearest-neighbour
spacing distribution which is given by

P(z) = lim 72 x — (kiy1 — k). (1.2)

The nearest-neighbour distribution of an octahedron graph with incommensurate edge lengths
follows the Gaussian Orthogonal Ensemble (GOE), as is shown in Figure The condition
and its extensions have further interesting consequences for the nearest-neighbour dis-
tributions, as we will show in Section [3] and explain in Section [4]

Furthermore, when going beyond nearest-neighbour distribution, one considers the two-point
correlation function,

Ro(z) = lim 1225@ (k; — k). (1.3)
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FIGURE 1.1. The nearest-neighbour distribution of the first 4 - 105 eigenval-

ues of an octahedron graph with incommensurate edge lengths and preferred
orientation vertex conditions, ((1.1]).

The Fourier transform of Ry(z) is called the form factor,
K(t) = / ™I (Ry(x) — 1) da. (1.4)

From a global viewpoint, the form factor of the same octahedron graph also exhibits GOE
like behaviour. Nevertheless, there is a clear deviation from GOE in the form of a sharp peak
at 7 = 1/2, as is shown in Figure
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FIGURE 1.2. The form factor of the octahedron graph with incommensurate

edge lengths and preferred orientation vertex conditions, ([1.1)). The numerics
was done using eigenvalues no. 5-10* — 1.5 - 10°.

To the best of our knowledge, this specific deviation from the form factor was never mentioned
before in the literature. We explain this phenomenon in Section [5 by providing the required
analysis of the form factor. Additionally, we discuss the extensions of these phenomena to
other graphs and other vertex conditions.
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In the next section, we describe in more detail the model and the background in random
matrix theory.

2. THE MODEL AND SOME BACKGROUND

2.1. Graphs with preferred orientation conditions. The motion on the graph edges
is free, being described by the Laplacian, v; — —wg.’ ; the nontrivial part comes from the
conditions matching the wave functions at the vertices. We write the boundary values at
each vertex v as columns, ¥(v) := {1;(v)} and ¥'(v) := {}(v)}, understood as limits at
the endpoint; then the most general way to make the Laplacian a self-adjoint operator is to
require

(U - DY) +i(U+1)¥'(v) =0, (2.1)
where U is an auxiliary unitary d x d matrix (d being the degree of the vertex). The origin
of this formulation of the vertex conditions is usually referred to [KS99a] but in fact they
appeared already in [RB69).

We work with a simple preferred-orientation coupling proposed in [ET18] in which

01 0 ... ... 0
0 0 1

U=\ : 0 0 (2.2)
: 1 0
0 ... 0 1
10 .. 0

is the circulant matriz [Dav79]. As an example, writing (2.1)) for a degree four vertex in
components we get the conditions (1.1]). The on—shelﬂ scattering matrix at a vertex described

by the conditions is
k-1+(k+1)U
()7k+1+%—DU’
It is easy to check that the S-matrix (2.3)) is not invariant with respect to transposal, which
implies in our case that the transport through the vertex mot being time-reversal invariant
[ET21].

To complement the description above, we mention the case of Neumann-Kirchhoff vertex
conditions, in which the scattering matrix S(k) is independent of k and its entries equal
[S(K)]; ; = 2/d — 0; ; for a vertex of degree d. Later in the paper we compare results obtained
with preferred orientation vertex conditions with results obtained for Neumann-Kirchhoff
vertex conditions.

(2.3)

2.2. Spectral statistics of quantum graphs and random matrix theory - existing
results. A driving force in connecting the spectral statistics of chaotic systems to random
matrix theory (RMT) lies in the Bohigas-Giannoni-Schmit (BGS) conjecture [BGS84]. In the
realm of quantum graphs the conjecture says that the spectral statistics of graphs with incom-
mensurate edge lengths and “sufficient connectivity” exhibit universal statistical properties
governed by random matrix theory. Moreover, the symmetry class to which the graphs belong
dictates which RMT ensemble describes their spectral statistics. This is still somewhat vague
phrasing and substantial effort was made in order to even formalize this conjecture and specify
the exact conditions for its validity (both for quantum graphs and for other system within
quantum chaos). The connection between quantum graph spectral statistics and RMT was

LWhere if one wants to choose a different length scale (i.e., change units), it is enough to replace k by k¢
for a fixed value ¢ > 0.
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first investigated by Kottos and Smilansky [KS97, [KS99b|, and later extended in works with
Schanz [SS00, [SS01, [KS01], where spectral fluctuations were analyzed using combinatorial
methods (see also [GS06] for an extensive review of these results and the ones which follow).
Barra and Gaspard [BGO0] contributed a careful study of the nearest-neighbour spacing dis-
tribution, helping to establish statistical links with RMT. Tanner [Tan00} Tan01] introduced
unitary-stochastic matrix ensembles for classifying when graphs display RMT-like behavior.
In particular, he conjectured that the RMT-like behavior is observed if the spectral gap of
a certain transition matrix closes slow enough.Berkolaiko and Keating explored spectral sta-
tistics in star graphs (where the aforementioned condition is violated) [BK99, Ber00], and
Berkolaiko, in part with Schanz and Whitney, refined these methods analyzing form factors
via periodic orbit expansions and diagrammatic approaches [BSW02, BSW03|, [Ber04, Ber06].
Bolte and Harrison studied spectral statistics for the spin-orbit coupling and for the Dirac
operator on graphs [BH03bl [BH03al, BHO6].

Additional analysis have been obtained using field-theoretic and supersymmetric approaches.
In particular, Gnutzmann and Altland [GA04, [GA05] applied the nonlinear sigma model
to show that spectral correlations of individual quantum graphs match RMT predictions.
These techniques were further developed by Pluhai and Weidenmiiller [PcvyW13, [PcvW14!
PcvW 15|, [Wei20], who established RMT universality using diagrammatic and supersymmetric
formulations.

Further theoretical works have continued refining the boundary between the classical connec-
tion to RMT symmetry classes and its breakdown. Joyner, Miiller, Sieber [JMS14], as well as
Akila and Gutkin [AGI5, [AG19], showed that systems without spin can still yield GSE-type
spectral statistics. Harrison, Swindle and Winn showed intermediate spectral statistics for
various models [HS19, [HW12]. Band, Harrison, Hudgins, Joyner and Sepanski studied the
the variance of coefficients of the characteristic polynomial of the quantum evolution operator
[BHJ12, BHS19, [HH22b| [HH224a)] (appearing already in the earlier works of Tanner mentioned
above). Most recently, Gnutzmann and Smilansky [GS24] emphasized that RMT-like spectral
statistics do not necessarily indicate chaotic classical dynamics.

On the experimental side, realizations of quantum graphs have played a crucial role both in
validating RMT connections and in showing deviations from them [HSTT], [FAL™24, |CGK™|
DKM™24, [HBPan™04, DYB™17, [HLKS21, LHKS23| [RAJ"16].

3. NUMERICAL RESULTS FOR NEAREST NEIGHBOUR DISTRIBUTION

Together with the numerical results shown in the introduction (Figure for the octahedron
graph we also consider other graphs and/or couplings in order to better elucidate the mecha-
nism responsible for the observed effects. First of all, let us note that the eigenvalue counting
function of a finite graph with arbitrary self-adjoint vertex conditions satisfies Weyl’s law,
N(k) = £k + O(1) as k — oo, where L = >_;¢; is the sum of all the edge lengths. This
is known theoretically first from [KS99b] and later in [BEQ9, prop. 4.2] for the most general
self-adjoint conditions (including the preferred orientation conditions which we consider here).
As a consequence, the unfolding is trivial; the proper scale to display the eigenvalue spacing
is given by the simply scaled momentum variable %k

We return to Figure which shows that the nearest neighbour distribution of an octahedron
graph is GOE. Modifying the vertex degree can change the spectral picture completely; to
illustrate that, we show in Figure [3.1]the eigenvalue spacing distribution for a cube graph with
incommensurate edge lengths and the same vertex coupling . In this case we observe that
the distribution is of the Poisson type.

Furthermore, it is not so much the vertex degree that determines the statistics type, but
rather the presence or absence of the eigenvalue —1 in the spectrum of the matrix U in (2.2)).
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FIGURE 3.1. The nearest-neighbour distribution of the first 2-10° eigenvalues
of a cube graph with incommensurate edge lengths and preferred orientation
vertex conditions.

To illustrate this claim, consider the octahedron again, but replace now the coupling (2.2)
with a ‘distorted’ one referring to the modified matrix

01 0O

; 0010
v=erl 0oy | (3.1)

1 0 0 O

for some p > 0. Figure [3.2] shows that even if the parameter u is small, the modification
changes the picture completely; instead of the GOE we have the Poisson distributiorﬂ
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FIGURE 3.2. The nearest-neighbour distribution of the first 2 - 105 eigenval-
ues of an octahedron graph with incommensurate edge lengths and distorted
preferred orientation vertex conditions, (3.1]) for u = 0.01.

4. DISCUSSION OF THE NEAREST NEIGHBOUR DISTRIBUTION

4.1. High energy asymptotic of the unitary evolution operator. The occurrence of
Poisson distribution in Figures and [3.2] is not surprising. In both cases the eigenvalue —1

2To be exact, in the numerics the distribution becomes Poissonian if we consider a sufficiently wide energy
interval; before we reach this regime one observes a mixture between GOE and Poisson.
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is missing in the spectrum of the matrix U determining the coupling, and as a result, we get
limg 0o S(k) = I from (2.3). This means that the considered graph turns at high energies
effectively into a union of disconneted edges with Neumann endpoints.

The existence of the GOE distribution in Figure might be less obvious but to understand
it one has to realize that while the time-reversal symmetry is violated for any k, the degree of
the violation varies. We refer to [ET18, eq. (5)], in whichthe entries of the matrix were
expressed as

1—n? 1—npi? (j—i—1) mod d
Si (k) = [P R g 6ij + (1= dij)n ) (4.1)
where 7 := % From here, one can check that the S-matrix of a vertex of even degree d has
in the high-energy limit the entries
2 o
Sij = =5 (=1)" +di, (4.2)

which differ from their Neumann-Kircchoff counterparts only by sign on the diagonal and the
“even” (i.e., even i + j) off-diagonals.

If the vertex is of odd degree then at high energy asymptotics there is an effective decoupling
of this vertex into d disjoint vertices of degree one each with Neumann-Kirchhoff conditions,
i.e., Si,j = 5i,j'

In both cases (even and odd degrees) the limiting matrix is transpose invariant. Hence,
even though the time reversal invariance is violated at any finite energy, it does survive
asymptotically. For an even d, in addition, the edges remain coupled asymptotically, which is
the reason for the GOE statistics for graphs with even degree vertices and preferred orientation
vertex conditions (such as the octahedron considered in Figure We supplement this
observation with a quantitative discussion of the time reversal invariance.

4.2. On measuring the time reversal invariance violation. The natural measure of
time-reversal invariance violation says how much the S-matrix differs from its transpose. We
are able to express the violation measure quantitatively by defining

M(k) = [[S(k) = (k)5 (4.3)

from the unitarity of S(k) and the triangle inequality we conclude that the norm cannot
exceed two. We employ (4.1) and write the matrix elements of M (k) = S(k) — S(k)T at a
vertex of degree d as

1—n? (i o
. _ j—i—1) modd _, (i—j—1) modd

Mij(k) = 1 3 {n U }- (4.4)
To indicate the dependence on the vertex degree, we add the index d to the symbol M, in what
1-n?
1—nd
T, whose entries are given by the curly bracket. Being a difference of circulant matrices, T is
also circulant which means that its eigenvalues can be expressed explicitly,

follows. For convenience we will consider separately the prefactor P; = and the matrix

d—1
An(n) = (1 —ndijfl) W on=0,...,d—1, (4.5)
j=1
where w := ¢?™/¢ and in particular, we have Ao = 0. The norm of T is naturally ||T|| =

maxo<p<d—1 [An(n)]-
Being primarily interested in the high-energy behavior of Mg4(k), we have to distinguish the
even and odd values of d. The prefactor equals

1 147
P. — P =
2m(77> 1+n2+...+n2m—2’ 2m+1(77> 1_|_n_|_..._|_772m’

(4.6)
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which, translated to the original momentum variable,implies

1 2
Py (k) = — + O™ and Poynii(n) = P O(k™2), (4.7)
as k — oo. On the other hand, putting n = —14 4§ we get from (4.5 the following asymptotic

expansion,

. (d—2)/2 i1 o s 2mng 2
2 . —1) -2 SR
An(m:{wzjzl (—1)7+(d — 2j) sin 22 4 O(52)  d even, @9

4 1) sin 250+ 0(0) dodd,

where we used the fact that the members of the sum appear in pairs having the same real
parts while the imaginary ones differ by sign. Using next the fact that n = —14+2k~14+O(k2),
we conclude from ({4.3)), and that My(k) = O(k™!) holds as k — oo for any natural
d > 3. Note that the asymptotic behavior of both the prefactor and the eigenvalues depends
on the vertex parity, however, the differences compensate mutually in the result. In the same
way one can check that the violation measure My(k) = O(k) as k — 0.

For low values of d it is easy to evaluate the non-invariance measure explicitly. In particular,
the eigenvalues are {0,£+v/3i(1 —n)} and {0,0,£2i(1 — n?)} for d = 3,4, respectively,
which yields

4 4
Ms(k) = 3i\§i and My(k) = 1 +kk2. (4.9)
As a concluding remark we note that shows that M3 (k) saturates the unitarity bound
M(k) <2 at k = +/3, while M4(k) does the same at k = 1.

5. THE FORM FACTOR

We focus in this section on the form factor, as given in . We change the point of view
from the the spectral statistics of the graph eigenvalues to those of the eigenphases of the
corresponding unitary operator. This is a common practice within the spectral theory of
quantum graphs (see [BW10] for justifications and proofs). Indeed, one observes that the
eigenphase form factor follows the one of the eigenvalues (as demonstrated in Figure as
well as in the other figures in this section). To be specific, denoting by E the number of graph
edges, the form factor of the unitary operator is defined at the discrete times 7 € %N by (see

e.g. [Ber(0]) N

o 1 . 2E7’2
Ku(r) = 57 lim o _A‘tr(U(k:)) dk, (5.1)

where U(k) is a unitary 2E x 2E matrix (often called the unitary evolution operator) given
by
U(k) = exp (ikL) S(k),

with L being a diagonal matrix which stores the (directed) edge lengths and S(k) is the global
scattering matrix of the graph. The matrix S(k) is comprised from the local vertex scattering
matrices S(k) (such as in (2.3))). Note that we use bold font (as in S(k) and U(k)) for matrices
of dimensions 2F x 2F defined on the whole graph, to be distinguished from the local vertex
matrices S, U which are d x d, where d is the degree of the vertex. Since the spectral statistics
are dominated by the high energy asymptotics (see discussion in Section [4)) we may replace
the energy dependent scattering matrix S(k) with its high energy limit, which is comprised
by the local vertex scattering matrices given in (for an even degree vertex). Doing
so, one sees that the only energy (k) dependence in enters via the matrix exp (ikL).
Expanding tr (U(k))**7 as a sum of products and performing the integral give the following
useful expansion (see [Ber06l eq. (18)])

1 (2E7)?
K = —
u(7) 2F gq: TpT

ApAZSr, 1 (5.2)
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where as above 2FE7 € N. The sum in is over pairs of periodic orbits consisting of 2E7
edges and denoted by p,q. The total metric length of an orbit p is denoted by Ly, its overall
scattering amplitude (which is a product of S entries corresponding to the orbit) is denoted
by Ap. Furthermore, sometimes an orbit might be written as a repetition of a shorter orbit;
in such a case the repetition number is denoted by 7 (if an orbit cannot be written as such
repetition, then r, = 1). The expansion is the starting point of the derivations in this
section.

5.1. The form factor in the limit of infinite complete graphs. We consider here the
infinite family of graphs, { Ky}, cony 1, i-€., the family of complete graphs with an odd number
of vertices. In general, in order to analytically prove any kind of RMT-like behaviour for
graphs, one should consider families of increasing graphs (for finite graphs deviations might
occur, as we indeed observe in this work). We choose here the particular family {Kv }y con g
thanks to the somewhat easier book-keeping of the periodic orbits of complete graphs and
since all of its vertices have even degrees (following the discussion in Section . In the
current subsection we calculate the leading term of the form factor in the limit of increasing
graphs of this family; we verify that it is indeed the leading term of the GOE form factor (see
(5.5)). As a demonstration we provide in Figure the numerical calculation of the form
factor for the graphs K7 and Ky, two particular members of this graph family.

1.2 1.2
1.0 1.0
. .
S 08 5 o0s-
o 1)
£ £
£ 06 £ 0.6
= =
S s}
w (')
0.4 0.4
—— GOE —— GOE
0.2 —— Eigenvalues numerical data 0.2 —— Eigenvalues numerical data
—— Eigenphases numerical data —— Eigenphases numerical data
0.0 . : . : . 0.0 . : : : .
0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5 3.0
T T

FIGURE 5.1. The form factor of complete graphs (Left: K7. Right: Kg). The
curves correspond to: numerics of eigenvalues (red), numerics of the eigen-
phases (blue) and the theoretical GOE (green).

Consider a complete graph with V vertices and F = (‘2/) edges. As mentioned above, we take
odd values of V' and equip all vertices with preferred orientation conditions. Therefore in
the high energy limit we get the vertex conditions as in , which we use in the following
computation.

First, we classify the periodic orbits which are of a specific size n (namely, periodic orbits
which consist of n edges). Each such orbit p has some 0 < ¢ < n transmission scattering

events and n — t reflection scattering events; its overall scattering amplitude is therefore
t n—t

Ap==£ (%) <1 — %) , since the degree of each vertex is V' — 1. The ambiguity in the

+ sign is due to the term (—1)"*7 in (4.2), when i # j (i.e., transmission scattering event)

and we show in the following that it does not affect the final result.

We claim that the number of such orbits (with ¢ transmissions and n — t reflections) is

% (?) (‘2/) (V—2)=2, assuming that ¢ > 2; this combinatorial result is explained in the following.

First, one picks the “starting” directed edge of the orbit, and there are 2F = 2(‘2/) options
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for such a choice. Then, one chooses which of the n scattering events are the ¢t transmissions,
which gives the binomial factor (’Z) When forming such an orbit, we know for each reflection
event what is the next directed edge (it is just the last edge with a reversed direction); but
for (almost) each transmission event we have V — 2 possibilities to choose the next edge
(it can be any edge emanating from the current vertex, apart from retracing along the last
edge). Nevertheless, in this process, the two transmission events which appear after all other
transmissions (but before some possible reflections) are uniquely determined in a way which
ensures that the orbit returns back to the right “starting” edge. This gives a factor of (V —
2)=2 noting that we assumed ¢ > 2 (the case t < 2 is explained below). Then, we need to

use a factor of % since we consider periodic orbits up to cyclic shifts (and an orbits consists

of n edges). Hence, multiplying all of the above we get a total number of %(?) (‘2/) (V —2)t=2
orbits which consist of ¢ transmissions and n — ¢ reflections (counted up to cyclic shifts). To
complement this computation we check the case ¢t < 2. First, it is easy to see that there are no
periodic orbits (on the complete graph) with only a single transmission (¢ = 1). Hence, we are
left to deal with the orbits for which ¢ = 0, meaning that they consist only of reflections and
are supported on a single edge. Such orbits exits only for even values of n and their number
is exactly the number of edges, E = (‘2/), their repetition number cannot be neglected, as it

equals rp = /2.

Now, we refer to for the form factor computation. We consider n = 2E7, and next we
will eventually take the limit of increasing graphs. Namely, F — oo (or equivalently V' — oo
in our case), while fixing the value of 7 = % When summing over pairs p,q of periodic
orbits in (5.2)) we need to take into account only orbits with the same metric lengths, i.e.,
L, = Lq. Due to the complexity of this task, we do not consider all such pairs, but only pairs
in which either p = q or that p, q are the same up to a reversed direction (denoting this by
q = p). This is the well-known diagonal approximation and we will see that it successfully
reproduces the leading term of the GOE form factor. Another common approximation that
we implement here is to take r, = rq = 1 for almost all orbits, apart from the orbits for which
we know their exact repetition number (these are the orbits with ¢t = 0 and rp, = 7/2, already
mentioned above). In the following computation we use the shorthand notation n := 2ET,
and return to the variable 7 only at its end.

n2

1 * *
Kiag() =5 D = (445 + Ap47) (5.3)
p has n edges P

n? 1 N
- F Z ﬁAPAP

p has n edges P

() )
EAE () ()
[l B () ()]

where in the above we used in the third line that for the first term (¢ = 0) the orbits are such
that p = p and hence there should be introduced an additional factor of 1/2, and in the last
line we used E' = (‘2/)

n2

- F
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To continue the computation we note that a slight modification (starting from ¢t = 0 rather
than from t = 2) of the sum above gives

g % <7Z> (V —2)t2 <V2—1>2t (1 B ‘/2_1)2(11—@
St O () ()

e () (o))

_ 2
n(V —2)%

We substitute this in (5.3)), while subtracting the additional terms (¢t = 0 and ¢ = 1), and get

Kaiag(1) =n* [712 <1 - V2— 1>2n + n(V2— O (5.4)
A (e A G N S

_27n+2 1 L o
- (V—2)2 V-1

— 27,
E—oo

B n B 4n? <1_ 2 >_2]
(V—-22 (V-1)2V-2) V-1

where in the last line we used that 7 = 55 is fixed and since £ = (‘2/), we get that 5 — 7

as V — oo. To see this, one can observe that the second term of the third line tends to
21V?2
2 (1 — %) [1 -7 — 47'2V], which goes to zero as V' — oo.

We now see that for small values of 7, the calculation above indeed reproduces the first term
of the GOE form factor:

2r —7ln(1+27) 7<1
Koor(r) = 27 —7ln (ETJ“%) T>1. (5:5)

We note that the computation above is valid also for the Neumann Kirchhoff conditions.
This is because the scattering coefficients of the Neumann-Kirchhoff and of the asymptotic
preferred orientation conditions are equal up to sign (see and the text which follows it),
but as we argued above, the sign is canceled in the diagonal approximation.

In the computation above, before taking the limit, we may examine the case n = 2 (so that
7 = 1/E). Returning to (5.3) and taking only the first term there (since ¢ = 0 when n = 2),
we get

4
Kinsfp) =2 (1= 521 ) (5.6)

This explains the peak which may be observed in Figure [5.1] in the vicinity of zero and also
explains why the peak for Kg is higher than for K7 (right and left parts of that figure). The
expression appeared already in [SS00, eq. (31)], where it is also explained that such
orbits, which are repetitions of 2-edge orbits. are responsible for the odd-even staggering
phenomena which ones obtains numerically for small values of 7.
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5.2. The peak at half the Heisenberg time. We return to the observation made in the
introduction - when numerically computing the form factor of the octahedron graph, we notice
a clear and substantial (though local) deviation from GOE (Figure Left). Specifically,
there is a clear peak which appears at half the Heisenberg time (7 = 1/2). As far as we are
aware of, such phenomenon was never observed in form factors of chaotic systemsﬂ In what
follows we explain the appearance of this peak and show that there are additional setups (other
graphs and other vertex conditions) in which similar peaks appear. We start by considering
a general graph I and upon need impose particular restrictions on the graph. We refer to the
periodic orbit expansion and employ it to evaluate the value Ky(1/2) and to show that
it is substantially higher than its GOE prediction, Kgor(1/2) =1 — 1/21n(2).

12 12
1.0 1.0+
= .
Q 0.8 Q 0.8
- -
1e) %)
(3] (1]
w w
£ 061 £ 061
_ :
(=] (=]
w w
0.4 0.4 4 J
— GOE ; — GOE
0.2 —— Eigenvalues numerical data 0.2 —— Eigenvalues numerical data
—— Eigenphases numerical data J —— Eigenphases numerical data
0.0 4 . ! : T T 0.0 4 . ! : T T
0.0 0.5 10 15 2.0 2.5 3.0 0.0 0.5 10 15 2.0 2.5 3.0
T T

FIGURE 5.2. The form factor of the octahedron graph. Left: with preferred
orientation vertex conditions. Right: with Neumann-Kirchhoff vertex condi-
tions. The curves correspond to: numerics of eigenvalues (red), numerics of
the eigenphases (blue) and the theoretical GOE (green).

Towards this we consider in the sum only periodic orbits p, q which consist of % =F
edges. Among such orbits we find the Eulerian cycles. An Eulerian cycle is a closed path
on the graph which visits every edge of the graph exactly one time. For the sake of this
definition we consider the undirected graph, i.e., every undirected edge appears exactly once
in an Eulerian cycle. Therefore, the metric length of every Eulerian orbit equals the total
length of the graph, which means in particular that L, = Lq for every pair of two Eulerian
orbits, p,q and also that rp, = rq = 1. Therefore, the contribution of Eulerian cycles to
the sum in is given by %E Zp,q Eulerian APA(’;. To calculate the amplitude A, for an
Eulerian cycle p, first observe that (by definition) all scattering events in an Eulerian cycle
are transmissions. Therefore, by we get S; j = —%(—1)i+j for any scattering event at any
vertex. In addition, a vertex of even degree d is being visited exactly 4/2 times throughout an
Eulerian cycle, such that all edges connected to the vertex are eventually visited. Hence, for
such a vertex the product of all d/2 scattering amplitudes (which are all transmissions) gives

9\ 42 4 ' 9\ 4/2
() Mew=(3)
j=1
where we used that the degree d is even and satisfies d > 2, and so both /2 and the sum

Z?Zl j are even. In order to simplify the following computations, we assume that the graph I
is d-regular, i.e., all of its vertices are of degree d. In such a case, multiplying all the scattering

3To be accurate, a peak at 7 = 1/2 may be spotted in IKS01], fig. 2], though there is no specific mention of
this peak in the text.
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amplitudes above for all the V' vertices we get that A, = (%) = (%) for each Eulerian
orbit p. The relevant term in the form factor is therefore

2F
%E Z APAZ:%E (3) (Nguer(T))?, (5.7)

p,q Eulerian

where Ngyier (I') is the number of the Eulerian cycles of the graph I. To finish the computation
we ought to count the number of Eulerian cycles of a graph, Ngyer(I'). This is a tedious task,
which cannot be solved in a polynomial time for general undirected graphs. We elaborate more
about this problem and its possible theoretical and practical resolutions in Subsection [5.3]and
in Appendix [A]

If T is taken to be the octahedron graph then Ngyer (Octahedron) = 744, which we obtained
by running two independent algorithms (as detailed in Subsection and in appendix [A)).
To clarify, Ngyler counts all the Eulerian orbits, where reversing the direction of an orbit
is considered as a new orbit, but a cyclic shift of the orbit does not count as a new orbit.

Substituting in (5.7 gives

1 *
SE DL ApA;m 0198,
p,q Eulerian

The GOE form factor is Kgor(1/2) ~ 0.6534, whereas the numerics gives Ky (1/2) ~ 0.9335 £
0.02. Hence, the contribution of the Eulerian cycles explains slightly more than 70% of this
mismatch. This is satisfying since in general the numerical values at 7 = 5 for even n are
higher than the GOE prediction (and it is lower for odd values of n), which is due to the

staggering phenomenon mentioned at the end of the previous subsection.

We note that the octahedron has many periodic orbits which consist of 12 edges; there are
more than 1.4 - 10% of those. We get this number by computing % tr (C 12) = 1398784, where
C' is the 6 x 6 adjacency (connectivity) matrix of the octahedron graph. But, we take in
consideration that computing via the trace of C'? underestimates the orbits p with repetition
number 7, > 1 (for those orbits we should divide the trace by 12/7, and not by the global
factor 12 as we do). Overall, we see that the number of Eulerian cycles is less than 0.05%
from all the periodic orbits of size 12 (of the octahedron). Their substantial effect on the
form factor is not because of their number, but it is thanks to the constructive interference
between every two such periodic orbits. Namely, for the Eulerian cycles all the terms in the
sum qu Eulerian ApAq are of positive sign and hence their contribution is constructive. This
explains the dominance of the Eulerian cycles in this case and the dominance of the observed
peek at 7 = 1/2.

We complement this computation by mentioning that changing the vertex conditions from
preferred orientation to Neumann-Kirchhoff does not affect the result and the existence of
the peak (see Figure Right). Indeed, the transmission amplitude of a scattering event
for Neumann-Kirchhoff conditions is 2/d, which equalsﬂ the transmission coefficient in the
preferred orientation conditions. Therefore the contribution of the Eulerian cycles computed
in is exactly the same if preferred orientation conditions are changed into Neumann-

Kirchhoff.

Experimentally, we have observed the appearance of such a peak at 7 = 1/2 also for the
complete graph K5 (see Figure [5.3)). Repeating the computation above for K5 gives

1 . 12\ 2
5 Z ApAy =2F (5] (Neue(K5))* ~ 0332, (5.8)
p,q Eulerian

4Up to sign which is always canceled in our case, as was already mentioned.
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where we used that K3 is a d-regular graph with d = 4, E = 10, and Ngye (K5) = 264. The
computation in (b.8) agrees with the difference between the numerical (eigenphases) and the
theoretical value, which is about 0.324.

Furthermore, we observe in the form factor for K5 similar peaks at multiples of 7 = 1/2. A
first attempt to explain those might be via orbits which are concatenation of a few Eulerian
cycles (not necessarily a repetition of the same Eulerian cycle, but rather combining a few).
But, such computations do not yield satisfactory values; the problem of providing a complete
explanation for these particular peaks is still open.

2.00 2.00
1754 1754
1.50 4 1.50 4
5 1251 5 1251
- -
@ @
L 1.004 L 1.004
£ £
2 075 2 075
0.50 GOE 0.50 GOE
0.25 —— Eigenvalues numerical data 0.25 —— Eigenvalues numerical data
—— Eigenphases numerical data —— Eigenphases numerical data
0.00 T T T T T 0.00 T T T T T
0.0 0.5 1.0 15 2.0 2.5 3.0 0.0 0.5 1.0 15 2.0 2.5
T T

FIGURE 5.3. The form factor of the K5 graph. Numerics of eigenvalues (red),
numerics of the eigenphases (blue) and the theoretical GOE (green). Left:
with preferred orientation vertex conditions. Right: with Neumann-Kirchhoff
vertex conditions.

We end this section by pointing out that the peak at 7 = 1/2 (and sometimes at its multiple)
does not appear for every graph. For example, we do not see such peaks for graphs which
are not Eulerian (i.e., they have no Eulerian cycles). A graph is Eulerian if and only if all
of its vertices are of even degree; so complete graphs of the form K, are not Eulerian and
indeed do not show these peaks. Nevertheless, even in the form factor of Eulerian graphs
we do not necessarily see the aforementioned peaks. To give an example, this is the case
with K7 and Ky, as may be seen in Figure If we repeat the computation in for
K7, substituting F = 21, d = 6 and Ngye (K7) = 129976320, we get that Eulerian cycles
contribute 0.00162 to the form factor at 7 = 1/2. This is indeed negligible comparing to the
GOE value, Kcor(1/2) ~ 0.6534, so no peak is seen in this case.

Similarly, repeating the computation in (5.8) for Ky, substituting £ = 36, d = 8 and
NEuler(K9) = 911520057021235200, we get that Eulerian cycles contribute 6.7 - 1077 to the
form factor at 7 = 1/2, which is again negligible comparing to the GOE value.

We end by returning to the asymptotic computation of complete graphs from the previous
subsection and checking whether the peak at 7 = /2 appears there. The asymptotic formula
for the number of Eulerian cycles in complete graphs K,, (where n is odd and tends to infinity)
is known to be (see [MRO9S]),

Nputer (Kp) = 20000/ 21/26 =012/ 241112, (=)0 1/2 (1 4 O(y~1/24€) ),

Using this asymptotics in 1) with £ = (g) and d = n — 1 gives that the contribution to the
form factor is of order
2(2n2_n_3)/2ﬂ_1/Qe_n12/2+11/12n—(n—3)(n+2)/2(1 + O(n—1/2+e))

)

which converges to 0, as n tends to infinity.

3.0
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5.3. The problem of counting Eulerian cycles. The general problem of counting the
exact number of Eulerian cycles of an undirected graph belongs to the class of #p-complete
problems [BWO05]. This means in particular that there is no known polynomial time algorithm
which solves it. Furthermore, if such polynomial solution is found it would imply that all #p
problemf] could also be solved in polynomial time, which would lead to significant implications
in computational complexity theory. We do not aim here to cover the background on this
computational problem and merely mention a very recent preprint which offers a new approach
and reviews the existing literature [Luo25]. The problem of counting periodic orbits and even
estimating their number or providing asymptotics plays an important role in quantum chaos,
as it allows a better control when using trace formulae for the study of spectral statistics. The
orbit counting problem is relevant for graphs, as well as for the case of symbolic dynamics.
In both cases one wishes to cluster the periodic orbits according to the relevant problem.
For example, in the case of metric graphs one would like to cluster all orbits According to
their support. Such a cluster would contain all orbits, which share the number of times they
transverse each of the graph edges. Using this approach and offering numerical as well as
analytical solutions to it was done in [KSO1l, [EHH25| [Tan00l, Ber06, [SS00L [SS01), [GS07] for
specific families of metric graphs and in [GO13bl [GO13a] for general systems, by considering
symbolic dynamics.

We mention here two different algorithms which we have used in order to exactly count the
number of Eulerian cycles in the graphs considered in this paper.

First, we note that in the case of a directed graph there is a well-known polynomial time
algorithm to count the number of Eulerian cycles. This algorithm is based on the BEST
theorem (after de Bruijn, van Aardenne-Ehrenfest, Smith, and Tutte) which provides an
explicit formula for the number of Eulerian cycles in terms of the number of spanning trees
of a graph [vAEdB51, [ST41]. One may apply such an algorithm straightforwardly to our
problem (i.e., counting for non-directed graphs): enumerate over all possible assignments of
directions of edges and for each perform the BEST algorithm. This is clearly exponential
in the number of graph edges due to the enumeration, but may still be performed for small
enough graphs. Indeed, we used this for the computation of the Ngyer values given in the
previous subsection.

The other algorithm we have used is new, to the best of our knowledge, and we describe it in
detail in Appendix [A] Both algorithms are of similar order of complexity, but the algorithm
provided in the appendix may be used to count other families of periodic orbits beyond
FEulerian cycles and also to evaluate their contribution to the spectral statistics.
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APPENDIX A. AN ALGORITHM FOR COUNTING PERIODIC ORBITS

We present here a procedure for counting families periodic orbits. We applied it numerically
or the counting of Eulerian cycles which play important role in the current work. Nevertheless,
this scheme may be applied for counting various types of orbits.

A.1. The adjacency matrix for orbit counting. Let I" be a directed graph with the vertex
set V and the directed edge set £. We consider here edge sets with the property e € £ < é € &£,
where é denotes the reverse direction of an edge e. As a starting point for counting periodic
orbits we use the graph adjacency matrix A(T'), which is a V' x V matrix such that

(AT, = 1 (4,7) is a directed edge (A1)
“ 10 otherwise ’ '

where we assume that two vertices may be connected by at most a single edge. Because
every directed edge also appears with its reverse direction, we get that the matrix A is sym-
metric, A;; = Aj;. Observe that the number of periodic orbits of length n of the graph
is characterized by tr (A™). Here, one should be careful because some orbits are counted
with multiplicity. Specifically, the periodic orbits are counted in tr (A™) with some factor
which is due to taking cyclic permutations. Namely, a certain orbit (vq,vs,...,v,,v1) with
all vertices different v; # v; will be counted n times in ¢r (A™), since all its cyclic permuta-
tions (Vk, Vg41,---,Un,V1,02,...,0;), for 1 < k < n, will be counted. There are particular
orbits which are repetitions of shorter orbits, such as p = (v1,v2,...,Vm, V1,02, .., Uy - .-,
U1,02,...,Vpy). Here we assume as before that v; # v; for 1 < 4,5 < m and that repeated
vertices are indicated explicitly. In such a case we get that m | n (i.e., m divides n) and
further denote rp := >, which is called the repetition number of the orbit p. Using this
notation, we see that each periodic orbit of length n is counted exactly n/rp times in tr (A™).
We summarize this by writing

tr (A") = Z :;:n Z 7’1p’ (A.2)

pEPO, pEPO,

where PO, is the set of periodic orbits of length n, and ry is the repetition number of the
orbit p.

A.2. counting orbits of subgraphs. Next, we wish to count the orbits of subgraphs of T'.
To do so, we repeat exactly the same arguments of the previous subsection, but for a modified
adjacency matrix. Explicitly, let [ be a subgraph of I having the same vertex set V as I', but
only a subset of the directed edges ECE (for example, in this subset it might happen that
a certain edge appears but its reverse does not). We construct the adjacency matrix A(f) of
the subgraph as a V' x V matrix such that

0 otherwise

We still have that the analogue of (A.2) holds, but obviously in the sum on the right hand
side only periodic orbits which are supported on the edges set £ are taken into account.

A.3. Introducing vectors of counts. We introduce the following notation for the power
set of the edge set, B := Z';‘. With this notation there is a bijection between subsets EcCe
and b € B, and we may think of the latter as sequences of bits of length |£|. From now on,
we fix n (the length of the periodic orbits we are counting) and denote

N, = tr (A(f)”) : (A.3)
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where b € B corresponds to the edge subset & of the subgraph I'. We note that NQ counts the
periodic orbits whose support is b or a subset of b (where b is understood from now on as an
edge subset).

We denote by supp(p) the subset of edges which the periodic orbit p contains, and allow
ourselves to write supp(p) € B, thanks to the bijection between 5 and edge subsets. It might
be that a certain edge appears more than once in p, but such information is not reflected in
the notation supp(p).

With that notation we write (following (A.2),

~ 1

Ny = — A4
b n Z ro ) ( )

supp(p)Ch

and

1

Ny:=n — A5

b > ~ (A.5)
supp(p)=b

where we sum only over p € PO, ,and noting that the difference between be and N, is

whether the considered periodic orbits are supported exactly on b or on some subset of it.

I8|

We consider the vectors (be)b 5 and (Nb) pep S vectors of lengths 2/¢!. Namely, N N e N2
b) e o)y
where Ng := N U {0}.

The vector (Né)beB
we demonstrate how it can be used to count Eulerian cycles. We start by observing that there
are necessary conditions which a certain b € B must fulfill in order to be the support of an
Eulerian cycle. Namely, b should correspond to a subset € C £ which contains exactly IE] /2
edges and satisfies e € € < & ¢ € (but this is not a sufficient condition). We denote the set

of these admissible b values by Bgyler- Using this, the number of Eulerian cycles of the graph
I'is

may be used to count various families of periodic orbits. As an example,

NEuler(F): el Z Nba (A6)

where we used (A.5)) and that n = |£| /2 and that 7, = 1 for an Eulerian cycle p.

in terms of the vector (]A\}Q> . The

Next, we describe how to express the vector (Nb) e
- be

beB
latter vector was already explicitly expressed in (A.3]).

A.4. Transform from be to Np. We keep in mind that 1 < n < |&] is fixed throughout the
section (for Eulerian cycles one takes n = || /2 , but we continue describing the scheme for
an arbitrary value of n). By definition and from (A.4)) and (A.5)), one observes that the values

(Nb) peg ay be expressed in terms of ]\71) e by using the inclusion—exclusion principle. To
e ~/ be

write this, we introduce a few additional notations. Denote by popent(b) the number of 1’s
which b contains. Furthermore, if b beB correspond to some edge subsets 5 £ C € then we
denote b C b iff £ C £. We further emphasize this by writing that bC b iff b&b = b where
notation & is the pair-wise ’AND’ operation between bits. Given b € B we denote for all
keN,

By(k) := {b € B : b C b and popent(b) = popent(b) — k} .

Using these notation we employ the inclusion—exclusion principle and get

YoON+ D> N - (=) Y N (DT YN, (AT)

beBy(1) beBy(2) beBy(n—1) gezsé( n)
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where we use that popent(b) < n. Note also that By(k) = 0 for k& > popent(b) and
By(popent(b)) = {(0,...,0)} and N, o) = 0; which means in particular that the last sum-

N; = 0.

mand in (A.7) always vanishes (—1)"

bEBy(n)

Let us consider (Nb) pep and (N-5> v B8 vectors in RB, recalling that |B| = 2/€l. Equation
=2 2/ be

A.7)) presents the vector (Nb) as a linear transform of the vector (ﬁ~)~ 5 Denoting the
N €

beB b b
matrix representing this linear transformation by Y|g|, we see that its entries are 0, =1 and
furthermore it has a recursive representation as

1 0

Y, =Y1®Y,.1, Vn>1, (AS)

where ® denotes the Kronecker product of matrices. This transform is also known as the
arithmetic transform, which is closely related to the well-known Walsh-Hadamard transform
[Arn1i].

This special form of the matrices allows an efficient algorithm which multiplies the matrix

Y|e| with the vector <N'I§>'g 5 to obtain the vector (Nb)beB'
=z e -

similar to the fast Walsh-Hadamard. Its complexity is |B|log (|B]) = |£|2/€! instead of the
usual complexity of multiplying a matrix by a vector (which is |B |2 = 221l in our case).

This algorithm uses a method

A.5. Algorithmic summary and complexity. We summarize the steps of the algorithm
described above for computing Ngye;(I') and its overall complexity:

(1) Preparing the vector (Nb>b 5?38 in (A.3). We need to perform |B| = 2/€l times the
~/ be

computation tr (A(f)'g / 2> (with a different sub-graph T every time). Overall the

complexity is O (2'5‘ V[*log \5\), with 2.37 < k < 3 (k depends on the multiplication
algorithm we choose, see e.g. [AFLG15]).
(2) Transforming (]VQ>

into (NQ) peg USING the arithmetic transform given by (A.8|).

beB
The complexity is O (|B|log (|B])) = O (€] 2/€1).
(3) Summing the relevant entries of (NQ) pep: See li Overall it means to sum |Bgyjer| =

2112 antries.

The total complexity is hence O <2|g| (|5| + V¥ log |5|)) with 2.37 < k < 3 (depending on

the multiplication algorithm).

A.6. Concluding remarks and variations on the algorithm. A first variation on the
scheme described above would be to replace the adjacency matrix A in by the overall
|E| x |€| scattering matrix, S or some modifications of it. For example, we may use an
|E] x |€] matrix M, defined by M; ; = S%j to evaluate the diagonal approximation as in .

Specifically, one may take the analogue of (A.3) to define NQ = tr (M(f)”) Transforming

NQ (by the same arithmetic transform) gives the vector Nj, the sum of whose entries is the
corresponding value of the diagonal approximation.

Another variation of the algorithm is relevant for its implementation. Rather then fixing
a single value of n and raising all matrices to this power n, one may take several such n

values and correspondingly prepare several vectors (be)b 5 (one for each power n). Then
~/be
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the arithmetic transform to turn them into (NQ)
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peg May be done in parallel, thus making the

computation more efficient.
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