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Abstract. We study periodic approximations of aperiodic Schrödinger operators on lattices in
Lie groups with dilation structure. The potentials arise through symbolic substitution systems
that have been recently introduced in this setting. We characterize convergence of spectra of
associated Schrödinger operators in the Hausdorff distance via properties of finite graphs. As
a consequence, new examples of periodic approximations are obtained. We further prove that
there are substitution systems that do not admit periodic approximations in higher dimensions,
in contrast to the one-dimensional case. On the other hand, if the spectra converges, then we
show that the rate of convergence is necessarily exponentially fast. These results are new even
for substitutions over Zd.
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1. Introduction and guiding example

For a finite set A ⊆ R and a function V : Zd → A, consider the self-adjoint and bounded operator
HV : ℓ2(Zd) → ℓ2(Zd) defined by

(1.1) (HV ψ)(γ) :=
∑

η∈Zd: |η−γ|≤1

ψ(η) + V (γ)ψ(γ), ψ ∈ ℓ2(Zd), γ ∈ Zd.

Though determining the spectrum σ(HV ) and its properties is very hard in general, the precise
structure of V may allow one to get some insights into the spectral theory of HV . For instance,
such potentials can be found in the theory of aperiodic order. For background information on
aperiodic order and its interrelations with spectral theory, we refer to the monographs [Que10,
BG13]. In the one-dimensional case, there are various powerful methods to explore the spectral
properties of such operators, depending on the nature of the potential, see e.g. [Tes00, DEG15,
Dam17, Jit19]. Generally, less techniques are available in higher dimensions. There are some
explicit results for the combinatorial Laplacian or the adjacency operator, see for instance the
survey [MW89], [BVZ97, KS99] for Heisenberg Cayley graphs, [GZ01, BW05, GLN16, GS21] for the
Lamplighter group and related graphs, or [GLN18, GNP22] for certain Schreier graphs. In addition,
interesting developments were achieved for trees [KLW12, KLW13, KLW15, ABS20]. However,
the picture becomes much less clear for aperiodic operators in higher dimensions. An approach
in this direction is to deal with dynamically-defined potentials [Dam17, BBDN18] and to find
suitable periodic approximations. The latter are of particular interest since they can be studied
via Floquet-Bloch theory [RS78, Kuc16]. Here, V is called periodic if there are only finitely many
translations of V by elements in Zd. For instance, they can be used to numerically compute the
spectrum [BBDN18], detect spectral gaps [CEY90, HMT24], prove convergence of the Lebesgue
measures [AvMS90, Las94], estimate fractal dimensions of the spectrum by finding suitable covers
[LW04, DT07, DEGT08, DGY16] or to prove that all possible spectral gaps are there [Ray95,
DGY16, BBL24].

The theme of this work is to address the issue whether the spectra as sets converge in the Haus-
dorff metric, cf. [Ell82, BIT91, BBDN18]. If so, one might also attempt to estimate the rate of
convergence, see e.g. [CEY90, AvMS90, Bel94, CP12, BBC19, BT21]. We answer these questions
affirmatively in this work for specific potentials defined by substitutions. The latter are local infla-
tion rules [Que10, BG13] describing the potential V and are of particular interest in the areas of
aperiodic order and symbolic dynamics. We adopt the framework from [BHP21], where substitution
systems are defined via a lattice Γ in a Lie group with dilation structure, generalizing the classical
set-ups over Z and Zd. For a given potential V , we construct a sequence (Vn) of potentials by
iterating the substitution rule on an initial configuration. The main results of the present paper
can be summarized as follows.

• We characterize the convergence of σ(HVn) towards σ(HV ) in the Hausdorff metric, see
Theorem 2.14. In particular, we give a verifiable criterion over finite graphs associated with
the substitution. The construction of these graphs depends on a geometric notion that will
be called testing tuples, cf. Definition 2.11.

• We show that if σ(HVn
) converges to σ(HV ), then the Hausdorff distance of the spectra

necessarily decays exponentially fast, see Corollary 2.19 as a consequence of Theorem 2.18.
• We investigate the conditions for convergence and compute testing tuples in concrete ex-

amples, see Section 3.1 for block subsitutions over Γ = Zd and Section 3.2 for the discrete
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Heisenberg group Γ = H3(2Z). For the Heisenberg group, we also give explicit examples of
aperiodic configurations admitting periodic approximations.

• We show that for Γ = Z2 not all periodic initial configurations are suitable for approxima-
tion, see Corollary 1.2, and that periodic approximations might not exist at all for certain
substitutions, see Corollary 2.17.

If Γ = Z, the methods of this paper can also be applied to substitution systems which are not
of constant length. This is worked out in [Ten24a]. For Sturmian Hamiltonians, explicit spectral
estimates have been recently proven in [BBT24]. For rotation numbers with eventually periodic
continued fraction expansion, the underlying dynamical systems come from substitutions. In these
cases, [BBT24] provides the analogous results for Corollary 2.19.

The paper is organized as follows. We introduce some preliminaries in Section 1.1 and illustrate
our results for the guiding example of the table tiling substitution in Section 1.2. Section 2 is de-
voted to the presentation of the main results of our work. The framework for symbolic substitution
systems, along with some results needed for our purposes are introduced in Section 2.1. We define
the concepts of substitution graphs and testing domain in Section 2.2. These objects play a funda-
mental role in our first main theorem, Theorem 2.14 on the characterization of convergence, stated
in Section 2.3. As a consequence, one also obtains existence of aperiodic substitution systems that
are not periodically approximable, cf. Corollary 2.17. The second main theorem, Theorem 2.18,
concerning convergence with exponential speed, is formulated in Section 2.4. We derive in Corol-
lary 2.19 exponential convergence of the spectra with respect to the Hausdorff distance. Section 3
is devoted to the construction of testing tuples for explicit examples. This concerns block substi-
tutions for Γ = Zd (see Proposition 3.2 in Section 3.1) and substitution systems over the discrete
Heisenberg group Γ = H3(2Z) (see Proposition 3.3 in Section 3.2). In Section 4 we give the proof
of Theorem 2.14, our first main theorem. The following Section 5 is concerned with the proof of
Theorem 2.18, our second main theorem. In Section 5.3 we additionally obtain a lower bound on
the convergence rate, see Proposition 5.8. In the final Section 6, we provide an algorithm, along
with its mathematical foundation, to reduce the size of giving testing domains. Using computer
assistence, we obtain a rather small testing domain for the Heisenberg group, see Proposition 6.5.

Acknowledgements. L.T. wishes to thank Alan Lew and Philipp Bartmann for insightful dis-
cussions. We wish to thank Daniel Lenz for pointing out his work on densely repetitive Delone
sets [Len04], which was helpful for deriving the bounds in Section 5.3. The authors are grateful to
Pascal Vanier for discussions on the results in [DLS05, Oll08, JV20, Bal09]. This work was par-
tially supported by the Deutsche Forschungsgemeinschaft [BE 6789/1-1 to S.B.] and [PO 2383/2-1
to F.P.]. R.B. and L.T. were supported by the Israel Science Foundation (ISF Grant No. 844/19).
We are grateful for the hospitality and the excellent working conditions provided by the University
of Leipzig, University of Potsdam and the Technion during mutual visits.

1.1. The underlying dynamical system. Let Γ be a a countable discrete group. Important
examples are Γ = Zd or the discrete Heisenberg group Γ = H3(Z). Suppose that the potential
V : Γ → R takes only finitely many values. Then the finite set A := {V (γ) | γ ∈ Γ} is called the
alphabet. The potential V can be seen as an element of the product space AΓ =

{
ω : Γ → A

}
, which

we call the configuration space. A specific metric on AΓ is defined as follows: suppose that there
is a left-invariant metric dΓ on Γ, i.e. dΓ(γη1, γη2) = dΓ(η1, η2) for all γ, η1, η2 ∈ Γ. For instance,
Γ = Zd can be equipped with the Euclidean metric dΓ, or the Heisenberg group Γ = H3(Z) can be
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equipped with the metric inherited from the Cygan-Korányi norm, see equation (3.1) below. Then

(1.2) dc(ω, ρ) := inf
{ 1
r + 1

∣∣∣ r ≥ 0 such that ω|B(e,r) = ρ|B(e,r)

}
, ω, ρ ∈ AΓ,

defines an ultra metric on the configuration space AΓ. Here B(e, r) := {γ ∈ Γ | dΓ(γ, e) < r} denotes
the open ball of radius r in Γ around the neutral element e ∈ Γ. The group Γ acts continuously on
AΓ via left translations

(γω)(η) := ω(γ−1η) for all γ, η ∈ Γ.
Thus, (AΓ,Γ) defines, via the previously defined action, a dynamical system. A nonempty set
Ω ⊆ AΓ is called invariant if γΩ ⊆ Ω for all γ ∈ Γ. Then the space of subshifts is defined by

J :=
{

Ω ⊆ AΓ| Ω is invariant, closed, nonempty
}
.

Particular elements of interest in J are the orbit closures Orb(ω) for ω ∈ AΓ where Orb(ω) :=
{γω | γ ∈ Γ}. We are mainly interested in the subshift generated by the potential V , namely
Orb(V ) ∈ J . The set J is naturally equipped with a metric – the Hausdorff metric inherited from
dc – that encodes spectral properties [BBDN18, BBC19, BP20, BT21].

We first recall the definition of the Hausdorff distance. Let (X, d) be a metric space and K(X) be the
set of all nonempty compact subsets of X. Then, the Hausdorff metric between two A,B ∈ K(X)
is defined by

dH(A,B) = max
{

sup
a∈A

dist(a,B), sup
b∈B

dist(b, A)
}
,

where dist(a,B) := infb′∈B d(a, b′). By definition, the Hausdorff metric is induced from the under-
lying metric d on X. We are mainly interested in the case

• X = R with Hausdorff metric dH on K(R) induced by the Euclidean distance | · |; and
• X = AΓ with Hausdorff metric δH induced by the metric dc and its restriction to J ⊆

K(AΓ).
Note that (J , δH) is itself a compact metric space since J ⊆ K(AΓ) is closed, see [BBDN18,
Proposition 4]. The Hausdorff metric δH on J can be expressed by local patches of configurations
(see equation (1.3) below), which we briefly introduce.
For M ⊆ Γ, a map P : M → A is called a patch with support M . If M is finite, then P is a finite
patch. The set of all patches is denoted by Pat(AΓ). Note that Pat(AΓ) includes the empty patch
ø ∈ A∅ and infinite patches such as elements of AΓ. A patch P ∈ AM is a subpatch of Q ∈ AK

(P ≺ Q) if there is a γ ∈ Γ such that γM ⊆ K and Q(γη) = P (η) for all η ∈ M . By convention,
the empty patch ø ∈ A∅ is a subpatch of any configuration ω ∈ AΓ. Clearly, the relation ≺
defined on patches is reflexive, antisymmetric and transitive. For ω ∈ AΓ, the associated dictionary
W (ω) is the set of all finite subpatches of ω ∈ AΓ. Similarly, one defines W (Ω) :=

⋃
ω∈Ω W (ω)

for a subshift Ω ∈ J . For a finite set M ⊆ Γ, define W (ω)M := W (ω) ∩ AM for ω ∈ AΓ and
W (Ω)M := W (Ω) ∩ AM for Ω ∈ J . With this at hand, we get

(1.3) δH(Ω1,Ω2) = inf
{

1
r + 1

∣∣∣∣ r ≥ 0 such that W (Ω1)B(e,r) = W (Ω2)B(e,r)

}
, Ω1,Ω2 ∈ J ,

from our choice of the dc on AΓ and the definition of the Hausdorff metric. Note that by convention
W (Ω)B(e,0) = {ø}.
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A Schrödinger operator H with finite range is a family of self-adjoint operators Hω : ℓ2(Γ) → ℓ2(Γ)
for ω ∈ AΓ defined by
(1.4) (Hωψ)(γ) :=

∑
η∈B

tη
(
γ−1ω

)
ψ(γη), ψ ∈ ℓ2(Γ), γ ∈ Γ,

where B ⊆ Γ is finite with B = B−1 while tη : AΓ → C, η ∈ B, are continuous and satisfy that
tη(ω) = tη−1(ηω), where z is the complex conjugate of z. The latter conditions guarantee that Hω

is self-adjoint for each ω ∈ AΓ. Thus, the spectrum σ(Hω) of Hω is a compact subset of R. We
say H is strongly pattern equivariant if the coefficients tη : AΓ → C, η ∈ B, are continuous and
take finitely many values. These conditions are equivalent to tη being locally constant. Thus, the
value tη(ω) depends only on the patch ω|B(e,r) for suitable r > 0. The operator defined in (1.1)
is a strongly pattern equivariant Schrödinger operator with finite range using the viewpoint that
V ∈ AΓ.
Recently, it was shown that the convergence of dynamical systems in (J , δH) is tightly connected
to the convergence of the spectrum of such operators in (K(R), dH) [BBDN18, BBC19, BT21] and
other spectral quantities [BP20] if Γ is amenable. This is the starting point of this work.
Let Ω ∈ J . To study the spectral properties of Schrödinger operators associated with ω ∈ Ω,
one aims to find periodic approximations. Here, a configuration ω0 ∈ AΓ is periodic, if its orbit
Orb(ω0) is finite. Then Ω is periodically approximable if there is a sequence of periodic ωn ∈ AΓ

such that limn→∞ δH

(
Orb(ωn),Ω

)
= 0. In combination with the results obtained in [BBDN18,

BBC19, BT21], we obtain periodic approximations of the associated Schrödinger operators and
their spectra. Thus, the question arises when a subshift is periodically approximable.
Our main results hold for a quite general setup. Concretely, we consider subshifts defined via
substitutions on lattices in homogeneous Lie groups that were recently introduced [BHP21]. Since
the formal statements need some more introduction, we start presenting the main results along
a guiding example, namely the table tiling substitution. Later we also provide an example on a
non-abelian group Γ – the discrete Heisenberg group, see Section 3.2.

1.2. A guiding example: The table tiling substitution. Let A = { , , , }, Γ = Z2 and
K = {−1, 0}2. The table tiling substitution is defined by a substitution rule S0 : A → AK where

S0( ) := , S0( ) := , S0( ) := , S0( ) := .

1

It is standard to extend a substitution rule S0 to a substitution map S : Pat(AZ2) → Pat(AZ2) by
acting letter wise, see e.g. [Que10, Chapter 5.1] and [BG13, Chapter 4.9]. Note that the restriction
S : AZ2 → AZ2 is continuous. For convenience of the reader, the concrete mathematical statement
is provided in a more general setting in Proposition 2.4 originating from [BHP21, Proposition 2.7].
For now, the idea of extending the substitution rule is sketched in Figure 1.
A patch P ∈ AM is called S-legal (with respect to the table tiling substitution) if there exists a
letter a ∈ A and an integer n ∈ N such that P ≺ Sn(a). The set of all S-legal patches is denoted
by W (S), which defines a dictionary. For instance, the S-legal patches with support T = {0, 1}2

are given in Figure 2, see e.g. [BG13, Remark 4.17].
The associated subshift of the table tiling substitution is given by

Ω(S) :=
{
ω ∈ AZ2

|W (ω) ⊆ W (S)
}

∈ J .
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S S S

1

Figure 1. The first three iterations of the table tiling substitution starting from
the letter •.

W (S)T :={ }, , , , , , , , , , , ,

, , , , , , , , , , ,

1

Figure 2. The S-legal patches for the table tiling substitution with support T =
{0, 1}2.

The typical approach to construct periodic approximations for Ω(S) is to take a singular configu-
ration ωa, that is constantly equal to a fixed letter in a ∈ A and apply the substitution Sn(ωa).
While this approach works in the typical cases (but not all see [Ten24a, Section 2]) if Γ = Z, it fails
for any letter in our example, see Corollary 1.2 below.
In order to resolve this issue, we show that the convergence can be checked by studying a finite
graph associated with the substitution. In order to do so, let us shortly recall some basic graph
theoretic notions. We call G = (V, E) a directed graph with vertex set V and edge set E ⊆ V × V,
if V is a finite (nonempty) set. A tuple (v, w) ∈ E is a directed edge from v to w. A (directed)
path of length ℓ ∈ N in G is a finite tuple (v0, v1, ..., vℓ) ∈ Vℓ+1, such that (vj , vj+1) ∈ E for every
0 ≤ j ≤ ℓ − 1. A path (v0, ..., vℓ) in G is called a closed path if v0 = vℓ. A path (v0, ..., vℓ) in G is
called a subpath of (u0, ..., uℓ̃), if ℓ ≤ ℓ̃ and there exists an 0 ≤ i ≤ ℓ̃ such that vj = ui+j for every
0 ≤ j ≤ ℓ.
For T := {0, 1}2, we define the graph Gtable associated with the table tiling substitution by the
directed graph with vertex set V = AT and the edge set E defined by

(P,Q) ∈ E :⇐⇒ Q ≺ S(P ) and P,Q ̸∈ W (S).

We note that while the graph is finite its vertex set has |AT | = 256 vertices where |AT | denotes the
cardinality of the set AT . A sketch of a subgraph of Gtable is provided in Figure 3.
With this at hand, we obtain the following special case of our main result (Theorem 2.14).

Proposition 1.1. The following assertions are equivalent for the table tiling substitution and ω0 ∈
AZ2 and T := {0, 1}2.

(i) For all Schrödinger operators H with finite range, we have

lim
n→∞

σ(HSn(ω0)) = σ(Hω), ω ∈ Ω(S),

(ii) We have lim
n→∞

δH

(
Orb(Sn(ω0)),Ω(S)

)
= 0.
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pr = py = pb = pg =

1

Figure 3. Parts of the graph Gtable are plotted.

(iii) Each directed path in Gtable, starting in a vertex of W (ω0)T ⊆ AT , does not contain a closed
subpath.

In particular, if W (ω0)T ⊆ W (S), then these equivalent conditions are satisfied.

Proof. Due to Proposition 3.1, the table tiling substitution falls in our general setting of substitu-
tions defined in Section 2 and it is elementary to check that the table tiling substitution is primitive
(Definition 2.7). Then the statement follows from the main Theorem 2.14 in combintation with
Proposition 3.2. □

Corollary 1.2. Let S be the table tiling substitution map. For a ∈ A, define ωa ∈ AΓ by ωa(γ) = a
for all γ ∈ Z2. Then

lim
n→∞

Orb(Sn(ωa)) ̸= Ω(S), a ∈ A.
In particular, for each a ∈ A, there is a Schrödinger operator H with finite range such that

lim
n→∞

σ(HSn(ωa)) ̸= σ(Hω), ω ∈ Ω(S).

Proof. Define pa ∈ AT to be pa(γ) = a for γ ∈ T = {0, 1}2. The vertex pa ∈ W (ωa)T is contained
in a closed subpath in Gtable, see Figure 3. Thus, Proposition 1.1 (iii) does not hold, proving the
statement. □

On the positive side, Proposition 1.1 allows us also to find periodic approximations for the table
tiling. Define ωrb, ωgy ∈ AZ2 , by

ωrb(γ) :=
{

•, γ ∈ (2Z)2 ∪ (1, 1) + (2Z)2,

•, else,
, ωgy(γ) :=

{
◦, γ ∈ (2Z)2 ∪ (1, 1) + (2Z)2,

•, else,

for γ ∈ Z2, see a sketch in Figure 4. Clearly, Orb(ωrb) and Orb(ωgy) contain only two different
elements, namely they are periodic.
Proposition 1.3. Let S be the table tiling substitution. Then Ω(S) is periodically approximable
and

lim
n→∞

Orb
(
Sn(ωrb)

)
= Ω(S) = lim

n→∞
Orb

(
Sn(ωgy)

)
.

Moreover, for each strongly pattern equivariant Schrödinger operator H with finite range, we have
for i ∈ {rb, gy},

dH

(
σ(HSn(ωi)), σ(Hω)

)
≤ max{2CLR, 4}

2n
, ω ∈ Ω(S), n ≥ log(2CLR)

log(2) ,

where CLR > 0 is the linear repetitivity constant of the table tiling.
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ωrb

S

S(ωrb)

ωgy

S

S(ωgy)

1

Figure 4. The configurations ωrb, S(ωrb), ωgy, S(ωgy) ∈ AZ2 are plotted. The
gray shaded area indicated the block that is periodically extended.

Remark 1.4. Note that Sn(ωrb) and Sn(ωgy) are periodic by Proposition 2.15. Moreover, Ω(S) is
linearly repetitive (see Definition 2.8) with linear repetitivity constant CLR > 0 since S is primitive.

Proof. Let T = {0, 1}2. Using Figure 2 and Figure 4, we obtain W (ωrb)T ⊆ W (S) and W (ωgy)T ⊆
W (S). Thus, limn→∞ Orb(Sn(ωi)) = Ω(S) follows from Proposition 1.1 for i ∈ {rb, gy}. Namely,
Ω(S) is periodically approximable since Sn(ωi) is periodic by Proposition 2.15. The quantitative
estimates are now a consequence of Corollary 5.7. □

These specific periodic approximations were already found in the thesis [Bec16, Section 7.7]. How-
ever, the spectral estimates are new, as well as the fact that all single letter approximations fail to
converge. Like Proposition 1.1, these spectral estimates are a special case of our second main result
Theorem 2.18, which holds in the realm of substitutions on lattices of homogeneous Lie groups.

2. Main results for general substitution systems

In this section, we introduce the class of substitutions studied in this work following [BHP21]. In
addition, we present our main results proven in the subsequent sections and their consequences.

2.1. Symbolic substitution systems. Following [BHP21], one needs some geometric data – a
so-called dilation datum – and combinatorial data – a so-called substitution datum – to describe a
substitution on AΓ.
A tuple D =

(
G, d, (Dλ)λ>0,Γ, V

)
is called a dilation datum, if

(D1) G is a 1-connected, locally compact, second countable, Hausdorff group and d is a proper (i.e.
closed balls with finite radius are compact), left-invariant metric on G inducing the given
topology on G;

(D2) (Dλ)λ>0 is a one-parameter group of automorphisms of G, called the underlying dilation
family, such that

d
(
Dλ(g), Dλ(h)

)
= λ · d(g, h) for all λ > 0, and g, h ∈ G;

(D3) Γ < G is a uniform lattice satisfying that Dλ[Γ] ⊆ Γ for some λ > 1 and V is a Borel,
relatively compact left-fundamental domain for Γ such that e is an element in the interior of
V .

Recall that a subgroup Γ < G is called a uniform lattice of a locally compact second countable
Hausdorff group G, if Γ is a discrete co-compact group. A set V ⊆ G is called a left-fundamental
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domain for a uniform lattice Γ, if G =
⊔

γ∈Γ γV . Since we will only consider left-fundamental
domains in this work, which in addition are Borel and relatively compact, we will refer to those
simply as fundamental domains.
For a fundamental domain V , n ∈ N, λ > 1 and ∅ ≠ M ⊆ Γ, we recursively define for n ∈ N,

(2.1) Vλ(0,M) := M · V and Vλ(n,M) := Dλ

[(
V (n− 1,M) ∩ Γ

)
· V
]
.

Moreover, set Vλ(n) := Vλ(n, {e}) for n ∈ N. The intersection of Γ with these sets are precisely the
support of the iterates Sn(P ) of a patch P ∈ AM , see Proposition 2.4 (b) below.
Let D = (G, d, (Dλ)λ>0,Γ, V ) be a dilation datum. Then λ0 > 1 is called stretch factor associated
with D if Dλ0 [Γ] ⊆ Γ and λ0 is sufficiently large relative to V . Here, λ0 is called sufficiently large
relative to V if there exist a constant C− > 0, an integer s ∈ N0 := N ∪ {0} and a z ∈ Γ such that
for all n ∈ N,

Dn
λ0

[
B
(
z, C−)

]
⊆ Vλ0(s+ n).

If the underlying dilation datum D being referred to is clear, we will call λ0 just a stretch factor.
From now on, we use the notation V (n,M) = Vλ0(n,M) and V (n) = Vλ0(n) for n ∈ N0 and M ⊆ Γ
where λ0 > 1 is a fixed stretch factor.
A group Γ that is part of a dilation datum as above is called a homogeneous substitution lattice.
Restricting the metric d to Γ × Γ yields a left-invariant, proper metric dΓ on Γ. By [BHP21,
Proposition 3.36], every homogeneous substitution lattice has exact polynomial growth with respect
to dΓ, i.e., there exist constants C > 0 and κ > 0 such that

lim
r→∞

|BΓ(r)|
Crκ

= 1,

where BΓ(r) =
{
γ ∈ Γ : dΓ(e, γ) ≤ r

}
. The constant κ only depends on G, and is called the

homogeneous dimension. As a consequence, every homogeneous substitution lattice Γ is amenable,
compare with [BHP23, Proposition 4.4. (a)].
A substitution datum S := (A, λ0, S0) over a dilation datum D :=

(
G, d, (Dλ)λ>0,Γ, V

)
consists of

(S1) a finite set A called the alphabet;
(S2) a stretch factor λ0 > 1 associated with D;
(S3) a map S0 : A → ADλ0 [V ]∩Γ called the substitution rule.

Definition 2.1. A substitution on AΓ is a dilation datum D together with a substitution datum S.

Example 2.2. The table tiling substitution introduced in Section 1.2 is induced by the dilation
D :=

(
G, d, (Dλ)λ>0,Γ, V

)
where

G = R2, d(x, y) := max
1≤j≤2

|xj − yj | 1
2 , Dλ(x, y) = (λx, λy), Γ = Z2, V =

[
− 1

2 ,
1
2
)2

and the substitution datum S := (A, λ0, S0) is
A = { , , , }, λ0 = 2, S0 as defined in Section 1.2 where Dλ0 [V ] ∩ Γ = {−1, 0}2.

The reader is referred to Proposition 3.1 for more details.

Lemma 2.3 ([BHP21]). Let D = (G, d, (Dλ)λ>0,Γ, V ) be a dilation datum and r−, r+ > 0 be such
that
(2.2) B(e, r−) ⊆ V ⊆ V ⊆ B(e, r+).
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(a) If λ0 > 1+ r+
r−

, then λ0 is sufficiently large relative to V with respect to C− = r−
λ0

(
λ0 −

(
1 + r+

r−

))
,

s = 0 and z = e for all n ∈ N.
(b) If there exists an r > r+λ0

λ0−1 , an s ∈ N0 and a z ∈ Γ with B(z, r) ⊆ V (s), then λ0 is sufficiently
large relative to V with respect to C− = (r − r+) − r

λ0
, s and z.

Recall the notion Pat(AΓ) := {P : M → A |M ⊆ Γ}. With this, one has AΓ ⊆ Pat(AΓ).

Proposition 2.4 (Substitution map). Consider a substitution on AΓ with substitution datum S :=
(A, λ0, S0) over a dilation datum D :=

(
G, d, (Dλ)λ>0,Γ, V

)
. Then there exists a unique map

S : Pat(AΓ) → Pat(AΓ) such that
• Sn(γP ) = Dn

λ0
(γ)Sn(P ) holds for all P ∈ Pat(AΓ) and γ ∈ Γ, (equivariance condition)

•
(
Sn(P )

)
|V (n,M)∩Γ = Sn

(
P |M

)
for all P ∈ Pat(AΓ), n ∈ N0 and M ⊆ Γ nonempty.

(restriction condition)
Moreover, the following holds.
(a) The restriction S : AΓ → AΓ to AΓ ⊆ Pat(AΓ) is continuous.
(b) If n ∈ N0, P ∈ Pat(AΓ) has finite support M , then Sn(P ) has support V (n,M) ∩ Γ.
(c) For all n ∈ N0, γ ∈ Γ and M ⊆ Γ finite, we have V (n, γM) = Dn(γ)V (n,M).

Proof. This is proven in [BHP21, Proposition 2.7, Proposition 5.12, Lemma 5.16]. □

Definition 2.5. The unique map S : Pat(AΓ) → Pat(AΓ) in Proposition 2.4 associated with a
substitution on AΓ is called the substitution map.

By convention, we identify a letter with a patch supported on {e} where e ∈ Γ is the neutral
element. With this convention at hand, one observes

A ⊆ Pat(AΓ) and S(a) = S0(a).

Definition 2.6 (Legal patches). Consider a substitution on AΓ with substitution map S. A finite
patch P ∈ Pat(AΓ) is called S-legal if there is an n ∈ N and a letter a ∈ A satisfying P ≺ Sn(a).
The set of all S-legal patches (with support M ⊆ Γ) is denoted by W (S) respectively W (S)M .

Let P,Q ∈ Pat(AΓ). Since the subpatch relation ≺ is transitive, we have for n ∈ N0,
Q ∈ W (S) and P ≺ Sn(Q) =⇒ P ∈ W (S),

where S0(Q) = Q. Legal patches are used to define an associated subshift
Ω(S) := {ω ∈ AΓ |W (ω) ⊆ W (S)}

with a substitution map S. We are mainly interested in primitive substitutions implying that the
associated subshift Ω(S) is minimal. Here a subshift Ω ∈ J is called minimal, if Orb(ω) = Ω for
all ω ∈ Ω.

Definition 2.7 (Primitive substitution). A substitution on AΓ with substitution map S is called
primitive, if there is an L ∈ N such that for all a, b ∈ A, a ≺ SL(b).

In fact, if the substitution is primitive, then the subshift Ω(S) falls into a specific class of minimal
subshifts introduced next.

Definition 2.8 (Linearly repetitive subshifts). A subshift Ω ∈ J is called linearly repetitive, if
there is a constant C ≥ 1 such that for every r ≥ 1, R ≥ Cr and P ∈ W (Ω)B(e,R), we have

Q ≺ P for all Q ∈ W (Ω)B(e,r).
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The smallest constant CLR = C ≥ 1 satisfying the previous condition is called the linear repetitivity
constant.

Let us summarize the previously discussed properties of the subshift associated with a substitution.

Theorem 2.9. Consider a substitution on AΓ with substitution map S. Then Ω(S) ∈ J is a
subshift. If the substitution is primitive, then Ω(S) is minimal and linearly repetitive. In this case
W (S) = W (ω) holds for all ω ∈ Ω(S).

Proof. In the case of block substitutions this is well-known see e.g. [Que10, Chapter 5] and [BG13,
Chapter 4]. In the general case, this is proven in [BHP21, Theorem 7.4]. □

2.2. Substitution graphs and testing domains. We introduce substitution graphs generalizing
the graph that was introduced earlier for the table tiling substitution. Recall the basic graph
theoretic notions introduced in Section 3.1.

Definition 2.10 (Substitution graph). Consider a substitution on AΓ with substitution map S.
For a finite nonempty set K ⊆ Γ and an n ∈ N, we define the substitution graph GS(K;n) by the
directed graph with vertex set V = AK and the edge set E defined by

(P,Q) ∈ E :⇐⇒ Q ≺ Sn(P ) and P,Q ̸∈ W (S).

It is worth emphasizing that we only have edges between patches that are not S-legal (illegal). In
particular, if all patches AK are S-legal, then GS(K;n) has no edges. Therefore, for any ω ∈ AΓ,
this graph keeps track of the illegal K-patches in Sn(ω) coming from the K-patches in ω. For a
correct choice of K and n, this is the crucial part to determining whether Orb

(
Sn(ω0)

)
converges

to Ω(S) or does not.
In [Ten24a], the reader can find some graphs plotted for Γ = Z. The graph Gtable associated with
the table tiling substitution (Section 3.1) is a substitution graph with GS(T,NT ) for T = {0, 1}2

and NT = 1.
We will be interested in the substitution graph GS(T ;NT ) where (T,NT ) satisfies two additional
geometric properties with respect to the underlying dilation datum and the stretch factor λ0. This
leads to the concept of a testing tuple. Therefore, recall the notion of the supports V (n, T ) for
n ∈ N and T ⊆ Γ recursively defined in equation (2.1).

Definition 2.11. A tuple (T,NT ) is called a testing tuple (for D with associated stretch factor
λ0 > 1) if
(a) T ⊆ Γ is finite and for every r > 0, there exists an Nr(T ) ≥ 0, such that for each n ≥ Nr(T )

and x ∈ Γ, there is a γ := γ(n, x) ∈ Γ satisfying

xB(e, r) ⊆ Dn
λ0

(
γ
)
V (n, T ).

(b) NT ∈ N is the smallest integer m ∈ N such that for every x ∈ Γ, there exists a γx ∈ Γ satisfying

xT ⊆ Dm
λ0

(γx)V (m,T ).
If (T,NT ) is a testing tuple, T is also called testing domain.

Remark 2.12. Note that the testing tuple depends only on the dilation datum D and the associated
stretch factor λ0 > 1. Thus, it is independent of the alphabet A and the substitution rule.
Moreover, if (T,NT ) is a testing tuple, then (xT,NT ) is also a testing tuple for all x ∈ Γ. This
follows immediately from the identity V (n, xT ) = Dn(x)V (n, T ), see Proposition 2.4 (c).
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Example 2.13. Recall the table tiling substitution introduced in Section 1.2 fitting in our setting
(see Proposition 3.1). Then a possible testing tuple of the table tiling is (T, 1) where T = {0, 1}2, see
Proposition 3.2. Therefore the following theorem applies to the graph Gtable defined in Section 1.2.

The notion of testing tuple is fundamental to check the convergence in our main Theorem 2.14. In
particular, it is a crucial ingredient in Lemma 4.1 below.
In fact, the existence of a testing tuple is no restriction as it always exists, see Proposition 5.3. We
postpone the details for now but let us note the following. While a testing tuple always exists, it can
be hard to find a “minimal” (in terms of cardinality) testing domain. We provide in Section 6 an
algorithm [Ten24b] to reduce the size of the testing domain and apply it in the case of the Heisenberg
group. Note that the smaller the set T , the smaller the vertex set of GS(T ;NT ) is. Therefore it
is computationally easier to check the condition (iii) or (iv) in our first main Theorem 2.14 stated
below. We furthermore note that determining the growth of r 7→ Nr(T ) is essential to prove the
quantitative estimates in our second main Theorem 2.18.

2.3. First main result: Characterization of the convergence and its consequences. We
now have all at hand to formulate our first main result.

Theorem 2.14. Consider a substitution on AΓ with substitution map S. For a testing tuple (T,NT )
and ω0 ∈ AΓ the following assertions are equivalent.

(i) For all Schrödinger operators H with finite range, we have

lim
n→∞

σ(HSn(ω0)) = σ(Hω), ω ∈ Ω(S),

(ii) lim
n→∞

δH

(
Orb(Sn(ω0)),Ω(S)

)
= 0.

(iii) Each directed path in GS(T,NT ), starting in a vertex of W (ω0)T ⊆ AT , does not contain a
closed subpath.

(iv) Each directed path in GS(T,NT ), starting in a vertex of W (ω0)T ⊆ AT , is of length strictly
less than

∣∣AT
∣∣.

In particular, if W (ω0)T ⊆ W (S), then these equivalent conditions are satisfied.

We prove the theorem in Section 4.2.

The equivalence of (i) and (ii) is a consequence of [BBDN18, Corollary 1] using that every ho-
mogeneous substitution lattice is amenable. Our main contribution is the equivalence of (ii) to
(iii) and (iv). These conditions are of particular interest as they can be checked algorithmically
as demonstrated on some examples in Sections 1.2 and 3.2. Note further that one can consider a
larger class of operators associated with the dynamical systems, see [BBDN18].

The assertions in Theorem 2.14 are particularly interesting in situations where one can compute
the spectrum explicitly for the approximations HSn(ω0). This is for instance the case if Γ = Zd

and Sn(ω0) is periodic (i.e. Orb(Sn(ω0)) is finite) using the Floquet-Bloch theory. We provide in
Proposition 3.3 an example of a primitive substitution on the Heisenberg group admitting periodic
approximations. Together with the results on the bottom of the spectrum for periodic graphs given
in [Ric23], our result might provide an approach to access the bottom of the spectrum in this case.
This will be the subject of future investigations.

This motivates the task of finding conditions for the existence of periodic approximations. In order
to use Theorem 2.14, we need the following.
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Proposition 2.15. Consider a substitution on AΓ with substitution map S. If ω0 ∈ AΓ is periodic,
then Sn(ω0) is periodic for all n ∈ N. In particular, we have

Orb(Sn(ω0)) =
{
ηSn(ω0) | η ∈ (Dn[V ] ∩ Γ) ·Dn[M ]

}
, n ∈ N.

Proof. Recall that V is the fundamental domain of a uniform lattice and D := Dλ0 is the dilation
with the stretch factor λ0 > 1.
Let H := Stab(ω0) := {γ ∈ Γ | γω0 = ω0} be the stabilizer of ω0, which is a subgroup of Γ. Since
Orb(ω0) is finite, there is a finite set M ⊆ Γ such that Orb(ω0) = {ηω0 | η ∈ M}.
We first show that M · H = Γ. Clearly, M · H ⊆ Γ and so let γ ∈ Γ. Then there is an η ∈ M
such that γω0 = ηω0 or equivalently η−1γω0 = ω0. By definition of the stabilizer, we conclude
η−1γ ∈ H, namely γ ∈ ηH ⊆ M ·H.
Next, we prove Sn(ω0) is periodic. Let n ∈ N. Set Vn := Dn[V ] ∩ Γ, which satisfies Vn ·Dn[Γ] = Γ.
Then the previous considerations yield

Γ = Vn ·Dn[M ·H] = Vn ·Dn[M ] ·Dn[H],
since D is an automorphism. Define Mn := Vn · Dn[M ] ⊆ Γ, which is a finite set as Vn and M
are finite. Then for all γ ∈ Γ, there is an η ∈ Mn and a γ′ ∈ H such that γ = ηDn(γ′). Thus,
Proposition 2.4 and γ′ ∈ H lead to

γSn(ω0) = ηDn(γ′)Sn(ω0) = ηSn(γ′ω0) = ηSn(ω0).
Hence, Orb(Sn(ω0)) = {ηω0 | η ∈ Mn} and so Sn(ω0) is periodic since Mn is finite. □

Corollary 2.16. Consider a primitive substitution on AΓ with substitution map S. If ω0 ∈ AΓ is
periodic and satisfies one of the equivalent conditions in Theorem 2.14, then Ω(S) is periodically
approximable.

Proof. By Theorem 2.14, limn→∞ Orb(Sn(ω0)) = Ω(S) holds. Since ω0 is periodic, we conclude
that Sn(ω0) is also periodic, see Proposition 2.15. In particular, Orb(Sn(ω0)) = Orb(Sn(ω0)) holds
since finite sets are closed. □

According to [BBDN20, Proposition 2.11], every subshift associated with a primitive substitution
on AZ is periodically approximable. Moreover, one can conclude from Theorem 2.14 that so-called
self-correcting substitutions, see [GM13, Definition 2.7], are periodically approximable. However,
in general primitive substitutions do not give rise to periodically approximable subshifts in higher
dimensions. This is a direct consequence of Theorem 2.14 and a result from [DLS05, Oll08, Bal09]
see a summary in [JV20]. In order to do so, we call a subshift Ω ∈ J strongly aperiodic if Stab(ω) :=
{γ ∈ Γ | γω = ω} = {e} for every ω ∈ Ω. Note that substitution subshifts are a typical class used
to generate strongly aperiodic subshifts, see e.g. [Sol98, Que10, BG13, BHP21].

Corollary 2.17. There exists a strongly aperiodic, minimal subshift Ω(S) associated with a prim-
itive substitution on AZ2 such that Ω(S) is not periodically approximable.

Proof. We need to introduce some notations used in [JV20]. A subset τ ⊆ AT with T = {0, 1}2 is
called a tileset. A tileset τ is intrinsically substitutive (with factor 2), if there is a substitution on
AZ2 with substitution rule S0 : A → AT and substitution map S satisfying

• Ω(S) = Ω(τ) := {ω ∈ AZ2 |W (ω)T ⊆ τ},
• for P ∈ AM with M ⊆ Z2 finite, we have S(P ) ∈ W (S) if and only if P ∈ W (S),
• for all ω ∈ Ω(τ), there is a ρ ∈ AZ2 and a γ ∈ Z2 such that ω = γS(ρ).
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Note that Ω(τ) is also called a subshift of finite type in the literature. Moreover, this substitution
is actually a block substitution falling into our framework, see Section 3.1.
According to [DLS05, Oll08] (see also [JV20, Proposition 8]), there exists an intrinsically substitutive
tileset τ with substitution map S such that Ω(S) is strongly aperiodic. Due to [Bal09, Lemme 1.33]
this substitution is primitive. It is left to prove that Ω(S) is not periodically approximable. This
can be done using (only) the first property of an intrinsically substitutive tilset together with its
existence. In fact, by equation (1.3) and Theorem 2.14, Ω(S) is periodically approximable if and
only if there is a periodic ω0 ∈ AZ2 such that W (ω0)T ⊆ W (S)T ⊆ τ . By definition of Ω(τ) = Ω(S),
we conclude ω0 ∈ Ω(S). This contradicts that Ω(S) is strongly aperiodic. Summing up, Ω(S) is
minimal, strongly aperiodic and not periodically approximable. □

Corollary 2.16 provides a sufficient condition for subshifts that are periodically approximable gen-
eralizing the results in [BBDN20, Proposition 2.11] and [Bec16, Theorem 6.2.3]. With the previous
theorem at hand, we provide a verifiable condition for primitive substitution systems in general
to admit such periodic approximations. Moreover, Theorem 2.14 extends the result [Bec16, Theo-
rem 6.2.3] significantly.
Corollary 2.17 shows that there are substitutions on AZ2 that are not periodically approximable.
Based on this, the question arises if such a behavior also occurs for non-abelian substitution sub-
shifts. Specifically, are there primitive substitutions over a non-abelian group that are not periodi-
cally approximable?

2.4. Second main result: Exponential rate of convergence for the spectra. The exponen-
tial convergence of the spectra for the table tiling substitution (Proposition 1.3), can be witnessed
in large geometric generality. This is the core of the second main result of this paper, concerning
the qualitative behavior of the convergence rate of σ(HSn(ω0)) to the spectrum σ(Hρ) for ρ ∈ Ω(S).

These estimates are obtained by estimating the rate of the convergence of the subshifts Orb(Sn(ω0))
to Ω(S) in (J , δH). This leads to the spectral estimates using the recent works [BBC19, BT21].
The exponential decay obtained is given by the associated stretch factor λ0 > 1.

Theorem 2.18. Consider a primitive substitution on AΓ with substitution map S. Then there
exist a C > 0 and an M1 ≥ 0 such that if ω0 ∈ AΓ satisfies one of the equivalent conditions in
Theorem 2.14, then

δH

(
Orb(Sn(ω0)),Ω(S)

)
≤ C

λn
0
, n ≥ M1.

The constants C and M1 can be estimated more explicitly, see Proposition 5.6 below. It is also
shown there that for specific initial configurations ω0 these constants can be significantly reduced,
which is desirable for practical purposes, see e.g. Corollary 5.7. We prove the theorem in Section 5.2.

Corollary 2.19. Consider a primitive substitution on AΓ with substitution map S. If H is a
strongly pattern equivariant Schrödinger operator with finite range, then there exist a C ′ > 0 and
an N0 ∈ N such that for all ω0 ∈ AΓ satisfying one of the equivalent conditions in Theorem 2.14,
we have

dH

(
σ(HSn(ω0)), σ(Hω)

)
≤ C ′

λn
0
, ω ∈ Ω(S), n ≥ N0.

Proof. Since S is primitive, Ω(S) is minimal (Theorem 2.9) and so σ(Hω) = σ(Hρ) holds for
all ω, ρ ∈ Ω(S), see e.g. [Len99, Proposition 1.2.2] in the abelian and [Bec16, Theorem 3.6.8] in
the non-abelian case. Now the estimate follows directly from Theorem 2.18 together with [BT21,
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Theorem 1.3 (b)] (see also [BBC19] in the case Γ = Zd) using that all the coefficients are locally
constant. Note that we can apply [BT21] as Γ has exact polynomial growth in our setting, see
[BHP21, Proposition 3.36]. □

Remark 2.20. We note that the spectral estimate holds for a larger class of operators even with
infinite range, see [BBC19, BT21] for more details. Moreover, if the coefficients tη : AΓ → R, η ∈ B,
of the Schrödinger operator H are Lipschitz continuous (but H is not necessarily strongly pattern
equivariant), then

dH

(
σ(HSn(ω0)), σ(Hω)

)
≤ C ′√

λn
0
, ω ∈ Ω(S), n ≥ N0,

follows for a suitable constant C ′ > 0 and N0 ∈ N, see [BT21, Theorem 1.3 (a)].

3. Applications of the theory

In this section we provide explicit dilation data and substitution data to apply our main results.
We give one class of abelian substitutions – block substitutions, and another non-abelian example,
namely a substitution over the discrete Heisenberg group.

3.1. Block substitutions. We study a special class of substitutions in the abelian setting Γ = Zd

and prove that they are contained in the general class of substitutions introduced before. In par-
ticular, the table tiling substitution presented in Section 1.2 is an interesting example of block
substitutions. The following two statements show that the theory developed in Section 2 is appli-
cable for block substitutions and henceforth also for the table tiling substitution.
Let A be an alphabet. A block substitution on AZd is defined by a vector m⃗ = (m1, . . . ,md) ∈ Nd

with mj > 1 for all 1 ≤ j ≤ d and a substitution rule

S0 : A → AKm⃗ where Km⃗ := Zd ∩
d∏

j=1

[
− mj

2 ,
mj

2
)
.

It is standard to extend a substitution rule to a map S : Pat(AZd) → Pat(AZd) by acting letter
wise, see e.g. [Que10, Chapter 5.1] or [BG13, Chapter 4]. For instance, this is sketched in Figure 1
for the table tiling substitution. Thanks to the following proposition, block substitutions are a
special case of the substitutions introduced in the previous section.

Proposition 3.1. Consider a block substitution with alphabet A, vector m⃗ = (m1, . . . ,md) ∈ Nd

with mj > 1 for all 1 ≤ j ≤ d and substitution rule S0 : A → AKm⃗ . Then the associated substitution
map S conincides with the substitution map arising from

• the dilation datum D :=
(
Rd, dm⃗, (Dλ)λ>0,Zd, V

)
with V =

[
− 1

2 ,
1
2
)d, λ0 = min{mj | 1 ≤

j ≤ d} > 1, metric

dm⃗(x, y) := max
1≤j≤d

|xj − yj |
1

αj , x, y ∈ Rd, αj := log(mj)
log(λ0) ≥ 1 for 1 ≤ j ≤ d,

and the dilation family defined by
Dλ(x) :=

(
λα1x1, . . . , λ

αdxd

)
for x = (x1, . . . , xd) ∈ Rd;

• the substitution datum S = (A, λ0, S0) with Km⃗ = Dλ0 [V ] ∩ Zd.
In particular, we have Dλ0(x) = (m1x1, . . . ,mdxd) for x ∈ Rd and λ0 is sufficiently large relative
to V with respect to the constant C− := 2λ0 − 3 and s = 4.
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Proof. Clearly, dm⃗ is a proper left-invariant metric inducing the Euclidean topology on Rd and

dm⃗(Dλ(x), Dλ(y)) = max
1≤j≤d

∣∣λαj

0 xj − λ
αj

0 yj

∣∣ 1
αj = λ0dm⃗(x, y).

It is straightforward to check that Dλ : Rd → Rd defines a group automorphism. Finally, the choice
of αj implies log

(
λ

αj

0
)

= log(mj). We conclude that λαj

0 = mj proving Dλ0(x) = (m1x1, . . . ,mdxd)
for x ∈ Rd and Dλ0 [V ] ∩ Zd = Km⃗. Thus, D defines a dilation datum and S a substitution datum
if we prove that λ0 is sufficiently large relative to V with respect to C− := 2λ0 − 3 and s = 4.
In order to do so, we apply Lemma 2.3 (b) for s = 4. Therefore set r+ = 1 satisfying V ⊆ B(e, r+).
A short computation gives V (4) =

∏d
j=1[aj , bj) with bj − aj = m4

j for each 1 ≤ j ≤ d. Let zj ∈ Z
be chosen such that it attains the minimum mink∈Z

∣∣k − aj+bj

2
∣∣, which is less or equal than 1

2 . Set
z = (z1, . . . , zd) ∈ Zd and observe

d∏
j=1

(zj −Rj , zj +Rj) ⊆
d∏

j=1
[aj , bj) = V (4) where Rj :=

m4
j − 1
2 .

Choose r := 2λ0 >
r+λ0
λ0−1 . We show that

B(z, r) =
{
γ ∈ Zd

∣∣ dm⃗(γ, z) < r
}

=
{
γ ∈ Zd

∣∣ |γj − zj | < rαj
}

⊆
d∏

j=1
(zj −Rj , zj +Rj) ⊆ V (4).

This is indeed the case since

log
(
2αj
)

= log(mj) log(2)
log(λ0) ≤ log(mj) and λ

αj

0 = mj ,

lead to
rαj ≤ m2

j ≤
m4

j − 1
2 = Rj .

Thus, Lemma 2.3 (b) implies that λ0 is sufficiently large relative to V with respect to z ∈ Zd, s = 4
and C− := r − r+ − r

λ0
= 2λ0 − 3. □

Next, we prove that for the previously defined dilation datum D and stretch factor λ0 for block
substitutions, the tuple (T, 1) with T = {0, 1}d is a testing tuple.

Proposition 3.2. Let m⃗ = (m1, . . . ,md) ∈ Nd with mj > 1 and consider the associated dilation
datum D :=

(
Rd, dm⃗, (Dλ)λ>0,Zd,

[
− 1

2 ,
1
2
)d) with associated stretch factor λ0 := min{mj | 1 ≤ j ≤

d} > 1 found in Proposition 3.1. Then (T, 1) with T = {0, 1}d is a testing tuple and for each r ≥ 1,
Nr(T ) := log(2λ0r)

log(λ0) satisfies Definition 2.11 (a).

Proof. We use the notation D := Dλ0 and V :=
[

− 1
2 ,

1
2
)d.

Step 1: We first claim that for all n ∈ N,
d∏

j=1

[
−mn−1

j ,mn
j

]
⊆ V (n, T ).

For the induction base, observe

V (1, T ) = D
[
T + V

]
= D

[[
−1

2 ,
3
2

)d
]

=
d∏

j=1

[
−mj

2 ,
3
2mj

)
⊇

d∏
j=1

[−1,mj ],
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where mj ≥ 2 is used in the last step. For the induction step, the recursive definition of V (n, T ) in
equation (2.1) together with the induction hypothesis yields

V (n+ 1, T ) =D
[(
V (n, T ) ∩ Zd

)
+ V

]
⊇ D

 d∏
j=1

[
−mn−1

j ,mn
j

]
∩ Zd

+ V


=D

 d∏
j=1

[
−mn−1

j − 1
2 ,m

n
j + 1

2

) =
d∏

j=1

[
−mn

j − mj

2 ,mn+1
j + mj

2

)

⊇
d∏

j=1

[
−mn

j ,m
n+1
j

]
.

Step 2: Let x ∈ Zd, r ≥ 1 and n ≥ Nr(T ) = log(2λ0r)
log(λ0) . For γ = (γ1, . . . , γd) ∈ Zd, Proposition 3.1

implies Dn(γ) = (mn
1γ1, . . . ,m

n
dγd). Thus, there is a γ ∈ Zd such that for any y = (y1, . . . , yd) ∈ Zd,

max
1≤j≤d

|xj − yj | ≤
mn−1

j

2 =⇒ y ∈ Dn(γ) +
d∏

j=1

[
−mn−1

j ,mn
j

]
.

Let y ∈ Zd with dm⃗(x, y) ≤ r, i.e., y is an element of the ball Bm⃗(x, r) defined by the metric dm⃗.
Since n ≥ Nr(T ), we have r ≤ λn−1

0
2 . Hence,

|xj − yj | ≤ rαj = (λn−1
0 )αj

2αj
≤ (λαj

0 )n−1

2 =
mn−1

j

2
follows for each 1 ≤ j ≤ d by definition of the metric dm⃗. Thus, the inclusions

Bm⃗(x, r) ⊆ Dn(γ) +
d∏

j=1

[
−mn−1

j ,mn
j

]
⊆ Dn(γ) + V (n, T )

follow by invoking Step 1. In particular, T is a testing domain and for r ≥ 1, Nr(T ) = log(2λ0r)
log(λ0)

satisfies Definition 2.11 (a) by the previous considerations.
Using the induction base in Step 1 and mj > 1 for 1 ≤ j ≤ d, we conclude that T ⊆

∏d
j=1[−1,mj ] ⊆

V (1, T ). Thus, NT = 1 is the smallest integer satisfying Definition 2.11 (b) proving that (T, 1) is a
testing tuple. □

3.2. An example in the Heisenberg group. Let G := H3(R) = {(x, y, z) |x, y, z ∈ R} be the
3-dimensional Heisenberg group with group multiplication defined by

(x, y, z) · (a, b, c) :=
(
x+ a, y + b, z + c+ 1

2(xb− ay)
)
, (x, y, z), (a, b, c) ∈ H3(R).

The Cygan-Korányi norm on H3(R) is defined by

(3.1) ∥ · ∥CK : H3(R) → [0,∞), ∥(x, y, z)∥CK := 4
√(

x2 + y2
)2 + z2.

This norm induces a left-invariant metric d on H3(R) via d(g, h) := ∥g−1h∥CK for g, h ∈ G. An
underlying dilation family on H3(R) is given by (Dλ)λ>0 where

Dλ : H3(R) → H3(R), Dλ(x, y, z) := (λx, λy, λ2z),
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The set Γ := H3(2Z) of all vectors (x, y, z) ∈ H3(R) with x, y, z ∈ 2Z defines a uniform lattice in
H3(R) equipped with the invariant metric dΓ := dG|Γ×Γ. Then V := [−1, 1)3 defines a fundamental
domain for Γ in H3(R). Clearly, we have Dλ[Γ] ⊆ Γ if and only if λ ∈ N. Altogether DH =(
H3(R), d, (Dλ)λ>0, H3(2Z), [−1, 1)3) is a dilation datum.

S0( ) =

x
y

z

-4-2-4 -2

-16

-14
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-6
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-2
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4

6

8

10
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14

22 0 S0( ) =

x
y

z

-4-2-4 -2
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-14

-12

-10

-8

-6

-4

-2

2

4

6

8

10

12

14

22 0

a :=
b :=

1

Figure 5. A substitution rule where black bullet represents the letter a and a
gray bullet represents the letter b.

Proposition 3.3. Consider the dilation datum DH =
(
H3(R), d, (Dλ)λ>0, H3(2Z), [−1, 1)3) and

the substitution datum SH = (A, λ0, S0) with stretch factor λ0 = 4, alphabet A = {a, b} and
substitution rule S0 defined in Figure 5. Let ωa, ωb ∈ AH3(2Z) be defined by ωa(γ) = a and ωb(γ) = b
for all γ ∈ H3(2Z). Then the following assertions hold.
(a) The subshift Ω(S) is strongly aperiodic (i.e., every point in Ω(S) has trivial Γ-stabilizer) and

linearly repetitive.
(b) The set T := V (1) ∩ Γ is a testing domain for DH and λ0 = 4.
(c) The subshift Ω(S) is periodically approximable. In particular, there is a constant C > 0 and

M1 ≥ 0 such that for c ∈ A, we have the estimate

δH

(
Orb

(
Sn(ωc)

)
,Ω(S)

)
≤ C

1
4n
, n ≥ M1.

The proof of part (c) makes use of a computer algorithm which for a given testing domain finds a
proper subset that is also a testing domain, cf. Proposition 6.5. In this sense, the proof of part (c)
is computer-assisted.
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Proof. A short computation leads to

B(e, r−) ⊆ V ⊆ V ⊆ B(e, r+), with r− = 1 and r+ = 3
2 .

Thus, Lemma 2.3 (a) implies that if λ0 ∈ N satisfies λ0 ≥ 1 + r+
r−

= 5
2 , then λ0 is sufficiently large

relative to V with respect to s = 0, z = e and the constant

C− = r−

λ0

(
λ0 −

(
1 + r+

r−

))
= 2λ0 − 5

2λ0
= 3

8 .

Observe that r+ = λ0C−. Now choose δ > 0 small enough such that V B(e, δ) ⊆ B(e, r+) =
B(e, C−λ0). Then Proposition 5.3 (b) applied with this δ > 0, s1 = 0 and s2 = 1 implies that

T ′ := V (1) ∩ Γ = Dλ0 [V ] ∩ Γ = {−4,−2, 0, 2}2 × {−16,−14,−12, . . . , 14}
is a testing domain proving (b).
(a) The previously defined substitution datum is a good substitution datum in the sense of [BHP21,
Definition 6.4]. Keeping the notation of the last work, define

Ξa :=
{

(0, 0, z)
∣∣ z ∈ [−16, 16) ∩ 2Z

}⋃{
(0, 2, z)

∣∣ z ∈ [−16, 16) ∩ 2Z
}

\ {(0, 2,−2)},

Ξo :=
{

(x, y,−2)
∣∣x, y ∈ [−4, 4) ∩ 2Z

}
\ {(0, 0,−2)},

(γ2, xb) := (2, 2,−14), (γ2, x2) := (2, 2,−16).
With these choices, the conditions in [BHP21, Definition 6.4] are satisfied. Indeed, for c ∈ A, we
have S0(c)(γ2, x2) = c, S0(c)(γ) = b for all γ ∈ Ξo ∪ {(γ2, xb)} and S0(c)(γ) = a for all γ ∈ Ξa.
Hence, [BHP21, Proposition 6.6, Theorem 1.4, Theorem 1.6] asserts that Ω(S) is strongly aperiodic
and linearly repetitive.
(c) We first show that limn→∞ Orb

(
Sn(ωc)) = Ω(S) for c ∈ A. Towards this, a smaller testing

domain is helpful. Proposition 6.5 asserts that
T ′ := {−2, 0}2 × {−6,−4,−2, 0, 2, 4, 6}

is a testing domain for DH and λ0 = 4. Note that here, we used a computer to reduce the testing
domain. Then W (ωa)T ′ = {P} and W (ωb)T ′ = {Q} follows where the patches P,Q ∈ AT ′ are
defined by P (γ) := a and Q(γ) := b for all γ ∈ T ′. To prove convergence of the dynamical
systems, it suffices by Theorem 2.14 to show W (ωa)T ′ ⊆ W (S) and W (ωb)T ′ ⊆ W (S), namely that
P,Q ∈ AT ′ are S-legal. Direct computations imply

(0, 0, 6)T ′ = {−2, 0}2 × {0, 2, 4, . . . , 10, 12} =: K0

and
(−2,−2, 6)T ′ ⊆ {−4,−2}2 × {−2, 0, . . . , 12, 14} =: K1.

From the substitution rule S0 (Figure 5), we conclude
P ≺ S0(a)|K0 and Q ≺ S0(b)|K1 ,

proving that P,Q ∈ W (S), namely these patches are S-legal. Now statement (c) follows from
Theorem 2.18. □

4. Proof of the first main result

In this section, we prove Theorem 2.14. Throughout this section, we fix a substitution on AΓ with
substitution map S. More precisely, let D =

(
G, d, (Dλ)λ>0,Γ, V

)
be the associated dilation datum

and S = (A, λ0, S0) be the associated substitution datum. We use the notation D := Dλ0 : Γ → Γ.
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4.1. Sufficient condition. We start by generalizing an unpublished result on block substitutions
on Zd by one of the authors [Bec16, Theorem 6.2.3] providing a sufficient condition for the conver-
gence of the subshifts. The special case d = 1 was treated in [BBDN20, Corollary 5.5].

Lemma 4.1. Let (T,NT ) be a testing tuple of a substitution on AΓ with substitution map S. For
r > 0, let Nr(T ) ≥ 0 be such that it satisfies Definition 2.11 (a). Then for each r > 0 and for all
ω0 ∈ AΓ with W (ω0)T ⊆ W (S), we have

W
(
Sn(ω0)

)
B(e,r) ⊆ W (S) for all n ≥ Nr(T ).

Proof. Let r > 0 and P ∈ W (Sn(ω0))B(e,r). Hence, there is an x ∈ Γ such that P = Sn(ω0)|xB(e,r).
By the choice of Nr(T ), for each n ≥ Nr(T ), there is a γ := γ(n, x) ∈ Γ satisfying

xB(e, r) ⊆ Dn
(
γ
)
V (n, T ) = V

(
n, γT

)
using Proposition 2.4 (c). Then Proposition 2.4 implies

P =
(
Sn(ω0)

)
|xB(e,r) ≺

(
Sn(ω0)

)
|V (n,γT )∩Γ = Sn

(
ω0|γT

)
.

Since W (ω0)T ⊆ W (S), the patch ω0|γT is S-legal and so P ∈ W (S). □

When our starting configuration ω0 and our substitution satisfy rather mild conditions, we are
guaranteed that our approximations Sn(ω0) eventually contain all legal patches for any fixed sized
support. Recall that every letter a ∈ A is viewed as patch with support {e}.

Lemma 4.2. Consider a substitution on AΓ with associated substitution map S. If for ω0 ∈ AΓ,
there is an n0 ∈ N such that A ⊆ W (Sn(ω0)) for all n ≥ n0, then for each r > 0, there exists an
Mr ≥ n0 satisfying

W
(
Sn(ω0)

)
⊇ W (S)B(e,r) for all n ≥ Mr.

In particular, if the substitution rule S0 is primitive, then the constant Mr can be chosen indepen-
dently of ω0.

Proof. Let r > 0. By definition of S-legal patches, for each Q ∈ W (S)B(e,r), there exists an mQ ∈ N
and a letter aQ ∈ A such that Q ≺ SmQ(aQ). Since W (S)B(e,r) is finite, the following maximum
exists

mr := max
Q∈W (S)B(e,r)

mQ.

Set Mr := n0 + mr. Let n ≥ Mr. For Q ∈ W (S)B(e,r), let aQ ∈ A be chosen as before. Since
A ⊆ W (Sn(ω0)) for n ≥ n0, there is a letter b ∈ A such that b ≺ ω0 and aQ ≺ Sn−nQ(b) holds
since n−mr ≥ n0. Hence,

Q ≺ SnQ(aQ) ≺ SnQ
(
Sn−nQ(b)

)
= Sn(b) ≺ Sn(ω0)

follows implying Q ∈ W
(
Sn(ω0)

)
since ≺ is transitive. Since Q ∈ W (S)B(e,r) was arbitrary, we

conclude W (S)B(e,r) ⊆ W (Sn(ω0)) for n ≥ Mr.
The case when the substitution rule S0 is primitive follows then directly from the definition by
setting n0 = L, for the L ∈ N in Definition 2.7. □

With this at hand we can now generalize [Bec16, Theorem 6.2.3] to our setting, and establish a
sufficient condition for convergence of the iterative approximations.
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Proposition 4.3. Let (T,NT ) be a testing tuple for a substitution on AΓ with substitution map S.
If for ω0 ∈ AΓ, W (ω0)T ⊆ W (S), then

lim
n→∞

Orb
(
Sn(ω0)

)
= Ω(S) in J .

Proof. Due to equation (1.3), it suffices to prove that for every r > 0, there exists an Nr(T ) such
that W (Sn(ω0))B(e,r) = W (S)B(e,r) if n ≥ Nr(T ). The existence of Nr(T ) follows from Lemma 4.1
and Lemma 4.2. □

As a consequence of the previous proposition, we conclude that if any subsequence of iterative
approximations converges then the whole sequence converges.

Corollary 4.4. Let S be a primitive substitution datum over a dilation datum D. Let ω0 ∈ AΓ

and denote Ωn := Orb
(
Sn(ω0)

)
. Then the following assertions are equivalent.

(i) The iterative approximation sequence, Ωn, converges to Ω(S).
(ii) There exists a subsequence

(
Ωnk

)∞
k=1, satisfying Ωnk

→ Ω(S).

Proof. (i)⇒(ii): This is obvious.
(ii)⇒(i): Using Proposition 4.3, it suffices to show that there is an n0 ∈ N such that W

(
Ωn0

)
T

⊆
W (S), where T is a testing domain. Since T is finite, there exists an r0 > 0 such that T ⊆ B(e, r0).
Since Ωnk

→ Ω(S), there is a k0 ∈ N by equation (1.3), such that W (Ωnk
)B(e,r0) = W

(
Ω(S)

)
B(e,r0)

for all k ≥ k0. Thus, setting n0 = nk0 finishes the proof. □

4.2. Proof of Theorem 2.14. Before proving Theorem 2.14, we show that cycles in the substi-
tution graph GS(T,NT ) for a testing tuple (T,NT ) imply that illegal patches reappear infinitely
often when applying the substitution map.

Lemma 4.5. Let (T,NT ) be a testing tuple of a substitution on AΓ with substitution map S and
ω0 ∈ AΓ. If P ∈ W

(
SNT (ω0)

)
T

\ W (S), then there exists a Q ∈ W (ω0)T \ W (S) such that
P ≺ SNT (Q).

Proof. We know that supp(P ) = xT for some x ∈ Γ. Since (T,NT ) is a testing tuple, there exists a
γ = γ(x) ∈ Γ such that xT ⊆ DNT (γ)V (NT , T ) = V (NT , γT ). Define Q ∈ W (ω0)T by Q := ω0|γT .
By Proposition 2.4, we conclude that

P =
(
SNT (ω0)

)
|xT ≺

(
SNT (ω0)

)
|V (NT ,γT )∩Γ = SNT

(
ω0|γT

)
= SNT (Q).

Since P ≺ SNT (Q), while P /∈ W (S), Q /∈ W (S) follows. □

The last lemma allows to find suitable paths in the graph GS(T,NT ) of length n ∈ N if there is a
patch in W (Sn·NT (ω0))T \W (S). Recall that the vertex set of GS(T,NT ) is AT .

Lemma 4.6. Let (T,NT ) be a testing tuple of a substitution on AΓ with substitution map S and
substitution graph GS(T,NT ). If P ∈ W

(
Sn·NT (ω0)

)
T

\W (S) holds for ω0 ∈ AΓ and n ∈ N, then
there exists a path (P0, . . . , Pn) in GS(T,NT ) of length n such that Pn = P and P0 ∈ W (ω0)T .

Proof. The path is defined recursively. Set Pn := P . For j ≥ 1, define ωj := Sj·NT (ω0) and observe
SNT (ωj−1) = ωj . Suppose Pj ∈ W (ωj) \ W (S) for some j ≥ 1. By Lemma 4.5 applied to ωj−1,
there is a patch Pj−1 ∈ W (ωj−1) \ W (S) such that Pj ≺ SNT (Pj−1). Since Pj−1, Pj ̸∈ W (S),
there is an edge from Pj−1 to Pj , see Definition 2.10. Thus, we have recursively constructed a path
(P0, . . . , Pn) in GS(T,NT ) with Pn = P and P0 ∈ W (ω0)T . □
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Proof of Theorem 2.14. Since S is primitive, Ω(S) is minimal (Theorem 2.9) and so σ(Hω) = σ(Hρ)
holds for all ω, ρ ∈ Ω(S) and for every Schrödinger operator H with finite range, see e.g. [Len99,
Proposition 1.2.2] in the abelian and [Bec16, Theorem 3.6.8] in the non-abelian case. Thus, the
equivalence of (i) and (ii) follows from [BBDN18, Theorem 2]. Note that we can apply the result
in the reference as Γ is amenable in our setting, see [BHP21, Section 3.4].
We continue to prove the equivalences of (ii), (iii) and (iv) via contraposition.
(ii)⇒(iii): Assume towards contraposition that (iii) is not true. Then there is a path (P0, . . . , Pℓ)
in GS(T,NT ) with P0 ∈ W (ω0)T and Pi = Pj for some 0 ≤ i < j ≤ ℓ. By Definition 2.10 of the
substitution graph GS(T,NT ), we conclude

Pk+1 ≺ SNT (Pk) and Pk ̸∈ W (S).

Thus, Pi = Pj ≺ S(j−i)·NT (Pi) follows. Hence, we inductively conclude Pi ≺ Sm·(j−i)·NT (Pi) for
all m ∈ N. On the other hand, Pi ≺ Si·NT (P0) ≺ Si·NT (ω0) holds as (P0, . . . , Pi) is a path in
GS(T,NT ). Set nm :=

(
i + m · (j − i)

)
· NT for m ∈ N where j − i ≥ 1 by construction. Then

nm → ∞ if m → ∞ and Pi ≺ Snm(ω0), namely Pi ∈ W (Snm(ω0))T . Since Pi ̸∈ W (S), the
subsequence

(
Orb(Snm(ω0))

)
m∈N does not converge to Ω(S) by equation (1.3). Thus, Orb(Sn(ω0))

does not converge to Ω(S) by Corollary 4.4, namely (ii) is not true.

(iii)⇒(iv): Assume towards contraposition that (iv) is not true. Hence there exists a path (P0, ..., Pn)
in GS(T ) such that P0 ∈ W (ω0)T and n ≥ |AT | where |AT | is the total number of vertices in
GS(T,NT ). Thus, there exist distinct i, j ∈ {0, 1, ..., n} such that Pi = Pj . We have therefore found
a path in GS(T,NT ) starting at some P0 ∈ W (ω0)T , which contains a closed subpath, namely (iii)
is not true.

(iv)⇒(ii): Assume towards contraposition that (ii) is not true. We know that W (Sn(ω0))T ⊈W (S)
for all n ∈ N, otherwise it would follow that limn→∞ Orb(Sn(ω0)) = Ω(S) from Proposition 4.3.
Choosing n = |AT |NT , there must be a Pn ∈ W (Sn(ω0))T \W (S). Thus, Lemma 4.6 implies that
there is a path (P0, ..., Pn) in GS(T,NT ) of length |AT |. Therefore, (iv) does not hold. □

5. Proof of the second main result

We prove Theorem 2.18 by proving a quantitative version of Lemma 4.1 and Lemma 4.2. We
start by further examining testing domains. We prove their existence and how the associated map
r 7→ Nr(T ) grows. The arguments used in this section can be compared with the explanations for
block substitutions, see Proposition 3.2. These estimates are used to show the explicit quantitative
estimates in Theorem 2.18. To this end, a thorough study of the supports V (n, T ) is necessary.

5.1. More on testing domains. The following statement was mainly proven in [BHP21] or follows
by similar arguments.

Lemma 5.1. Let D = (G, d, (Dλ)λ>0,Γ, V ) be a dilation datum and λ0 > 1 be such that Dλ0 [Γ] ⊆ Γ.
Then the following statements hold for all n ∈ N0, γ ∈ Γ and M,M ′ ⊆ Γ finite and nonempty.
(a) For m ∈ N0, we have V

(
n, V (m,M) ∩ Γ

)
= V (n+m,M).

(b) If M ⊆ M ′, then V (n,M) ⊆ V (n,M ′).
(c) If M ∩M ′ = ∅, then V (n,M ⊔M ′) = V (n,M) ⊔ V (n,M ′).

Proof. Statements (a) and (b) are proven in [BHP21, Lemma 5.16]. Statement (c) follows by
induction. The claim is true for n = 0, since V is a fundamental domain. Assume that the claim
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holds for n. Since D is an automorphism and G = ⊔γ∈ΓD(γ)D[V ], we conclude for the induction
step

V (n+ 1,M ⊔M ′) = D
[(
V (n,M ⊔M ′) ∩ Γ

)
· V
]

= D
[(
V (n,M) ∩ Γ

)
⊔
(
V (n,M ′) ∩ Γ

)]
·D[V ]

=
(
D
[
V (n,M) ∩ Γ

]
·D[V ]

)
⊔
(
D
[
V (n,M ′) ∩ Γ

]
·D[V ]

)
= V (n+ 1,M) ⊔ V (n+ 1,M ′).

□

Remark 5.2. Note that Lemma 5.1 (b) implies that if T is a testing domain and a finite T ′ ⊆ Γ
satisfies T ⊆ T ′, then T ′ is also a testing domain.

Now we can prove an analog of Proposition 3.2 for general substitutions.

Proposition 5.3 (Existence of a testing tuple). Let D = (G, d, (Dλ)λ>0,Γ, V ) be a dilation datum
and λ0 > 1 be such that Dλ0 [Γ] ⊆ Γ and λ0 is sufficiently large relative to V with respect to C− > 0,
s1 ∈ N0 and z ∈ Γ, i.e., Dn

[
B(z, C−)

]
⊆ V (s1 + n) for all n ∈ N. Fix δ > 0. Then the following

hold.
(a) There exist an s2 ∈ N such that V ·B(e, δ) ⊆ B

(
e, C−λ

s2
0
)
.

(b) If δ > 0 and s2 ∈ N satisfy the inclusion in (a), then T := V (s1 + s2) ∩ Γ is a testing domain
and for each r ≥ 1, Nr(T ) := log(rCT )

log(λ0) with CT := 1
δ satisfies Definition 2.11 (a).

In particular, there exsists a testing tuple (T,NT ) for D and λ0.

Proof. Recall that if we prove that there is a testing domain T for the given dilation datum and λ0,
then there exists an integer NT satisfying Definition 2.11 (b). Thus, if we show that T is a testing
domain, it follows that (T,NT ) is a testing tuple for D and λ0.
Since V · B(e, δ) is relatively compact and λ0 > 1, there exists an s2 ∈ N such that V · B(e, δ) ⊆
B
(
e, C−λ

s2
0
)
, which is possible as λ0 > 1. We now show that for any such s2 ∈ N, T := V (s1+s2)∩Γ

defines a testing domain.
Let x ∈ Γ, r ≥ 1 and set Nr(T ) := log(rCT )

log(λ0) with CT := 1
δ . Let n ≥ Nr(T ). Since λ0 is sufficiently

large relative to V with respect to C− > 0, s1 ∈ N0 and z ∈ Γ, we have Dn
[
B(z, C−)

]
⊆ V (s1 +n).

Set s0 := s1 + s2 and z0 := Ds2(z) ∈ Γ. Then Dn
[
B(z0, C−λ

s2
0 )
]

⊆ V (s0 + n) follows from the
previous considerations. Since z0 ∈ Γ and V is a fundamental domain of Γ, we conclude that
Γ · (z0V ) = G. Thus, there exists a γ ∈ Γ such that D−n(x) ∈ γz0V . Then the choice of s2 implies

D−n(x)B(e, δ) ⊆ γz0V ·B(e, δ) ⊆ γz0B
(
e, C−λ

s2
0
)
.

Since n ≥ Nr(T ), we conclude δλn
0 ≥ r. Using that D is a group automorphism, we derive that

xB(e, r) ⊆ xB(e, δλn
0 ) = Dn

[
D−n(x)B(e, δ)

]
⊆ Dn

[
γz0B

(
e, C−λ

s2
0
)]

= Dn(γ)Dn
[
B(z0, C−λ

s2
0 )
]

⊆ Dn(γ)V (s0 + n) = Dn(γ)V
(
n, V (s0) ∩ Γ

)
,

where in the last step we used Lemma 5.1 (a). □

Remark 5.4. We note that improving Nr(T ) in the previous statement (i.e. making it smaller) for
a different testing domain may improve the estimate in Theorem 2.18.
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5.2. An upper bound on the rate of convergence. Note that Proposition 5.3 provides an
explicit growth behavior of the map r 7→ Nr(T ) associated with the testing domain T = V (s) ∩ Γ
for a suitable s ∈ N. This provides a quantitative version of Lemma 4.1. The concept of linear
repetitivity allows us to prove also a quantitative version of Lemma 4.2 leading to Theorem 2.18.
Recall that primitivity of the substitution rule yields that the associated subshift Ω(S) is linearly
repetitive, see Theorem 2.9.

Lemma 5.5. Let S = (A, λ0, S0) be a primitive substitution datum over D =
(
G, d, (Dλ)λ>0,Γ, V

)
with associated substitution map S. Let C− > 0 and s ∈ N0 be such that λ0 > 1 is sufficiently large
relative to V with respect to C− and s. Denote the linear repetitivity constant of Ω(S) by CLR ≥ 1.
If r ≥ 1, then we have the implication

n ≥ Lr :=
log
(

CLR
C−

· r
)

log(λ0) + s =⇒ W (S)B(e,r) ⊆ W (Sn(ω0)), ω0 ∈ AΓ.

Proof. Let n ≥ Lr, ω0 ∈ AΓ and set a := ω0(e) and m := n − s. Note that the following
considerations do not depend on the specific letter a. Since λ0 is sufficiently large relative to V
with respect to the constant C− > 0 and s, there is a z ∈ Γ with

B
(
Dm(z), C−λ

m
0
)

= Dm
[
B(z, C−)

]
⊆ V (m+ s) = V (n).

By Proposition 2.4 (b), V (n) ∩ Γ is the support of Sn(a). Since n ≥ Lr, we conclude m log(λ0) ≥
log
(

CLRr
C−

)
implying λm

0 C− ≥ CLRr. Thus, B
(
Dm(z), CLRr

)
⊆ V (n) follows and so

Q ≺ Sn(a)|B(Dm(z),CLRr)

holds for all Q ∈ W (S)B(e,r) since CLR is the linear repetititivity constant of Ω(S). Hence,
W (S)B(e,r) ⊆ W (Sn(ω0)) follows using a := ω0(e). □

Next we show explicit upper bounds on the convergence rates of the subshifts.

Proposition 5.6. Consider a dilation datum D =
(
G, d, (Dλ)λ>0,Γ, V

)
and a primitive substitu-

tion datum S = (A, λ0, S0). Let S be the associated substitution map. Suppose
• n0 ∈ N0 is chosen such that W (Sn0(ω0))T ⊆ W (S);
• there is a testing domain T , a constant CT > 0 such that for r ≥ 1, Nr(T ) := log(rCT )

log(λ0)
satisfies Definition 2.11 (a);

• CLR ≥ 1 is the linear repetitivity constant of Ω(S);
• C− > 0 and s ∈ N0 are chosen such that λ0 is sufficiently large relative to V with respect

to C− and s.
Then

δH

(
Orb(Sn(ω0)),Ω(S)

)
< C

1
λn

0
, n > M1,

holds where C := max
{

CLR
C−

λs
0, CTλ

n0
0

}
and M1 := log(C)

log(λ0) .

Proof. For r ≥ 1, define

Mr := max

 log
(

CLR
C−

· r
)

log(λ0) + s,
log(rCT )
log(λ0) + n0

 = max

 log
(

CLR
C−

· r
)

log(λ0) + s, Nr(T ) + n0

 .
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Since W (Sn0(ω0))T ⊆ W (S), Lemma 4.1 (applied to Sn0(ω0)) and Lemma 5.5 imply
W (Sn(ω0))B(e,r) = W (S)B(e,r), n ≥ Mr.

Thus, equation (1.3) leads to

δH

(
Orb(Sn(ω0)),Ω(S)

)
≤ 1
r + 1 , n ≥ Mr.

Since Mr is continuous and monotonically increasing to infinity, for each n > M1, there is an rn > 1
such that n = Mrn

. We have two cases for n since Mrn
is defined by a maximum of two terms. A

short computation yields

rn = C−

CLRλs
0
λn

0 or rn = 1
CTλ

n0
0
λn

0 .

Combining these computations with the previous considerations implies

δH

(
Orb(Sn(ω0)),Ω(S)

)
≤ 1
rn + 1 <

1
rn

≤ max
{
CLR

C−
λs

0, CTλ
n0
0

}
1
λn

0
, n ≥ M1.

□

Proof of Theorem 2.18. Recall the assumptions in the statement. Let S be a substitution map of a
primitive substitution with dilation datum D = (G, d, (Dλ)λ>0,Γ, V ) and associated stretch factor
λ0 > 1 that is sufficiently large relative to V with respect to a constant C− > 0 and s1 ∈ N0.
Fix δ > 0 and choose s2 ∈ N such that V · B(e, δ) ⊆ B

(
e, λs2

0 C−
)
, as in Proposition 5.3. Then

T := V (s1 + s2) ∩ Γ is a testing domain such that for r ≥ 1, Nr(T ) := log(rCT )
log(λ0) with CT := 1

δ

satisfies Definition 2.11 (a), see Proposition 5.3. Primitivity of the substitution implies that Ω(S)
is linearly repetitive with linear repetitivity constant CLR ≥ 1, see Theorem 2.9.
Set n0 := |AT | · NT . Let ω0 ∈ AΓ be such that it satisfies one of the equivalent conditions
in Theorem 2.14. Thus, Theorem 2.14 asserts that any path in GS(T,NT ) starting in a vertex
W (ω0)T ⊆ AT has length strictly less than |AT |. Thus, Lemma 4.6 yields W (Sn0(ω0))T ⊆ W (S).
Now the desired claim follows from Proposition 5.6. Note that n0 does not depend on ω0. □

In the case of block substitutions, we can estimate the constants more explicitly using Proposi-
tion 3.2 instead of Proposition 5.3. Here we take of advantage that the testing domain is small and
can be explicitly computed.

Corollary 5.7. Let A be a finite set and m⃗ = (m1, . . . ,md) ∈ Nd with mj > 1 for all 1 ≤ j ≤ d
and S0 : A → AKm⃗ be a primitive block substitution with λ0 := min{mj | 1 ≤ j ≤ d} ≥ 2. Let S be
the associated substitution map of the block substitution and T = {0, 1}d.
If ω0 ∈ AΓ satisfies W (ω0)T ⊆ W (S), then

δH

(
Orb(Sn(ω0)),Ω(S)

)
≤ C

λn
0
, n ≥ log(C)

log(λ0)
where

C := CLR

2λ0 − 3λ
4
0

Proof. Using Proposition 3.1, D :=
(
Rd, dm⃗, (Dλ)λ>0,Zd,

[
− 1

2 ,
1
2
)d) is a dilation datum and λ0 is

sufficiently large relative to V with respect to the constant C− = 2λ0 −3 and s = 4. By assumption
we have W

(
Sn0(ω0)

)
T

⊆ W (S) for n0 = 0. Furthermore, Proposition 3.2 asserts that (T, 1) is a
testing tuple with T = {0, 1}d and for each r ≥ 1, Nr(T ) := log(2λ0r)

log(λ0) satisfies Definition 2.11 (a).
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Hence, Proposition 5.6 with CT = 2λ0 and n0 = 0 implies the desired claim using CLR ≥ 1 and
λ0 ≥ 2. □

5.3. A lower bound on the rate of convergence. In this subsection, we will prove a lower
bound on the rate of convergence of δH

(
Orb(Sn(ω0)),Ω(S)

)
if ω0 is periodic. To this end, we need

the concept of lower box counting dimension of a subshift Ω. If Ω ∈ J is a subshift, then the lower
box counting dimension is defined by

dimB(Ω) := lim inf
r→∞

log
(
|W (Ω)B(e,r)|

)
log(r) = lim inf

r→∞

log
(
|W (Ω)B(e,r)|

)
− log( 1

2(r+1) )
.

Let us shortly explain why we call this the lower box counting dimension. Recall that AΓ is a totally
disconnected compact metric space with metric dc defined in equation (1.2). In order to define the
box counting dimension, one counts the number of sets of diameter at most 1

2(r+1) that are needed
to cover the set Ω. By the choice of the metric this is exactly the number of different patches with
support B(e, r) that Ω admits, namely the patch counting function |W (Ω)B(e,r)|. One can show
that for a linearly repetitive subshift Ω, the patch counting function is at most of the order rκ

where κ is the homogeneous dimension defined in Section 2.1. This shows that the box counting
dimension of Ω(S) is at most κ. We point out at this point that dimB(Ω) is also called lower power
entropy, see e.g. [Pet16, Section 2.5]. We note that due to the choice of metric in equation (1.2),
this is not the standard box dimension one considers on subshifts. In fact, the standard Hausdorff
dimension of Ω(S) on Zd is 0, since the entropy of a subshift is the same as its Hausdorff dimension,
cf. [Sim15, Theorem 4.2] or [Fur67, Proposition III.1].

Proposition 5.8. Let S be the substitution map of a substitution on AΓ with dilation datum
D =

(
G, d, (Dλ)λ>0,Γ, V

)
and primitive substitution datum S = (A, λ0, S0). Let κ > 0 be the

homogeneous dimension of Γ. If dimB(Ω(S)) > 0, then for each periodic ω0 ∈ AΓ, there exists a
constant C(ω0) > 0 such that

δH

(
Orb(Sn(ω0)),Ω(S)

)
≥ C(ω0)

(
1
λn

0

) κ
dimB (Ω(S))

for all n ∈ N.

Proof. Since ω0 is periodic, there is a finite set M ⊆ Γ such that Orb(ω0) = {ηω0 | η ∈ M}. By
Proposition 2.15, we have

Orb(Sn(ω0)) =
{
ηSn(ω0) | η ∈ (Dn[V ] ∩ Γ) ·Dn[M ]

}
, n ∈ N.

Since V is relatively compact, there is an r+ > 0 such that V ⊆ B(e, r+). Thus, Dn[V ] ∩ Γ ⊆
B(e, r+λ

n
0 ). Since Γ has exact polynomial growth, see Section 2.1, there is a constant CΓ > 0 such

that |B(e, r) ∩ Γ| ≤ CΓr
κ for all r ≥ 1. With all this at hand, we estimate

|Orb(Sn(ω0))| ≤ |Dn[M ]| · |Dn[V ] ∩ Γ| ≤ |M | · |B(e, r+λ
n
0 ) ∩ Γ| ≤ |M | · CΓ · rκ

+ · λnκ
0 .

Suppose that δH

(
Orb(Sn(ω0)),Ω(S)

)
< 1

r+1 for r > 1. Then W (Sn(ω0))B(e,r) = W (S)B(e,r) follows
from equality (1.3). Note that if P,Q ∈ W (Sn(ω0))B(e,r) are different, then there are two different
ωP , ωQ ∈ Orb(Sn(ω0)) satisfying ωP |B(e,r) = P and ωQ|B(e,r) = Q. Hence, |Orb(Sn(ω0))| ≥
|W (Sn(ω0))B(e,r)| follows. Combining this with the previous considerations yields

|M | · CΓ · rκ
+ · λnκ

0 ≥ |Orb(Sn(ω0))| ≥ |W (Sn(ω0))B(e,r)| = |W (S)B(e,r)|.
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The last term can be estimated using the lower box counting dimension. In particular, there is a
constant CB > 0 such that |W (S)B(e,r)| ≥ CBr

dim
B

(Ω(S)). Hence, we obtain

|M | · CΓ · rκ
+ · λnκ

0 ≥ CBr
dim

B
(Ω(S)).

To conclude, we proved the implication

δH

(
Orb(Sn(ω0)),Ω(S)

)
<

1
r + 1 for r > 1 =⇒ r ≤

(
|M |λnκ

0
C1

) 1
dimB (Ω(S))

=: R(n)

where C1 := CB

CΓ·rκ
+

. Since λ0 > 1, R(n) diverges implying R0 := minn∈NR(n) exists and is positive.
Thus, there is a C2 > 1 (independent of n ∈ N) such that (C2 − 1)R0 > 1. Hence, (C2 − 1)R(n) > 1
follows for all n ∈ N implying

r(n) := C2R(n) − 1 > R(n).
Then the previous considerations imply by contraposition that

δH

(
Orb(Sn(ω0)),Ω(S)

)
≥ 1
r(n) + 1 ≥ 1

C2

(
C1

|M |

) 1
dim

B
(Ω(S))

(
1
λn

0

) κ
dim

B
(Ω(S))

proving the claim with

C(ω0) := 1
C2

(
C1

|M |

) 1
dimB (Ω(S))

.

□

Remark 5.9. For Γ = Zd one can adjust [Len04, Lemma 2.2] to the symbolic setting in order to
conclude |W (Ω)B(e,r)| ≥ Crd if r ≥ 1 is large enough. Thus the lower box counting dimension of
Ω(S) satisfies dimB(Ω(S)) = d = κ in this case. We conclude that if S is a substitution map of a
primitive non-periodic substitution on AZd (or a block substitution), then Proposition 5.8 asserts

δH

(
Orb(Sn(ω0)),Ω(S)

)
≥ C(ω0) 1

λn
0

for all periodic ω0 ∈ AZd , where C(ω0) > 0 is a constant depending on ω0. This shows in particular
that our upper bound proven in Proposition 5.6 is asymptotically optimal in this case.

6. Algorithm to reduce testing domains

In order to apply Theorem 2.14 to specific examples, it is important to compute the graphs
GS(T,NT ). The smaller the testing domain is, the smaller the graphs become. Therefore min-
imizing the testing domain is computationally crucial. We provide a general algorithm for this
purpose and apply it to the Heisenberg group.
We remind the reader that a testing tuple always exists by Proposition 5.3. Furthermore, a testing
tuple depends on a dilation datum D with associated stretch factor λ0 > 1. We continue using the
notation D := Dλ0 .

Lemma 6.1. Consider a dilation datum D with associated stretch factor λ0 > 1. Let T0 ⊆ Γ be
a testing domain of the substitution, and let T ⊆ Γ be finite. Then T is a testing domain of the
substitution if and only if there exists an N0 ∈ N such that for all x ∈ Γ, there exists a γ = γ(x) ∈ Γ
satisfying
(6.1) xT0 ⊆ DN0(γ)V (N0, T ).



28 RAM BAND, SIEGFRIED BECKUS, FELIX POGORZELSKI AND LIOR TENENBAUM

Proof. If T is a testing domain then (6.1) follows immediately from Definition 2.11 (a), using that
T0 is finite. Thus, it is contained in a ball B(e, r0) for some r0 > 0. Now suppose the inclusion (6.1)
holds with N0 ∈ N and we prove that T is a testing domain. Let r > 0. Since T0 is a testing domain,
there is an Nr(T0) ∈ N satisfying Definition 2.11 (a). Set Nr(T ) := Nr(T0) + N0. Let x ∈ Γ and
n ≥ Nr(T ). Since n − N0 ≥ Nr(T0), and T0 is a testing domain, there is an η = η(x, n − N0) ∈ Γ
such that

xB(e, r) ⊆ Dn−N0(η)V (n−N0, T0) = V (n−N0, ηT0),
where we used Proposition 2.4 (c) in the last equality. By equation (6.1), there is an γ = γ(η) ∈ Γ
such that ηT0 ⊆ DN0(γ)V (N0, T ) = V (N0, γT ). Combined with the previous considerations,
Proposition 2.4 (c) and Lemma 5.1 (a),(b) imply that
xB(e, r) ⊆ V (n−N0, ηT0) ⊆ V

(
n−N0, V (N0, γT ) ∩ Γ

)
= V (n−N0 +N0, γT ) = Dn(γ)V (n, T ).

Thus, T satisfies Definition 2.11 (a), namely T is a testing domain. □

We aim at showing that it is sufficient to consider only finitely many x to invoke Lemma 6.1, see
Lemma 6.3 and Proposition 6.4 below. To this end, we use the following observation.

Lemma 6.2. Consider a dilation datum D with associated stretch factor λ0 > 1. Then for n ∈ N,
the sets Dn[V ] and V (n) (defined in equation (2.1)) are fundamental domains of Dn[Γ].

Proof. We first prove that Dn[V ] is a fundamental domain for Dn[Γ]. Since D is an automorphism,
observe

Dn[Γ] ·Dn[V ] = Dn[Γ · V ] = Dn[G] = G.

In addition, for γ, η ∈ Γ,
Dn(γ)Dn[V ] ∩Dn(η)Dn[V ] ̸= ∅ ⇐⇒ Dn[γV ] ∩Dn[ηV ] ̸= ∅ ⇐⇒ γV ∩ ηV ̸= ∅

holds proving the claim. Next, we show that V (n) is a fundamental domain of Dn[Γ] by induction.
For the induction base, observe that

D1[V ] = D[V ] = D
[
(V ∩ Γ) · V

]
= V (1).

Therefore, V (1) is a fundamental domain of D(Γ) by the previous considerations. For the induction
step, suppose that V (n) is a fundamental domain of Dn[Γ]. Thus, we have

Dn[Γ] · (V (n) ∩ Γ) =
⋃
γ∈Γ

Dn(γ)
(
V (n) ∩ Γ

)
=
( ⋃

γ∈Γ
Dn(γ)V (n)

)
∩ Γ = Dn[Γ] · V (n) ∩ Γ = Γ.

Since D is an automorphism, we conclude
Dn+1[Γ] · V (n+ 1) = Dn+1[Γ] ·D

[
(V (n) ∩ Γ) · V

]
= D

[
Dn[Γ] ·

(
(V (n) ∩ Γ) · V

)]
= D

[ (
Dn[Γ] · (V (n) ∩ Γ)

)︸ ︷︷ ︸
=Γ

·V
]

= D
[
G
]

= G.

In addition, Proposition 2.4 (c) and Lemma 5.1 (c) imply for distinct γ, η ∈ Γ that
Dn+1(γ)V (n+ 1) ∩Dn+1(η)V (n+ 1) = V (n+ 1, {γ}) ∩ V (n+ 1, {η}) = ∅.

This finishes the induction. □

Lemma 6.3. Consider a dilation datum D with associated stretch factor λ0 > 1. Let n ∈ N and
let Vn be a relatively compact fundamental domain for Dn[Γ]. Then, the following statements are
equivalent for finite sets T1, T2 ⊆ Γ.

(i) For every x ∈ Γ, there exists a γ(x) ∈ Γ satisfying xT1 ⊆ Dn(γ(x))V (n, T2).
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(ii) For every x ∈ Vn ∩ Γ, there exists a γ(x) ∈ Γ satisfying xT1 ⊆ Dn(γ(x))V (n, T2).

Proof. Clearly (i) implies (ii). Suppose (ii) holds and let x ∈ Γ. Since G =
⊔

η∈Γ D
n(η)Vn, there

exist η ∈ Γ and y ∈ Vn ∩ Γ, such that x = Dn(η)y. Applying (ii) for y, there exists a γ(y) ∈ Γ
satisfying yT1 ⊆ Dn(γ(y))V (n, T2). Hence,

xT1 = Dn(η)yT1 ⊆ Dn
(
ηγ(y)

)
V (n, T2).

Setting γ(x) := ηγ(y) shows that (i) holds. □

According to [BHP21, Theorem 5.13], for every dilation datum D with associated stretch factor
λ0 > 1, there is a constant C+ > 0 satisfying V (n) ⊆ B(e, λn

0C+) for all n ∈ N. This will be used
in the following proposition to obtain a computable sufficient condition for testing domains.

Proposition 6.4. Consider a dilation datum D with associated stretch factor λ0 > 1 and C+ > 0
as above. Let T0 ⊆ Γ be a testing domain of the substitution with e ∈ T0. Then the following
assertions are equivalent for a finite set T ⊆ Γ and RT > 0 satisfying T ⊆ B(e,RT ).

(i) The set T is a testing domain of the substitution.
(ii) There exists an N0 ∈ N such that for all x ∈ DN0 [V ] ∩ Γ, there is a γx ∈ B

(
D−N0(x), RT +

C+
)

∩ Γ such that xT0 ⊆ DN0(γx)V (N0, T ).

Proof. For each n ∈ N, Dn[V ] is a fundamental domain for Dn[Γ] by Lemma 6.2. By Lemma 6.1
and Lemma 6.3, the statement (i) is equivalent to the fact that for all x ∈ DN0 [V ] ∩ Γ, there exists
γx ∈ Γ such that xT0 ⊆ DN0(γx)V (N0, T ). Thus, it suffices to prove that γx can be chosen in the
set B

(
D−N0(x), RT + C+

)
.

Let us first note that x ∈ DN0(γx)V (N0, T ), since e ∈ T0. Proposition 2.4 (c) and Lemma 5.1 (c)
imply V (N0, T ) ⊆

⊔
η∈T D

N0(η)V (N0). Recall that T ⊆ B(e,RT ), DN0
[
B(e, r)

]
= B(e, λN0

0 r) for
r > 0 and V (N0) ⊆ B

(
e, λN0

0 C+
)
. Relying on these facts, we conclude that

x ∈ DN0(γx)V (N0, T ) ⊆ DN0(γx)
( ⊔

η∈T

DN0(η)V (N0)
)

⊆ DN0(γx)
(
B
(
e, λN0

0 RT

)
·B
(
e, λN0

0 C+
))

⊆ DN0(γx)DN0

[
B
(
e,RT + C+

)]
,

using that the metric d is left-invariant for the last inclusion. Hence, γx ∈ D−N0(x)
(
B(e,RT +

C+)
)−1 follows. Since d is a left-invariant metric, we have B(e, r)−1 = B(e, r) implying

γx ∈ D−N0(x) ·B(e,RT + C+) = B
(
D−N0(x), RT + C+

)
.

□

We now use Proposition 6.4 to propose an algorithm that checks whether a suspected finite set is a
testing domain. Let D be a dilation datum with associated stretch factor λ0 > 1 being sufficiently
large relative to V with respect to a constant C− > 0 and s1 ∈ N0. Choose s2 ∈ N such that
V ⊆ B(e, C−λ

s2
0 ). Then, there exists some δ > 0 such that V · B(e, δ) ⊆ B(e, λs2

0 C−). Thus,
T0 := V (s1 + s2) ∩ Γ is a testing domain by Proposition 5.3.
Let T ⊆ Γ be finite and RT > 0 such that T ⊆ B(e,RT ). Then we can use condition (ii) of
Proposition 6.4 for a fixed N0 ∈ N to check if T is also a testing domain. For given N0 ∈ N, the
following algorithm returns the value “true” if T is a testing domain.
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Algorithm 1 Algorithm to verify testing domain, denoted Alg(D; λ0, N0, T0, T ).
1: Input:
2: • a dilation datum D
3: • a stretch factor λ0 associated with D
4: • a testing domain T0
5: • a finite set T ⊆ Γ
6: • an iteration number N0 ∈ N
7: Output: True if condition (ii) in Proposition 6.4 holds with the given iteration number N0.

False otherwise.
8: Compute the set V (N0, T ) ∩ Γ via the recursion given in equation (2.1).
9: Compute the set DN0 [V ] ∩ Γ.

10: Define the radius RT := maxγ∈T d(e, γ) + 1.
11: Compute the set B(e,RT + C+) ∩ Γ.
12: for all x ∈ DN0 [V ] ∩ Γ: do
13: bool=False
14: Compute A := xT0.
15: Compute D−N0(x)

(
B(e,RT + C+)

)
∩ Γ.

16: for all γx ∈ D−N0(x)
(
B(e,RT + C+)

)
∩ Γ do

17: Compute B := DN0(γx)V (N,T ).
18: if A ⊆ B then
19: bool=True
20: break inner loop
21: if bool=False then
22: return False
23: return True

Note that the algorithm provides only a sufficient criteria to check if a given T is a testing domain.
In the case of the Heisenberg group the algorithm can be further refined to make it more efficient,
see [Ten24b]. Note that for computational purposes it might be more efficient to run the algorithm
recursively. More precisely, one might reduce the size of the initial testing domain T0 in an iterative
way. We do so in the case of the Heisenberg group and obtain the following result. Recall the
notations introduced in Section 3.2.

Proposition 6.5. The tuple (T ′, 1) with T ′ = {−2, 0}2 × {−6,−4, ..., 4, 6} is a testing tuple for
dilation datum DH =

(
H3(R), d, (Dλ)λ>0, H3(2Z), [−1, 1)3) with associated stretch factor λ0 = 4.

Proof. Recall that T = V (1) ∩ Γ is a testing domain by Proposition 3.3. Define T1 := {−2, 0}2 ×
{−12, 10, ..., 10, 12}.
Then the applications Alg(DH ; 4, 1, T , T1) and Alg(DH ; 4, 1 T1, T ′) of Algorithm 1 return the
value “true”. Thus, T ′ is a testing domain. Since T ′ ⊆ V (1) ⊆ V (1, T ′) holds, we conclude that
NT ′ = 1 satisfies Definition 2.11 (b) for the set T ′. Hence, (T ′, 1) is a testing tuple. □

Proposition 6.5 enhances possible computations which one desires to perform in the case of Heisen-
berg group substitution. It reduces the size of the testing domain from |V (1) ∩ Γ| = 44 = 256 to
|T ′| = 2 · 2 · 7 = 28.
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