What one cannot hear? Quantum graphs which sound the same

Rami Band, Ori Parzanchevski, Gilad Ben-Shach

האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem

'Can one hear the shape of a drum ?'

This question was asked by Marc Kac (1966).


```
Marc Kac (1914-1984)
```

Is it possible to have two different drums with the same spectrum (*isospectral drums*)?

The spectrum of a drum

- A **Drum** is an elastic membrane which is attached to a solid planar frame.
- The spectrum is the set of the Laplacian's eigenvalues, $\{\lambda_n\}_{n=1}^{\infty}$, (usually with Dirichlet boundary conditions):

$$-\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)f = \lambda f \qquad f\Big|_{boundary} = 0$$

• A few eigenfunctions of the Sinai 'drum':

Isospectral drums

Gordon, Webb and Wolpert (1992):

'One **cannot** hear the shape of a drum'

Using Sunada's construction (1985)

'Can one hear the shape of

How do we produce isospectral examples?

• What geometrical \ topological properties we can hear ?

Metric Graphs - Introduction

- A graph Γ consists of a finite set of vertices V={v_i} and a finite set of edges E={e_i}.
- A metric graph has a finite length (L_e >0) assigned to each edge.
- A function on the graph is a vector of functions on the edges:

$$f = (f_{e_1}, \dots, f_{e_{|E|}}) \qquad f_{e_j} : [0, L_{e_j}] \to \diamondsuit$$

Quantum Graphs - Introduction

- A quantum graph is a metric graph equipped with an operator, such as the negative Laplacian: $-\Delta f = (-f''|_{e_1}, ..., -f''|_{e_{|F|}})$
- For each vertex v, we impose vertex conditions, such as
 - Neumann
 - Continuity $\forall e_1, e_2 \in E_v$ $f|_{e_1}(v) = f|_{e_2}(v)$

Zero sum of derivatives

$$\sum_{e\in E_v} f'|_e(v) = 0$$

<u>Dirichlet</u>

Zero value at the vertex $\forall e$

$$\forall e \in E_v \quad f\big|_e(v) = 0$$

• A quantum graph is defined by specifying:

- Metric graph
- Operator
- Vertex conditions for each vertex

The Spectrum of Quantum Graphs

We are interested in the *eigenvalues* of the Laplacian:

$$-\Delta f = \lambda f \quad \Longrightarrow \quad (-f''|_{e_1}, \dots, -f''|_{e_{|E|}}) = (\lambda f|_{e_1}, \dots, \lambda f|_{e_{|E|}})$$

Examples of several eigenfunctions of the Laplacian on the graph:

So...

'Can one hear the shape of a graph?'

'Can one hear the shape of a graph ?'

- One can hear the shape of a simple graph if the lengths are incommensurate (Gutkin, Smilansky 2001)
 - Otherwise, we do have isospectral graphs:
 - Roth (1984)
 - VonBelow (2001)
 - Band, Shapira, Smilansky (2006)
 - Kurasov, enerback (2010)
- There are several methods for construction of isospectrality

 the main is due to Sunada (1985).
- We present a method based on representation theory arguments which generalizes Sunada's method.

Isospectral theorem

Theorem (R.B., Ori Parzanchevski, Gilad Ben-Shach)

Let Γ be a graph which obeys a symmetry group G. Let H_1 , H_2 be two subgroups of G with representations R_1 , R_2 that satisfy $\operatorname{Ind}_{H_1}^G R_1 \cong \operatorname{Ind}_{H_2}^G R_2$

then the graphs $\frac{\Gamma}{R_1}$, $\frac{\Gamma}{R_2}$ are isospectral.

Constructing Quotient Graphs

- Example A string with Dirichlet vertex conditions.
- It obeys the symmetry group $Z_2 = \{id, r\}$.
- Two representations of Z₂ are:

We may encode these functions by the following quotient graphs:

$$\Gamma R_1$$
 D N

D

 $-\Delta f = k^2 f$

D

Groups & Graphs

 Example: The Dihedral group – the symmetry group of the square
 G = { id , a , a² , a³ , r_x , r_y , r_u , r_v }

How does the Dihedral group act on a square ?

 Two subgroups of the Dihedral group: H₁ = { id , a² , r_x , r_y} H₂ = { id , a² , r_u , r_v }

Groups - Representations

- Representation Given a group G, a representation R is an assignment of a matrix ρ_R(g) to each group element g M G, such that: × g₁,g₂ M G ρ_R(g₁)·ρ_R(g₂)= ρ_R(g₁g₂).
- Example 1 G has the following 1-dimensional representation $id \rightarrow (1) \quad a \rightarrow (-1) \quad a^2 \rightarrow (1) \quad a^3 \rightarrow (-1) \quad r_x \rightarrow (-1) \quad r_y \rightarrow (-1) \quad r_u \rightarrow (1) \quad r_v \rightarrow (1)$
- Example 2 G has the following 2-dimensional representation $id \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad a \rightarrow \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad a^2 \rightarrow \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \quad a^3 \rightarrow \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \quad r_x \rightarrow \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \quad r_y \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad r_u \rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad r_v \rightarrow \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$
- Induction: take a representation of $H_1...$ id \rightarrow (1) $a^2 \rightarrow$ (1) $r_x \rightarrow$ (-1) $r_y \rightarrow$ (-1)

 $\text{...And turn it into a representation of G (which we denote \text{Ind}_{H_1}^G R) }$ $\text{id} \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad a \rightarrow \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \quad a^2 \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad a^3 \rightarrow \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \quad r_x \rightarrow \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \quad r_y \rightarrow \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \quad r_y \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad r_y \rightarrow \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Isospectral theorem

Theorem (R.B., Ori Parzanchevski, Gilad Ben-Shach)

Let Γ be a graph which obeys a symmetry group G. Let H_1 , H_2 be two subgroups of G with representations R_1 , R_2 that satisfy $\operatorname{Ind}_{H_1}^G R_1 \cong \operatorname{Ind}_{H_2}^G R_2$

then the graphs $\frac{\Gamma}{R_1}$, $\frac{\Gamma}{R_2}$ are isospectral.

• An application of the theorem with: $G = \{id, a, a^2, a^3, r_x, r_y, r_u, r_v\}$

Two subgroups of G:
$$H_1 = \{ id, a^2, r_x, r_y \}$$

 $H_2 = \{ id, a^2, r_u, r_v \}$

We choose representations R_1 of H_1 and R_2 of H_2 $R_1: \{ id \rightarrow (1), a^2 \rightarrow (-1), r_x \rightarrow (-1), r_y \rightarrow (1) \}$ $R_2: \{ id \rightarrow (1), a^2 \rightarrow (-1), a_u \rightarrow (1), a_v \rightarrow (-1) \}$ such that $Ind_{H_1}^G R_1 \cong Ind_{H_2}^G R_2$

Constructing Quotient Graphs

• Consider the following rep. R₁ of the subgroup H₁:

$$\mathbf{R}_1: \left\{ \operatorname{id} \to (1) \quad a^2 \to (-1) \quad r_x \to (-1) \quad r_y \to (1) \right\}$$

We construct Γ_{R_1} by inquiring what do we know about a function f on Γ which transforms according to R_1 .

$$r_x f = -f \qquad r_y f = f$$

Dirichlet

Neumann

The construction of a *quotient graph* is motivated by an *encoding scheme*.

Constructing Quotient Graphs

• Consider the following rep. R₁ of the subgroup H₁:

$$\mathbf{R}_1: \left\{ \operatorname{id} \to (1) \quad a^2 \to (-1) \quad r_x \to (-1) \quad r_y \to (1) \right\}$$

We construct Γ_{R_1} by inquiring what do we know about a function f on Γ which transforms according to R_1 .

$$r_x f = -f \qquad r_y f = f$$

• Consider the following rep. R₂ of the subgroup H₂:

$$R_2: \left\{ id \to (1) \quad a^2 \to (-1) \quad r_u \to (1) \quad r_v \to (-1) \right\}$$

We construct Γ_{R_2} by inquiring what do we know about a function g on Γ which transforms according to R_2 .

 $r_u g = g \qquad r_v g = -g$

Neumann

Dirichlet

Isospectral theorem

<u>Theorem</u> (R.B., Ori Parzanchevski, Gilad Ben-Shach) Let Γ be a graph which obeys a symmetry group G. Let H₁, H₂ be two subgroups of G with representations R₁, R₂ that satisfy

Ind $_{H_1}^G R_1 \cong \operatorname{Ind}_{H_2}^G R_2$ then the graphs $/R_1$, $/R_2$ are isospectral.

Extending our example: $\operatorname{Ind}_{H_1}^G R_1 \cong \operatorname{Ind}_{H_2}^G R_2 \cong \operatorname{Ind}_{H_3}^G R_3$

$$H_1 = \{ e, a^2, r_x, r_y \}$$
 $R_1: e \to (1) a^2 \to (-1) r_x \to (-1) r_y \to (1)$

$$\mathbf{H}_{2} = \{ \mathbf{e}, \mathbf{a}^{2}, \mathbf{r}_{u}, \mathbf{r}_{v} \} \qquad \mathbf{R}_{2}: \mathbf{e} \rightarrow (1) \ a^{2} \rightarrow (-1) \quad \mathbf{r}_{u} \rightarrow (1) \quad \mathbf{r}_{v} \rightarrow (-1)$$

$$\mathbf{H}_3 = \{ \mathbf{e}, \mathbf{a}, \mathbf{a}^2, \mathbf{a}^3 \} \qquad \mathbf{R}_3: \ \mathbf{e} \to (1) \ \mathbf{a} \to (i) \ \mathbf{a}^2 \to (-1) \ \mathbf{a}^3 \to (-i)$$

$$\int_{\mathbb{R}_3}^{\mathbf{r}} df = i$$

Extending our example: $\operatorname{Ind}_{H_1}^G R_1 \cong \operatorname{Ind}_{H_2}^G R_2 \cong \operatorname{Ind}_{H_3}^G R_3$

$$H_1 = \{ e, a^2, r_x, r_y \}$$
 $R_1: e \to (1) a^2 \to (-1) r_x \to (-1) r_y \to (1)$

$$\mathbf{H}_2 = \{ \mathbf{e}, \mathbf{a}^2, \mathbf{r}_u, \mathbf{r}_v \} \qquad \mathbf{R}_2: \mathbf{e} \to (1) \ \mathbf{a}^2 \to (-1) \quad \mathbf{r}_u \to (1) \quad \mathbf{r}_v \to (-1)$$

 ΓR_1

$$\mathbf{H}_3 = \{ \mathbf{e}, \mathbf{a}, \mathbf{a}^2, \mathbf{a}^3 \} \qquad \mathbf{R}_3: \ \mathbf{e} \to (1) \ \mathbf{a} \to (i) \ \mathbf{a}^2 \to (-1) \ \mathbf{a}^3 \to (-i)$$

Extending our example: $\operatorname{Ind}_{H_1}^G R_1 \cong \operatorname{Ind}_{H_2}^G R_2 \cong \operatorname{Ind}_{H_3}^G R_3$ $H_1 = \{ e, a^2, r_x, r_y \}$ $R_1: e \to (1) a^2 \to (-1) r_x \to (-1) r_y \to (1)$ $H_2 = \{ e, a^2, r_u, r_y \}$ $R_2: e \to (1) a^2 \to (-1) r_u \to (1) r_y \to (-1)$ $D \longrightarrow N \Gamma_{R_2}$

$$\mathbf{H}_3 = \{ \mathbf{e}, \mathbf{a}, \mathbf{a}^2, \mathbf{a}^3 \} \qquad \mathbf{R}_3: \ \mathbf{e} \rightarrow (1) \ \mathbf{a} \rightarrow (i) \ \mathbf{a}^2 \rightarrow (-1) \ \mathbf{a}^3 \rightarrow (-i)$$

 $\operatorname{Ind}_{H_1}^G R_1 \cong \operatorname{Ind}_{H_2}^G R_2 \cong \operatorname{Ind}_{H_2}^G R_3$ Extending our example: $H_1 = \{e, a^2, r_x, r_y\}$ $R_1: e \to (1) a^2 \to (-1) r_x \to (-1) r_y \to (1)$ $H_2 = \{e, a^2, r_u, r_v\}$ $R_2: e \to (1) a^2 \to (-1) r_u \to (1) r_v \to (-1)$ D $-N \Gamma_R$ $H_3 = \{e, a, a^2, a^3\}$ $R_3: e \to (1) a \to (i) a^2 \to (-1) a^3 \to (-i)$ $\frac{1}{R_3}$ $\frac{1}{R_3}$ ×i af = i f

 Γ is the Cayley graph of G=D₄ (with respect to the generators a, r_x):

Take the same group and the subgroups: $H_1 = \{e, a^2, r_x, r_y\}$ with the rep. R_1 $H_2 = \{e, a^2, r_u, r_y\}$ with the rep. R_2 $H_3 = \{e, a, a^2, a^3\}$ with the rep. R_3

The resulting quotient graphs are:

G = D₆ = {e, a, a², a³, a⁴, a⁵, r_x, r_y, r_z, r_u, r_v, r_w} with the subgroups: H₁ = { e, a², a⁴, r_x, r_y, r_z } with the rep. R₁ H₂ = { e, a², a⁴, r_u, r_v, r_w } with the rep. R₂ H₃ = { e, a, a², a³, a⁴, a⁵ } with the rep. R₃

The resulting quotient graphs are:

 $G = S_3 (D_3)$ acts on Γ with no fixed points. To construct the quotient graph, we take the same rep. of G, but use two different bases for the matrix representation.

The resulting quotient graphs are:

Why quantum graphs? Why not drums?

However, $\frac{\Gamma}{R_3}$ is not a planar drum:

Isospectral drums

'Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality and beyond' D. Jacobson, M. Levitin, N. Nadirashvili, I. Polterovich (2004)
'Isospectral domains with mixed boundary conditions'

M. Levitin, L. Parnovski, I. Polterovich (2005)

Isospectral drums

'One **cannot** hear the shape of a drum' Gordon, Webb and Wolpert (1992)

We construct the known isospectral drums of Gordon *et al.* but with new boundary conditions:

What one cannot hear? On drums\graphs which sound the same

Rami Band, Ori Parzanchevski, Gilad Ben-Shach

R. Band, O. Parzanchevski and G. Ben-Shach, "The Isospectral Fruits of Representation Theory: Quantum Graphs and Drums", J. Phys. A (2009).

O. Parzanchevski and R. Band,

"Linear Representations and Isospectrality with Boundary Conditions", Journal of Geometric Analysis (2010).

McGill

