What one cannot hear？
 Quantum graphs which sound the same

Rami Band，Ori Parzanchevski，Gilad Ben－Shach

'Can one hear the shape of a drum ?'

- This question was asked by Marc Kac (1966).

- Is it possible to have two different drums with the same spectrum (isospectral drums) ?

The spectrum of a drum

- A Drum is an elastic membrane which is attached to a solid planar frame.
- The spectrum is the set of the Laplacian's eigenvalues, $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$, (usually with Dirichlet boundary conditions):

$$
-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f=\left.\lambda f \quad f\right|_{\text {boundary }}=0
$$

- A few eigenfunctions of the Sinai 'drum':

Isospectral drums

Gordon, Webb and Wolpert (1992):
'One cannot hear the shape of a drum'

Using Sunada's construction (1985)

'Can one hear the shape of

- How do we produce isospectral examples?
- What geometrical \backslash topological properties we can hear?

Metric Graphs - Introduction

- A graph Γ consists of a finite set of vertices $\mathrm{V}=\left\{\mathrm{v}_{\mathrm{i}}\right\}$ and a finite set of edges $\mathrm{E}=\left\{\mathrm{e}_{\mathrm{j}}\right\}$.
- A metric graph has a finite length ($\mathrm{L}_{\mathrm{e}}>0$) assigned to each edge.
- A function on the graph is a vector of functions on the edges:
$f=\left(f_{e_{1}}, \ldots, f_{e_{E} \mid}\right) \quad f_{e_{j}}:\left[0, L_{e_{j}}\right] \rightarrow$

Quantum Graphs - Introduction

A quantum graph is a metric graph equipped with an operator, such as the negative Laplacian:

$$
-\Delta f=\left(-\left.f^{\prime \prime}\right|_{e_{1}}, \ldots,-\left.f^{\prime \prime}\right|_{e_{E \mid}}\right)
$$

For each vertex v, we impose vertex conditions, such as

- Neumann

Continuity $\quad \forall e_{1},\left.e_{2} \in E_{v} \quad f\right|_{e_{1}}(v)=\left.f\right|_{e_{2}}(v)$
Zero sum of derivatives $\left.\sum_{e \in E_{v}} f^{\prime}\right|_{e}(v)=0$

- Dirichlet

Zero value at the vertex $\left.\quad \forall e \in E_{v} \quad f\right|_{e}(v)=0$

A quantum graph is defined by specifying:

- Metric graph
- Operator
- Vertex conditions for each vertex

The Spectrum of Quantum Graphs

We are interested in the eigenvalues of the Laplacian:

$$
-\Delta f=\lambda f \Rightarrow\left(-\left.f^{\prime \prime}\right|_{e_{1}}, \ldots,-\left.f^{\prime \prime}\right|_{e_{E \mid}}\right)=\left(\left.\lambda f\right|_{e_{1}}, \ldots,\left.\lambda f\right|_{e_{E \mid}}\right)
$$

Examples of several eigenfunctions of the Laplacian on the graph:

So...
'Can one hear the shape of a graph?'

'Can one hear the shape of a graph ?'

One can hear the shape of a simple graph if the lengths are incommensurate (Gutkin, Smilansky 2001)

- Otherwise, we do have isospectral graphs:
- Roth (1984)
- VonBelow (2001)
- Band, Shapira, Smilansky (2006)
- Kurasov, enerback (2010)

There are several methods for construction of isospectrality - the main is due to Sunada (1985).

- We present a method based on representation theory arguments which generalizes Sunada's method.

Isospectral theorem

Theorem (R.B., Ori Parzanchevski, Gilad Ben-Shach)
Let Γ be a graph which obeys a symmetry group G. Let H_{1}, H_{2} be two subgroups of G with representations R_{1}, R_{2} that satisfy $\operatorname{Ind}_{H_{1}}^{G} R_{1} \cong \operatorname{Ind}_{H_{2}}^{G} R_{2}$
then the graphs $\Gamma / R_{1}, \Gamma / R_{2}$ are isospectral.

Constructing Quotient Graphs

- Example - A string with Dirichlet vertex conditions.

D

- It obeys the symmetry group $Z_{2}=\{i d, r\}$.

$$
-\Delta f=k^{2} f
$$

- Two representations of Z_{2} are:

$$
R_{1}:\{i d \rightarrow(1), r \rightarrow(1)\}
$$

$$
R_{2}:\{i d \rightarrow(1), r \rightarrow(-1)\}
$$

We may encode these functions by the following quotient graphs:

Groups \& Graphs

- Example: The Dihedral group -
the symmetry group of the square $\mathrm{G}=\left\{\mathrm{id}, \mathrm{a}, \mathrm{a}^{2}, \mathrm{a}^{3}, \mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}, \mathrm{r}_{\mathrm{u}}, \mathrm{r}_{\mathrm{v}}\right\}$

How does the Dihedral group act on a square?

- Two subgroups of the Dihedral group:

$$
\begin{aligned}
& \mathrm{H}_{1}=\left\{\mathrm{id}, \mathrm{a}^{2}, \mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}\right\} \\
& \mathrm{H}_{2}=\left\{\mathrm{id}, \mathrm{a}^{2}, \mathrm{r}_{\mathrm{u}}, \mathrm{r}_{\mathrm{v}}\right\}
\end{aligned}
$$

Groups - Representations

- Representation - Given a group G, a representation R is an assignment of a matrix $\rho_{\mathrm{R}}(\mathrm{g})$ to each group element $g m, G$, such that: $\&<g_{1}, g_{2} m, G \rho_{R}\left(g_{1}\right) \cdot \rho_{R}\left(g_{2}\right)=\rho_{R}\left(g_{1} g_{2}\right)$.

Example 1 - G has the following 1-dimensional representation id $\rightarrow(1) \quad a \rightarrow(-1) \quad a^{2} \rightarrow(1) \quad a^{3} \rightarrow(-1) \quad r_{x} \rightarrow(-1) \quad r_{y} \rightarrow(-1) \quad r_{u} \rightarrow(1) \quad r_{v} \rightarrow(1)$

- Example 2-G has the following 2-dimensional representation
id $\rightarrow\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \quad a \rightarrow\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right) \quad a^{2} \rightarrow\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right) \quad a^{3} \rightarrow\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \quad r_{x} \rightarrow\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) \quad r_{y} \rightarrow\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad r_{u} \rightarrow\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right) \quad r_{v} \rightarrow\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
- Induction: take a representation of $\mathrm{H}_{1} \ldots$

$$
\text { id } \rightarrow(1) \quad a^{2} \rightarrow(1) \quad r_{x} \rightarrow(-1) \quad r_{y} \rightarrow(-1)
$$

...And turn it into a representation of G (which we denote $\operatorname{Ind}_{H_{1}}^{G} R$)

$$
\text { id } \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad a \rightarrow\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad a^{2} \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad a^{3} \rightarrow\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad r_{x} \rightarrow\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \quad r_{y} \rightarrow\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \quad r_{u} \rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad r_{v} \rightarrow\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Isospectral theorem

Theorem (R.B., Ori Parzanchevski, Gilad Ben-Shach)
Let Γ be a graph which obeys a symmetry group G. Let H_{1}, H_{2} be two subgroups of G with representations R_{1}, R_{2} that satisfy $\operatorname{Ind}_{H_{1}}^{G} R_{1} \cong \operatorname{Ind}_{H_{2}}^{G} R_{2}$ then the graphs $\Gamma / R_{1}, \Gamma / R_{2}$ are isospectral.

- An application of the theorem with: $\mathrm{G}=\left\{\mathrm{id}, a, a^{2}, a^{3}, r_{x}, r_{y}, r_{u}, r_{v}\right\}$

Two subgroups of G: $\mathrm{H}_{1}=\left\{\mathrm{id}, a^{2}, r_{x}, r_{y}\right\}$

$$
\mathrm{H}_{2}=\left\{\mathrm{id}, a^{2}, r_{u}, r_{v}\right\}
$$

We choose representations R_{1} of H_{1} and R_{2} of H_{2}
$\mathrm{R}_{1}:\left\{\mathrm{id} \rightarrow(1), a^{2} \rightarrow(-1), r_{x} \rightarrow(-1), r_{y} \rightarrow(1)\right\}$
$\mathrm{R}_{2}:\left\{\operatorname{id} \rightarrow(1), a^{2} \rightarrow(-1), a_{u} \rightarrow(1), a_{v} \rightarrow(-1)\right\}$
such that $\operatorname{Ind}_{H_{1}}^{G} R_{1} \cong \operatorname{Ind}_{H_{2}}^{G} R_{2}$

Constructing Quotient Graphs

- Consider the following rep. R_{1} of the subgroup H_{1} :

$$
\mathrm{R}_{1}:\left\{\text { id } \rightarrow(1) \quad a^{2} \rightarrow(-1) \quad r_{x} \rightarrow(-1) \quad r_{y} \rightarrow(1)\right\}
$$

We construct Γ / R_{1} by inquiring what do we know about a function f on Γ which transforms according to R_{1}.

$$
r_{x} f=-f
$$

Dirichlet

$$
r_{y} f=f
$$

Neumann

The construction of a quotient graph is motivated by an encoding scheme.

Constructing Quotient Graphs

- Consider the following rep. R_{1} of the subgroup H_{1} :

$$
\mathrm{R}_{1}:\left\{\text { id } \rightarrow(1) \quad a^{2} \rightarrow(-1) \quad r_{x} \rightarrow(-1) \quad r_{y} \rightarrow(1)\right\}
$$

We construct $\mathrm{K} / \mathrm{R}_{1}$ by inquiring what do we know about a function f on Γ which transforms according to R_{1}.

$$
r_{x} f=-f \quad r_{y} f=f
$$

- Consider the following rep. R_{2} of the subgroup H_{2} :

$$
\mathrm{R}_{2}:\left\{\mathrm{id} \rightarrow(1) \quad a^{2} \rightarrow(-1) \quad r_{u} \rightarrow(1) \quad r_{v} \rightarrow(-1)\right\}
$$

We construct Γ / R_{2} by inquiring what do we know about a function g on Γ which transforms according to R_{2}.

$$
r_{u} g=g \quad r_{v} g=-g
$$

Isospectral theorem

Theorem (R.B., Ori Parzanchevski, Gilad Ben-Shach)
Let Γ be a graph which obeys a symmetry group G. Let $\mathrm{H}_{1}, \mathrm{H}_{2}$ be two subgroups of G with representations $\mathrm{R}_{1}, \mathrm{R}_{2}$ that satisfy
$\operatorname{Ind}_{H_{1}}^{G} R_{1} \cong \operatorname{Ind}_{H_{2}}^{G} R_{2}$
then the graphs $\Gamma / R_{1}, \Gamma / R_{2}$ are isospectral.

D

Extending the Isospectral pair

Extending our example: $\quad \operatorname{Ind}_{H_{1}}^{G} R_{1} \cong \operatorname{Ind}_{H_{2}}^{G} R_{2} \cong \operatorname{Ind}_{H_{3}}^{G} R_{3}$

$$
\mathrm{H}_{1}=\left\{\mathrm{e}, \mathrm{a}^{2}, \mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}\right\} \quad \mathrm{R}_{1}: \quad e \rightarrow(1) a^{2} \rightarrow(-1) \quad r_{x} \rightarrow(-1) \quad r_{y} \rightarrow(1)
$$

$$
\mathrm{H}_{2}=\left\{\mathrm{e}, \mathrm{a}^{2}, \mathrm{r}_{\mathrm{u}}, \mathrm{r}_{\mathrm{v}}\right\} \quad \mathrm{R}_{2}: \quad e \rightarrow(1) a^{2} \rightarrow(-1) \quad r_{u} \rightarrow(1) \quad r_{v} \rightarrow(-1)
$$

$D \backsim N / R_{2}$

$$
\mathrm{H}_{3}=\left\{\mathrm{e}, \mathrm{a}, \mathrm{a}^{2}, \mathrm{a}^{3}\right\} \quad \mathrm{R}_{3}: e \rightarrow(1) a \rightarrow(i) \quad a^{2} \rightarrow(-1) \quad a^{3} \rightarrow(-i)
$$

$$
a f=i f
$$

Extending the Isospectral pair

Extending our example: $\quad \operatorname{Ind}_{H_{1}}^{G} R_{1} \cong \operatorname{Ind}_{H_{2}}^{G} R_{2} \cong \operatorname{Ind}_{H_{3}}^{G} R_{3}$

$$
\mathrm{H}_{1}=\left\{\mathrm{e}, \mathrm{a}^{2}, \mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}\right\} \quad \mathrm{R}_{1}: \quad e \rightarrow(1) a^{2} \rightarrow(-1) \quad r_{x} \rightarrow(-1) \quad r_{y} \rightarrow(1)
$$

$$
\mathrm{H}_{2}=\left\{\mathrm{e}, \mathrm{a}^{2}, \mathrm{r}_{\mathrm{u}}, \mathrm{r}_{\mathrm{v}}\right\} \quad \mathrm{R}_{2}: \quad e \rightarrow(1) a^{2} \rightarrow(-1) \quad r_{u} \rightarrow(1) \quad r_{v} \rightarrow(-1)
$$

$D \backsim N / R_{2}$

$$
\mathrm{H}_{3}=\left\{\mathrm{e}, \mathrm{a}, \mathrm{a}^{2}, \mathrm{a}^{3}\right\} \quad \mathrm{R}_{3}: e \rightarrow(1) a \rightarrow(i) \quad a^{2} \rightarrow(-1) \quad a^{3} \rightarrow(-i)
$$

Extending the Isospectral pair

Extending our example: $\quad \operatorname{Ind}_{H_{1}}^{G} R_{1} \cong \operatorname{Ind}_{H_{2}}^{G} R_{2} \cong \operatorname{Ind}_{H_{3}}^{G} R_{3}$

$$
\begin{aligned}
& \mathrm{H}_{1}=\left\{\mathrm{e}, \mathrm{a}^{2}, \mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}\right\} \quad \mathrm{R}_{1}: e \rightarrow(1) a^{2} \rightarrow(-1) r_{x} \rightarrow(-1) \quad r_{y} \rightarrow(1) \\
& \mathrm{H}_{2}=\left\{\mathrm{e}, \mathrm{a}^{2}, \mathrm{r}_{\mathrm{u}}, \mathrm{r}_{\mathrm{v}}\right\} \quad \mathrm{R}_{2}: e \rightarrow(1) a^{2} \rightarrow(-1) \quad r_{u} \rightarrow(1) \quad r_{v} \rightarrow(-1) \quad \mathrm{D} \longrightarrow \mathrm{~N} / \mathrm{R}_{2} \\
& \mathrm{H}_{3}=\left\{\mathrm{e}, \mathrm{a}, \mathrm{a}^{2}, \mathrm{a}^{3}\right\} \\
& \mathrm{R}_{3}: e \rightarrow(1) a \rightarrow(i) a^{2} \rightarrow(-1) a^{3} \rightarrow(-i)
\end{aligned}
$$

Extending the Isospectral pair

Extending our example: $\quad \operatorname{Ind}_{H_{1}}^{G} R_{1} \cong \operatorname{Ind}_{H_{2}}^{G} R_{2} \cong \operatorname{Ind}_{H_{3}}^{G} R_{3}$

$$
\mathrm{H}_{1}=\left\{\mathrm{e}, \mathrm{a}^{2}, \mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}\right\} \quad \mathrm{R}_{1}: \quad e \rightarrow(1) a^{2} \rightarrow(-1) \quad r_{x} \rightarrow(-1) \quad r_{y} \rightarrow(1)
$$

 Γ / R_{1}

$$
\mathrm{H}_{2}=\left\{\mathrm{e}, \mathrm{a}^{2}, \mathrm{r}_{\mathrm{u}}, \mathrm{r}_{\mathrm{v}}\right\} \quad \mathrm{R}_{2}: e \rightarrow(1) a^{2} \rightarrow(-1) \quad r_{u} \rightarrow(1) \quad r_{v} \rightarrow(-1)
$$

$$
D \longrightarrow N \Gamma / R_{2}
$$

$$
\mathrm{H}_{3}=\left\{\mathrm{e}, \mathrm{a}, \mathrm{a}^{2}, \mathrm{a}^{3}\right\} \quad \mathrm{R}_{3}: e \rightarrow(1) a \rightarrow(i) \quad a^{2} \rightarrow(-1) a^{3} \rightarrow(-i)
$$

Arsenal of isospectral examples

Γ is the Cayley graph of $G=D_{4}$ (with respect to the generators $\mathrm{a}, \mathrm{r}_{\mathrm{x}}$):

Take the same group and the subgroups: $\mathrm{H}_{1}=\left\{\mathrm{e}, \mathrm{a}^{2}, \mathrm{r}_{\mathrm{x}}, \mathrm{r}_{\mathrm{y}}\right\}$ with the rep. R_{1} $H_{2}=\left\{e, a^{2}, r_{u}, r_{v}\right\}$ with the rep. R_{2} $H_{3}=\left\{e, a, a^{2}, a^{3}\right\}$ with the rep. R_{3}

The resulting quotient graphs are:

Arsenal of isospectral examples

$G=D_{6}=\left\{e, a, a^{2}, a^{3}, a^{4}, a^{5}, r_{x}, r_{y}, r_{z}, r_{u}, r_{v}, r_{w}\right\}$ with the subgroups:
$H_{1}=\left\{e, a^{2}, a^{4}, r_{x}, r_{y}, r_{z}\right\}$ with the rep. R_{1} $H_{2}=\left\{e, a^{2}, a^{4}, r_{u}, r_{v}, r_{w}\right\}$ with the rep. R_{2} $H_{3}=\left\{e, a, a^{2}, a^{3}, a^{4}, a^{5}\right\}$ with the rep. R_{3}

The resulting quotient graphs are:

Arsenal of isospectral examples

$G=S_{3}\left(D_{3}\right)$ acts on Γ with no fixed points.
To construct the quotient graph, we take the same rep. of G, but use two different bases for the matrix representation.

The resulting quotient graphs are:

Why quantum graphs? Why not drums?

Arsenal of isospectral examples

Isospectral drums

'Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality
and beyond'
D. Jacobson, M. Levitin, N. Nadirashvili, I. Polterovich (2004) 'Isospectral domains with mixed boundary conditions'
M. Levitin, L. Parnovski, I. Polterovich (2005)

Arsenal of isospectral examples

Isospectral drums

'One cannot hear the shape of a drum'
Gordon, Webb and Wolpert (1992)

We construct the known isospectral drums of Gordon et al. but with new boundary conditions:

What one cannot hear? On drums \backslash graphs which sound the same

Rami Band, Ori Parzanchevski, Gilad Ben-Shach

> YOU CANT HEAR WHAT YOU CANT HEAR.

R. Band, O. Parzanchevski and G. Ben-Shach,
"The Isospectral Fruits of Representation Theory: Quantum Graphs and Drums",
J. Phys. A (2009).
O. Parzanchevski and R. Band,
"Linear Representations and Isospectrality with Boundary Conditions",
Journal of Geometric Analysis (2010).

עכוז ויצמץ צלמדע

