What one cannot hear?
Quantum graphs which sound the same
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‘Can one hear the shape of a drum ?’

it
= This question was asked by Marc Kac (1966). ?

|

Marc Kaé (1914-1984)

= Is it possible to have two different drums
with the same spectrum (isospectral drums) ?
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The spectrum of a drum

A Drum is an elastic membrane
which is attached to a solid planar frame.
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The spectrum is the set of the Laplacian’s eigenvalues, {ﬁn }nzl,
(usually with Dirichlet boundary conditions):

2 2
_£§2+§ijf:/’tf f‘boundary:O
X

A few eigenfunctions of the Sinai ‘drum’:
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Isospectral drums

Gordon, Webb and
Wolpert (1992):

‘One cannot hear
the shape of a drum’

Using Sunada’s
construction (19895)




‘Can one hear the shape of

thok bl eliiP?
How do we produce isospectral examples?

What geometrical \ topological properties we can hear ?
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Metric Graphs - Introduction

A graph I consists of a finite set
of vertices V={v;} and a finite set
of edges E={e;}.

A metric graph has a finite
length (L.>0) assigned to each edge.

A function on the graph is a vector of
functions on the edges:

f=(f,....f..) f:0L]->%




Quantum Graphs - Introduction

CAf = (—f"

A quantum graph is a metric graph equipped with an operator,
N i
“lE| )

such as the negative Laplacian:
€

For each vertex v, we impose vertex conditions, such as

Neumann
Continuity  Ve,e, e E, f‘e (V)= f‘e (V)
2 f

Zero sum of derivatives .(v)=0
eck,

irichlet
Zero value at the vertex VeeE, f‘e(v) =0
: : o \
A quantum graph is defined by specifying: L Yy
Metric graph /‘\’/Q:Ui_«\/
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Vertex conditions for each vertex



The Spectrum of Quantum Graphs

We are interested in the eigenvalues of the Laplacian:
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Examples of several eigenfunctions of
the Laplacian on the graph:

N\
N A W~ L
> N 2 /\/'-‘3——6\ ll
o 2 V
So...

‘Can one hear the shape of a graph?’




‘Can one hear the shape of a graph ?’

One can hear the shape of a simple graph

if the lengths are incommensurate
(Gutkin, Smilansky 2001) ‘ )

Otherwise, — lls
we do have isospectral graphs: =

Roth (1984)
VonBelow (2001) 2l 4
Band, Shapira, Smilansky (2006) P ‘
Kurasov, enerback (2010) SN °—'—

There are several methods for
construction of isospectrality
— the main is due to Sunada (1985).

We present a method based on representation theory arguments
which generalizes Sunada’s method.




Isospectral theorem

Theorem (R.B., Ori Parzanchevski, Gilad Ben-Shach)

Let I' be a graph which obeys a symmetry group G.
Let H,, H, be two subgroups of G with representations R, R,

that satisfy Ind Ell R = Indf|2 R,

then the graphs %1 ,%2 are isospectral.



Constructing Quotient Graphs

Example - A string with Dirichlet vertex conditions. D

L2
It obeys the symmetry group 7, =id r}. —Af =k°f
Two representations of Z, are:

R: {id (1), r—>(1)} R,: {id >(1), r —>(-1)}
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We may encode these functions by the following quotient graphs:
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Groups & Graphs

Example: The Dihedral group —
the symmetry group of the square
G={id,a,a?,ad,r ,r }

) "X ) y7 u?V

How does the Dihedral group act on a square ?

Two subgroups of the Dihedral group:
H, ={id, a?,r,, 1y
H, ={id , a2
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Groups - Representations

Representation — Given a group G, a representation R is an
assignment of a matrix pg(g) to each group element
g Il G, such that: < g;,g, L. G Pr(g:1)Pr(g2)= Pr(g:182)-

Example 1 - G has the following 1-dimensional representation
d 1) ao(-) a>() a@56) =) o) -0 -0

Example 2 - G has the following 2-dimensional representation

_ 10 0 1 , (-1 0 . (0 -1 r%(—l Oj r—>(1 0) 0 1 0 -1
X r, r, —
Id_)(O J a—{_l O] a _)(O _J a—>[l OJ 0 1 i P — p 1 0

Induction: take a representation of H;...
id — (1) a* — (1) r 1) 1,0

...And turn it into a representation of G (which we denote Indﬁ R )
1

: 10 -1 0 , (10 , (-1 0 r_{—lOJr_)(—loj 1oy (10
Id—>(0 1] a—{o J a—>(o ]j a—{o J X 0 - y o 1] W7 0 1 Y 0 _1



Isospectral theorem

Theorem (R.B., Ori Parzanchevski, Gilad Ben-Shach)

Let I' be a graph which obeys a symmetry group G.
Let H,, H, be two subgroups of G with representations R, R,

that satlsfy Ind R =Ind} R,
2

then the graphs Al , AZ are isospectral.

An application of the theorem with: G = {Id d, i a r,r.,r I’}

1 °x1 y! u?
Y
v . Two subgroups of G: H, = {|d a‘r.r }
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F We choose representations
x R, of H; and R, of H,

R, fid > (1), a2 (1), 1, > (1), r, >(1)]
R,: fid > (1), a® > (-1), 3, > (1), av—>(1)}
such that |nd Eil = Indﬁ2 ,



Constructing Quotient Graphs

Consider the following rep. R; of the subgroup H;:

R:{id>1) a5() r-o() 1)}

We construct 'z by inquiring what do we know about
a function f on I' which transforms according to R;.

rof=-f r, f=f
Dirichlet Neumann

The construction of a quotient graph is motivated by an encoding scheme.



Constructing Quotient Graphs

Consider the following rep. R; of the subgroup H;:

R:{id>1) a5() r-o() 1)}

N
We construct 'z by inquiring what do we know about N
a function f on I' which transforms according to R;.
r
rxf:_f rnyf /Ql D D

Consider the following rep. R, of the subgroup H,:
R,: {id—>(1) a’>(1) ro>@1) ro(1)]

We construct 'z by inquiring what do we know about
a function g on I' which transforms according to R,.

L9=9 ,g9=-09

Neumann Dirichlet




Isospectral theorem

Theorem (R.B., Ori Parzanchevski, Gilad Ben-Shach)

Let I' be a graph which obeys a symmetry group G.

Let H,, H, be two subgroups of G with
representations R, R, that satisfy

Indy} R, = Ind}} R,
then the graphs %1 ,%2 are isospectral.



Extending the Isospectral pair

Extending our example: Ind ﬁl R, = mdﬁz R, = |ndg3 R,




Extending the Isospectral pair

Extending our example: Ind ﬁl R, = |ndﬁ2 R, = |ndg3 R,

N
Hy ={e,a%r, ,r} R;: e>()a->(] -1 r,—->@ : q %1
D D

H,={e,a%r,,r} R, es()as() -0 r—>()

Hy={e,a, a% a8 Ry e—() an() a>(1) a—(i)

Awa

a af=If



Extending the Isospectral pair

Extending our example: Ind ﬁl R, = mdﬁz R, = |ndﬁ3 R;
H, ={e,a%r,,r} R;: es@)a>(1) r>() r->Q

> X 0 Y.

H,={e,a%r,,r} R, es()as() -0 r—>()




Extending the Isospectral pair

Extending our example: Ind ﬁl R, = |ndﬁ2 R, = |ndﬁ3 R,

N
Hy ={e,a%r, ,r} R;: e>()a->(] -1 r,—->@ : q %1
D D

H,={e,a%r,,r} R, es()as() -0 r—>() > — " o
Hy={e,a, a% a8 Ry e—() an() a>(1) a—(i)

"
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Arsenal of isospectral examples

r, r
[' is the Cayley graph of G=D, U y
(with respect to the generators a, r,):

Take the same group and the subgroups:
H, = {e, a2, 1, , 1y} with the rep. R,
H,={e,a? r., }W1ththerepR

H,={e,a,a?, a’ with the rep. R;

7X7

The resulting quotient graphs are:



Arsenal of isospectral examples

N - 3 44 o5 W
G =Dg = {e, a, a2, a°, a%, a>, 1, 1, T, Iy, Ty, Iy}

with the subgroups: ‘ ‘

H, = {e, a2, a% r,, r,, r,} with the rep. R,
H, ={e, a?, a*, r,, r,, 1, } with the rep. R,

H, = {e, a, a2, a3, a*, a®} with the rep. R, ‘ '
The resulting quotient graphs are: L 2L
1 2
2L, TR,
2L,

2L,




Arsenal of isospectral examples

G =S, (D;) acts on I' with no fixed points.

To construct the quotient graph,
we take the same rep. of G,
but use two different bases
for the matrix representation.

The resulting quotient graphs are:

L, 5 L, L, L

O—()—(—0

L L, N [/ L, (=)
O—()—()—0 |
&




Why quantum graphs? Why not drums?

%e R,
\ Following Martin Sieber N &D

SA
However, %3 is not a planar drum:



Arsenal of isospectral examples

Isospectral drums

‘Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality
and beyond’ D. Jacobson, M. Levitin, N. Nadirashvili, I. Polterovich (2004)

‘Isospectral domains with mixed boundary conditions’
M. Levitin, L. Parnovski, I. Polterovich (2005)

N
"\

acting with the group D,xD, on the following

This isospectral quartet can be obtained when <>
torus: <>



Arsenal of isospectral examples

Isospectral drums

‘One cannot hear the shape of a drum’
Gordon, Webb and Wolpert (1992)

55

We construct the known isospectral drums of Gordon et al.
but with new boundary conditions:

Sy




What one cannot hear?
On drums\ graphs which sound the same

Rami Band, Ori Parzanchevski, Gilad Ben-Shach

YOU CAN'T HEAR
WHAT YOU CANT = ——
HEAR.

R. Band, O. Parzanchevski and G. Ben-Shach,
"The Isospectral Fruits of Representation Theory: Quantum Graphs and Drums",
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