
What one cannot hear? 
Quantum graphs which sound the same 

Rami Band, Ori Parzanchevski, Gilad Ben-Shach 



 

 This question was asked by Marc Kac (1966).  

 

 

 

 

 

 
 

 

 

 Is it possible to have two different drums  

with the same spectrum (isospectral drums) ? 

 

 

 

 

 

 

‘Can one hear the shape of a drum ?’ 

Marc Kac (1914-1984) 



 A Drum is an elastic membrane 

which is attached to a solid planar frame. 

 The spectrum is the set of the Laplacian’s eigenvalues,          , 

(usually with Dirichlet boundary conditions): 

 

 

 

 

 

 

 A few eigenfunctions of the Sinai ‘drum’: 

 

The spectrum of a drum 
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Isospectral drums 

Gordon, Webb and 

Wolpert (1992):  

 

‘One cannot hear  

the shape of a drum’ 

  

 

 

 

 

  

 

 

 

 

 

 

  

Using Sunada’s 

construction (1985) 



‘Can one hear the shape of 

a pore ?’ the universe ?’ a network ?’ a molecule?’ a dataset ?’ your throat ?’ an electrode ?’ a graph?’ a drum?’ a black hole?’ a violin ?’ 

 How do we produce isospectral examples? 

 

 

 What geometrical \ topological properties we can hear ? 
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Metric Graphs - Introduction 

 A graph Γ consists of a finite set  

of vertices V={vi} and a finite set  

of edges E={ej}. 

 A metric graph has a finite  

length (Le>0) assigned to each edge. 

 

 A function on the graph is a vector of  

functions on the edges: 
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Quantum Graphs - Introduction 

 A quantum graph is a metric graph equipped with an operator,  

such as the negative Laplacian: 

 

 For each vertex v, we impose vertex conditions, such as  

 Neumann 

 Continuity 

 

 Zero sum of derivatives 
 

 Dirichlet 

 Zero value at the vertex 

 

 

 A quantum graph is defined by specifying: 

 Metric graph 

 Operator 

 Vertex conditions for each vertex 
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We are interested in the eigenvalues of the Laplacian: 

 

 

The Spectrum of Quantum Graphs 

Examples of several eigenfunctions of  

                              the Laplacian on the graph:  
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So… 

         ‘Can one hear the shape of a graph?’ 

 



 One can hear the shape of a simple graph  

if the lengths are incommensurate  

(Gutkin, Smilansky 2001) 

 

 Otherwise,  

we do have isospectral graphs: 

 Roth (1984) 

 VonBelow (2001) 

 Band, Shapira, Smilansky (2006) 

 Kurasov, enerback (2010) 

 

 There are several methods for  

construction of isospectrality 

 – the main is due to Sunada (1985). 

 

 We present a method based on representation theory arguments  

which generalizes Sunada’s method. 

‘Can one hear the shape of a graph ?’ 



Theorem (R.B., Ori Parzanchevski, Gilad Ben-Shach) 

 Let Γ  be a graph which obeys a symmetry group G. 

Let H1, H2 be two subgroups of G with representations R1, R2  

that satisfy                               

  

then the graphs       ,       are isospectral. 

 

Isospectral theorem 
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We may encode these functions by the following quotient graphs: 

 

 Example - A string with Dirichlet vertex conditions. 
 

 It obeys the symmetry group               . 
 

 Two representations of Z2 are: 
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Constructing Quotient Graphs 
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Groups & Graphs 

 Example: The Dihedral group –  

                                the symmetry group of the square 

G = { id , a , a2 , a3 , rx , ry , ru , rv }   
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How does the Dihedral group act on a square ?  

 Two subgroups of the Dihedral group:  

H1 = { id , a2 , rx , ry} 

H2 = { id , a2 , ru , rv } 

 



 Representation – Given a group G, a representation R is an 

assignment of a matrix ρR(g) to each group element  

g  G, such that:   g1,g2  G  ρR(g1)·ρR(g2)= ρR(g1g2). 

 

 Example 1 - G has the following 1-dimensional representation 
 
 

 

 Example 2 - G has the following 2-dimensional representation 

 

 
 

 

 Induction:  take a representation of H1... 
 

 

 

 

       ...And turn it into a representation of G (which we denote              ) 

 

 

Groups - Representations 
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Theorem (R.B., Ori Parzanchevski, Gilad Ben-Shach) 

 Let Γ  be a graph which obeys a symmetry group G. 

Let H1, H2 be two subgroups of G with representations R1, R2  

that satisfy                               

  

then the graphs       ,       are isospectral. 

 

Isospectral theorem 
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 An application of the theorem with: 

Two subgroups of G: 

 vuyx rrrraaa ,,,,, , id,G 32
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We choose representations  

R1 of H1 and R2 of H2  

 

 

 

such that 
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 Consider the following rep. R1 of the subgroup H1: 

 

 

We construct      by inquiring what do we know about 

a function f on Γ which transforms according to R1. 

 

 

 

Constructing Quotient Graphs 
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Neumann Dirichlet 

The construction of a quotient graph is motivated by an encoding scheme. 
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 Consider the following rep. R2 of the subgroup H2: 

 

 

We construct      by inquiring what do we know about 

a function g on Γ which transforms according to R2. 

ggru  ggrv 
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Constructing Quotient Graphs 
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Neumann Dirichlet 

 Consider the following rep. R1 of the subgroup H1: 

 

 

We construct      by inquiring what do we know about 

a function f on Γ which transforms according to R1. 
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Theorem (R.B., Ori Parzanchevski, Gilad Ben-Shach) 

 Let Γ  be a graph which obeys a symmetry group G. 

Let H1, H2 be two subgroups of G with  

representations R1, R2 that satisfy  

                              

  

then the graphs       ,       are isospectral. 

 

 

Isospectral theorem 
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3R
Γ

Extending our example: 

 

 

H1 = { e , a2, rx , ry}     R1: 
 

 

 

H2 = { e , a2, ru , rv}     R2: 
 

 

 

H3 = { e , a, a2, a3}      R3: 

Extending the Isospectral pair 
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Extending our example: 

 

 

H1 = { e , a2, rx , ry}     R1: 
 

 

 

H2 = { e , a2, ru , rv}     R2: 
 

 

 

H3 = { e , a, a2, a3}      R3: 

Extending the Isospectral pair 

 

 

 

 
D 

N 

N 

D 

D N  

  

1R
Γ 1e  12 a  1xr  1yr

 1e  12 a  1ur  1vr

 1e  ia   12 a  ia 3

fifa 

2R
Γ

321 321
IndIndInd RRR G

H

G

H

G

H 

 

3R
Γ

×i 
  

  

 

  

×i 
  

  

 

  
 

×i 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3R

Γfifa  

×i 
 

×i 
 

 

3R
Γ

  

 

  
 

×i 

Extending our example: 

 

 

H1 = { e , a2, rx , ry}     R1: 
 

 

 

H2 = { e , a2, ru , rv}     R2: 
 

 

 

H3 = { e , a, a2, a3}      R3: 
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Extending the Isospectral pair 
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Extending the Isospectral pair 



rv 
Γ  is the Cayley graph of G=D4 

(with respect to the generators a, rx):         

 

Take the same group and the subgroups: 

H1 = { e , a2, rx , ry} with the rep. R1 

H2 = { e , a2, ru , rv} with the rep. R2 

H3 = { e , a , a2 , a3} with the rep. R3 

Arsenal of isospectral examples 
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The resulting quotient graphs are: 
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G = D6 = {e, a, a2, a3, a4, a5, rx, ry, rz, ru, rv, rw}  
with the subgroups: 

H1 = { e, a2, a4, rx, ry, rz } with the rep. R1 

H2 = { e, a2, a4, ru, rv, rw } with the rep. R2 

H3 = { e, a, a2, a3, a4, a5 } with the rep. R3 

Arsenal of isospectral examples 
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3R
Γ

L2 

 

 

 
 

 

  

 

 

 

  

 

  

 

 

 

 

 

L1 2L2 

2L3 

2L1 
L2 

L3 L3 

2L2 

2L3 

2L1 

2L3 

2L3 

2L2 

2L2 
2L1 

L1 

L1 

  

 

  

 

2L2 

2L2 

2L3 

  

 

  2L3 

 

2L1 

2L1 





L1 L1 

G = S3 (D3) acts on Γ with no fixed points.  

To construct the quotient graph,  

we take the same rep. of G,  

but use two different bases  

for the matrix representation.  

Arsenal of isospectral examples 
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The resulting quotient graphs are: 
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Why quantum graphs?  Why not drums? 
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However,       is not a planar drum: 
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Following Martin Sieber 



Arsenal of isospectral examples 

‘Spectral problems with mixed Dirichlet-Neumann boundary conditions: isospectrality 

and beyond’                   D. Jacobson, M. Levitin, N. Nadirashvili, I. Polterovich (2004) 

‘Isospectral domains with mixed boundary conditions’   

                                                              M. Levitin, L. Parnovski, I. Polterovich (2005) 

  
 

 
 

 
 

 

 

 

 

 

 

  

 
 

 

 
 

  

 

 

 

   

  

 

 

 

 

  

Isospectral drums 

This isospectral quartet can be obtained when 

acting with the group D4xD4 on the following 

torus: 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 
 

  



Arsenal of isospectral examples 

‘One cannot hear the shape of a drum’   

Gordon, Webb and Wolpert (1992)  

 
 

Isospectral drums 
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We construct the known isospectral drums of Gordon et al. 

but with new boundary conditions: 
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