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STURM-HURWITZ THEOREM FOR QUANTUM GRAPHS

RAM BAND AND PHILIPPE CHARRON

Abstract. We prove upper and lower bounds for the number of zeroes of linear com-
binations of Schrödinger eigenfunctions on metric (quantum) graphs. These bounds
are distinct from both the interval and manifolds. We complement these bounds by
giving non-trivial examples for the lower bound as well as sharp examples for the up-
per bound. In particular, we show that even tree graphs differ from the interval with
respect to the nodal count of linear combinations of eigenfunctions. This stands in dis-
tinction to previous results which show that all tree graphs have to same eigenfunction
nodal count as the interval.

1. Introduction

1.1. Historical background.

The rigorous study of the zero set of eigenfunctions of second-order differential op-
erators originated in the 19th century, with Sturm’s oscillation theorem on the interval
being the first major result. The subject now encompasses graphs and manifolds, and
while certain results hold true for all these objects, other properties of the nodal set are
highly dependant on the dimension.

For instance, Sturm’s theorem asserts that the n-th eigenfunction of any Sturm-
Liouville operator on an interval has exactly n− 1 zeroes [21].

For quantum graphs, the n-th eigenfunction of the Laplacian with Neumann-Kirchhhoff
continuity conditions has between n − 1 and n − 1 + β zeroes1 [7, 13], where β is the
number of cycles of the graphs. For example, we get that the n-th eigenfunction of a
tree graph (which is a graph with β = 0) has exactly n − 1 zeroes, similarly to the
interval. Furthermore, tree graphs are the only graphs such that the n-th eigenfunction
has exactly n− 1 zeroes for all n [2].

On manifolds, Courant’s theorem [12] states that when we remove the zero set of the
n-th eigenfunction of the Laplace-Beltrami operator on a connected smooth manifold
M , we are left with at most n connected components (also known as nodal domains).
This implies that the zero set has at most n−1 connected components. However, there
are examples of eigenfunctions on the sphere and the square where the nodal set has
exactly one connected component [20].

A lesser-known generalization of Sturm’s result was published in the same year [22]:

let F :=
∑k

i=j aifi, where fi is the i-th Sturm-Liouville eigenfunction on an interval

[a, b] with Dirichlet boundary conditions. Then, F has at least j − 1 and at most k− 1

1Under the assumption that λn is simple and the eigenfunction is non-zero at interior vertices.
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zeroes in (a, b). We refer to this as the Sturm-Hurwitz theorem. An interesting survey
on the story of this result and its proofs can be found in [5, 6].

In the case of manifolds, no such bounds can be found in full generality: there are
metrics on the torus and the sphere and linear combinations of eigenfunctions of the
corresponding Laplace-Beltrami operator such that their nodal set has infinitely many
connected components [11], [4]. We also note that the Sturm-Hurwitz theorem is true
for the isotropic quantum harmonic operator in dimension two [4, proposition B.1].

1.2. Definitions.

We will use the following definitions troughout the paper:

• A graph Γ = Γ(V,E) with vertices V and edges E. We will assume throughout
the paper that the graph Γ is connected and has a finite number of edges, each
of which has finite length.

• Each edge e ∈ E is identified with the interval [0, le], where le is the length of
the edge.

• We set Ev as the multi-set of edges e which are connected to v, where each loop
appears twice (once per direction).

• The degree of a vertex v is defined as |Ev|, and will be denoted by deg(v).
• Vertices of degree one are boundary vertices. The set of such vertices will be

denoted Vb.
• Vertices of degree two or higher are inner vertices. The set of such vertices will

be denoted Vi.
• β denotes be the first Betti number of the graph, so that β = |E|−|V |+1 if Γ is

connected. It also represents the number of independant cycles, or the number
of edges that one has to cut to turn the graph into a tree.

• L2(Γ) =
⊕
e∈E

L2(e), C1(Γ) =
⊕
e∈E

C1(e) and H2(Γ) =
⊕
e∈E

H2(e)

• Let f ∈ C1(Γ). If f is continuous at inner vertices, for any v ∈ V we define f(v)
as the common limit of f(x) as x approaches v on any edge e ∈ Ev.

• The normal derivative of a function f at a vertex v in the direction of e ∈ Ev
will be denoted by ∂ef(v) and defined by taking the right limit at 0+ of f ′ when
the edge e is identified with [0, le] and v is mapped to zero.

• We set HΓ as space of functions f ∈ H2(Γ) with the following continuity condi-
tions at the vertices:
(1) If v ∈ Vb, f(v) = 0 (Dirichlet boundary condition).

(2a) For any v ∈ Vi, f is continuous at v.
(2b) If v ∈ Vi, then

∑
e∈Ev

∂ef(v) = 0.

– (2a) and (2b) together will be called Neumann-Kirchoff continuity condi-
tions.

• We say that a function has a degenerate edge if it is identically zero on that
edge.

• Let W : Γ → R be a C1 function. We define the Schrödinger operator
HW : H2(Γ) → L2(Γ), HW = − ∂2

∂x2 +W .
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• The operator HW restricted to HΓ is self-adjoint and has an increasing sequence
of eigenvalues λ1 ≤ λ2 . . ., numbered with multiplicity (see for instance [15]).

• To each eigenvalue λi we associate an eigenfunction fi such that any two different
fi are orthogonal in L2(Γ).

• The number of zeroes of a function f which are distinct from the boundary
vertices will be denoted by N(f).

• We say that a graph Γ is W -generic if all eigenfunctions of HW do not vanish at
any inner vertex. We note that by continuity of eigenfunctions, this assumption
implies that any eigenfunction of HW does not have a degenerate edge and that
every eigenvalue of HW is simple. Indeed, if there is a multiple eigenvalue, given
any vertex v ∈ Vi it is always possible to choose a function in the linear space
of eigenfunctions associated to this eigenvalue that is zero at v.
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2. Results

Our main result is a two-sided bound on N(F ).

Theorem 2.1. Let Γ be a W -generic graph with first Betti number β. Let fk be the

eigenfunctions of HW = − ∂2

∂x2 +W with Dirichlet boundary conditions and Neumann-

Kirchhoff continuity conditions, ki be a strictly increasing sequence and

F (x) =
∑M

i=1 aifki(x) where each ai is not zero. We have the following bounds:

(2.1) k1−1− (M−1) (|Vb|+ 2β − 2) ≤ N(F ) ≤ kM −1+β+(M−1) (|Vb|+ 2β − 2) .

Remark. First, by setting Γ as the unit interval, we recover Sturm’s original theorem.

Secondly, it is likely that the same bounds hold if we put Neumann boundary conditions

on Vb on the graph.

We claim that there exist tree graphs that saturate the upper bound in Theorem 2.1.

Theorem 2.2. For any s,M > 0, there exists a 0-generic star graph with s + 1 edges

such that for any L ≤ M , there exists a linear combination of the first L eigenfunctions

of − ∂2

∂x2 with exactly L− 1 + (L− 1)(s− 1) zeroes.

Remark. Theorem 2.2 shows that trees are different from the interval in terms of

the nodal count of linear combinations of eigenfunctions. In particular, even certain

star graphs equipped with the Laplacian and no potential can possess linear combina-

tions whose nodal count is substantially higher than the number of zeroes of the highest
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eigenfunction. This behavious is completely different than the nodal count of individual

eigenfunctions. As a comparison, all tree graphs have exactly the same eigenfunction2

nodal count as the interval [2, 16, 19].

We now give examples of graphs with linear combinations that have much less zeroes
than the lowest eigenfunction in the linear combination:

Theorem 2.3. For any m ≥ 2, there exists a 0-generic graphs with β = m and

b(m) ∈ R such that

N(f2) = m,

N(f3) = 2 ,

N(f2 + b(m)f3) = 1 = N(f2)−
1

2

∑

v∈Vi

(deg(v)− 2) .(2.2)

While this is not a proof that the lower bound in Theorem 2.1 is sharp, it shows that
a linear combination F can have much less zeroes than fk1 , unlike for the interval.

3. Proof of Theorem 2.1

Let Γ be a W -generic graph, HW = − ∂2

∂x2 +W and fk be the eigenfunctions of SW .

Let F (x) =
∑M

i=1 aifki(x). We define g : Γ× R → R as

(3.1) g(x, y) =
M∑

i=m

aie
−λki

yfki(x) .

Then, g(x, 0) = F (x). The function g is a solution to the following equation:

(3.2)
∂g

∂y
=
∂2g

∂x2
−W (x)g .

For fixed y, we will denote Fy(x) := g(x, y). Note that for y = 0, F0 = F .

Since λki > λki−1
for all i, lim

y→−∞
Fye

λkM
y = aMfkM and lim

y→+∞
Fye

λk1
y = a1fk1 . There-

fore, as y → −∞ the zeroes of Fy will converge to the zeroes of fkM and as y → +∞
the zeroes of Fy will converge to the zeroes of fk1 .

2Here, we mean a single eigenfunction nodal count rather than a linear eigenfunction nodal count.
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3.1. Strategy of the proof of Theorem 2.1.

First, we will show in section 3.2 that for any y, Fy has discrete zeroes.

Secondly, we will show in section 3.3 that g has no isolated zeroes.

Then, our strategy will be the following: starting at y = −∞, we will follow N(Fy)
as y increases to 0. To every zero of fy, we can associate at least locally a nodal line
of g, or more than one if (x, y) is a singular point of g. We will then look in sections
3.5 and 3.6 at all possible local behaviours of the nodal lines of g which would cause
N(Fy) to change as y increases.

Finally, we will combine all these observations in section 3.7 to complete the proof.

3.2. Local behaviour of Fy near a zero.

We want to show that a nodal line of g cannot have a horizontally flat part. This is
implied by the following lemma:

Lemma 3.1. For any y ∈ R, Fy cannot be zero on an open set.

We will show the following statement, which implies Lemma 3.1:

Proposition 3.2. Let W ∈ C1((a, b)), λj be a strictly increasing sequence of real

numbers and fj be non-zero C2 solutions to the equation −f ′′
j +W (x)fj = λjfj on an

interval (a, b). Then, for any integer M , integers ki and real numbers ai, 1 ≤ i ≤ M ,

the function G(x) =
M∑
i=1

aifki cannot be identically zero on an open subset of (a, b).

Proof. We will prove this by induction on M . If M = 1, by standard Sturm-Liouville
theory (see for instance [14, Lemma 1.3.1]) f ′′ = λf +Wf cannot be zero on an open
set inside an edge without being identically zero on the edge, which contradicts the

W -genericity of the graph. Now, assume that this is true for M − 1. Let
M∑
i=1

aifki ≡ 0

on an open set U ⊂ (a, b). Then, for any x ∈ U , we have the following:

0 =

M∑

i=1

aif
′′

ki
(x) ,(3.3)

=

M∑

i=1

aiλkifki(x) +

M∑

i=1

aiW (x)fki(x) ,(3.4)

=

M∑

i=1

ai (λki − λk1) fki(x) + (W (x) + λk1)

M∑

i=1

aifki(x) ,(3.5)

=
M∑

i=2

ai (λki − λk1) fki(x) .(3.6)

Since x ∈ U was taken arbitrarily, we can conclude that
∑M

i=2 ai (λki − λk1) fki(x) is
identically zero on U , which contradicts our induction hypothesis since it is a linear
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combination of M − 1 eigenfunctions. Therefore, a linear combination of M eigenfunc-
tions cannot be zero on an open set in (a, b), which completes the proof of Proposition
3.2, and hence of Lemma 3.1. �

3.3. Isolated zeroes.
We now show that g cannot have isolated zeroes.

Lemma 3.3. The function g does not have an isolated zero inside an edge.

Proof. To prove this, we will use the following special case of the maximum principle
for parabolic equations:

Theorem 3.4. [1, Theorem D] Let u : [x0, x1] × [0, Y ] be a solution of
∂u
∂y

= ∂2u
∂x2 + c(x, y)u with c ∈ L∞ and for a fixed y set uy(x) := u(x, y). Assume

that u(x0, y) 6= 0 and u(x1, y) 6= 0 for all y ∈ [0, Y ]. Then, for any fixed y ∈ (0, Y ),
the number of zeroes of uy(x) is finite. Also, if u(x′, y′) = ∂u

∂x
(x′, y′) = 0, then for any

0 < y1 < y′ < y2 < Y , N(uy1) > N(uy2).

Assume that (x0, y0) is an isolated zero of g. Let U := [x0−δ, x0+δ]×[y0−ε, y0+ε] be
a small enough neighbourhood of (x0, y0) such that (x0.y0) is the only zero of g in U . Let
u be the restriction of g to U and uy(x) := u(x, y). For any y ∈ (y0−ε, y0)∪ (y0, y0+ε),
N(uy) = 0. However, (x0, y0) has to be a critical point of u and so ∂u

∂x
(x0, y0) = 0. By

theorem 3.4, N(uy0+ε/2) < N(uy0−ε/2), a contradiction since both are assumed to be
zero. This proves Lemma 3.3. �

3.4. Local behaviour of nodal lines of g.

In order to understand the local behaviour of nodal lines of g up to vertices in the
interior of each edge, we will use another form of the maximum principle for parabolic
equations:

Proposition 3.5. Let W : [a, b] → R be C1 and g : [a, b] × [c, d] → R satisfy
∂g
∂y

= ∂2g
∂x2 − W (x)g on (a, b) × (c, d) and continuous on [a, b] × (c, d). Let

(x0, y0) ∈ [a, b] × (c, d). If g(x0, y0) = 0, then there is at most one nodal line exit-

ing from (x0, y0) as y increases.

The proof is classical, we include it here for the sake of completeness.

Proof. Since the potential W is C1, let w = min
[a,b]

W (x). Let G(x, y) = g(x, y)e−(w+1)y.

The function G solves the following equation:

∂G

∂y
=
∂2G

∂x2
− (W − w + 1)G .(3.7)

Let x1(y) and x2(y) be two adjacent nodal lines of G for y in some interval
(c′, d′) ⊂ (c, d). Furthermore, assume that G > 0 between x1(y) and x2(y). Let
y ∈ (c′, d′) and x(y) be a local maximum of hy(x) := G(x, y) between x1(y) and x2(y).
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Since x(y) is a local maxima on the interval (x1(y), x2(y)), then ∂2G
∂x2 (x(y), y) ≤ 0.

Also, since W (x)−w ≥ 0 for any x ∈ [a, b], ∂G
∂y
(x(y), y) ≤ −G(x(y), y) < 0. Therefore,

as y increases, the value at the local maximum of hy(x) has to strictly decrease.

Hence, as y decreases, the absolute value of any local maximum between two adjacent
zeroes of hy has to increase. Therefore, two adjacent zeroes cannot collide as y decreases
since that would imply that the absolute value of any local maximum would converge
to 0. Since the zeroes of G and g are exactly the same, this proves Proposition 3.5. �

3.5. Events.

As y increases, here are all the possibilities:

(E1) A nodal line curves upwards

vi

(E2) A nodal line splits into two or more lines

vi vi

(E3) Two or more nodal lines collide with each
other

vi

(E4) A nodal line curves downwards

vi

(E5) A nodal line hits a boundary vertex
vb

(E6) A nodal line hits an inner vertex

vi vi
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We will look at the effects of events E1 to E5 on N(Fy) as y increases.

Lemma 3.6. Events E1 and E2 cannot happen inside an edge. Also, two nodal lines

cannot emanate from a vertex inside the same edge, unless the edge is a loop. In that

case, at most one nodal line can emanate in each lead from the vertex.

Proof. This is an immediate corollary of Proposition 3.5. �

Lemma 3.7. Events E3 and E4 can only decrease the nodal count of Fy as y increases.

Proof. Assume that k nodal lines collide at a single point (x0, y0) with k ≥ 2. Propo-
sition 3.5 guarantees that either one or zero nodal line will emanate from (x0, y0).
Therefore, this can only decrease the nodal count.

�

Lemma 3.8. The event E5 can only decrease the nodal count.

Proof. Assume that a nodal line hits a boundary vertex. By Proposition 3.5, the only
nodal line that can emanate from a boundary vertex vb as y increases is one that is due
to the boundary condition. Therefore, the event E5 decreases the nodal count.

�

3.6. Nodal line hitting an inner vertex (event E6).

We now examine what happens when one (or more) nodal line hits an inner vertex v.
Let us fix an inner vertex v and set gv(y) := g(v, y). This is well-defined since g is contin-

uous at inner vertices. There exist coefficients ai(v) such that gv(y) =
∑M

i=1 ai(v)e
−λiy.

A nodal line hits v at (v, y) when gv(y) = 0

First, we will count the number of times that these events can happen, i.e. the
number of zeroes of gv.

We will use the following bound on the number of zeroes of a linear combination of
exponentials:

Theorem 3.9. [17, part V, Chapter 1, problem 77] Let h(x) =
∑n

i=1 aie
bix with ai 6= 0

and bi+1 > bi for any i ≤ n. Let C(h) be the number of times that ai+1 and ai have

different signs. Then, the number of zeroes of h is less or equal than C(h).

This implies that for any v ∈ Vi, gv has at most M − 1 zeroes. We now look at what
can happen to N(Fy) when y increases if gv(y) = 0 for some inner vertex v.

Lemma 3.10. When a nodal line hits an inner vertex v, the nodal count can increase

as y increases by at most deg(v)− 2.

Proof. For every edge e ∈ Ev, we will reparametrize e as [0, le] such that v is identified
with 0.

As zeroes of gv are discrete by theorem 3.9, we can assume that gv(y
′) = 0 and that

for some ε > 0, gv(y) 6= 0 if y ∈ (y′ − ε, y′) ∪ (y′, y′ + ε). We will also choose ε smaller
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than the smallest edge of Γ in order for the map θ → (ε cos(θ), y′ + ε sin(θ)) ∈ e×R to
be well-defined for any e ∈ Ev.

Now, assume that gv changes sign at y = y′. By the Neumann-Kirchoff continuity as-
sumptions at inner vertices, it means that on each edge e ∈ Ev,
g|e(ε cos(θ), y′ + ε sin(θ)) has changed sign 2m + 1 times from θ = −π/2 to θ = π/2
for some m ≥ 0. By lemma 3.6, we know that for any e ∈ Ev, two nodal lines cannot
emanate from (0, y). This implies that for e ∈ Ev either 2m nodal lines hit (0, y) and
one comes out or 2m+ 1 edges hit (0, y) and none come out. Therefore, the maximum
increase of the nodal count happens if one nodal line hits v from a single edge in Ev and
it comes out on every other edge in Ev. This increases the nodal count by deg(v)− 2,
which is illustrated in the next picture:

vi

Figure 3.1. Event of maximum nodal increase

Now, assume that g(v, y) does not change sign at y = y′. Again, by continuity at
inner vertices, for each e ∈ Ev we know that g|e(ε cos(θ), ε sin(θ)) changes sign 2me

times from θ = −π/2 to θ = π/2 for some me ≥ 0 on each edge e ∈ Ev. Since at most
one nodal line can come out the vertex on any edge in Ev, this event cannot increase
the nodal count. This completes the proof of Lemma 3.10.

�

Combining Theorem 3.9 and Lemma 3.10, we get the following characterization of
nodal lines hitting inner vertices:

Lemma 3.11. Event E6 can happen at most M − 1 times at each inner vertex, and

each time it happens can increase the nodal count by at most deg(v)− 2.

3.7. Global bounds.
We will combine the lemmas of sections 3.5 and 3.6.
We start with N(fM) zeroes at y = −∞. As y increases, by Lemmas 3.6, 3.7, 3.8

and 3.11 the only event which increases the number of nodal lines is a crossing at an
inner vertex. For each inner vertex v, there can be at most M − 1 such crossings, and
each crossing can create at most deg(v)− 2 new nodal lines by Lemma 3.11.

If we now start at y = +∞, we have N(fk1) zeroes. When we decrease y, nodal
lines cannot merge together or hit a boundary vertex by lemmas 3.6 and 3.8. Also, by
Lemma 3.7, nodal lines can be created or split but it only increases the nodal count.
Therefore, the only event that may decrease the number of zeroes is nodal lines colliding
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at an inner vertex. By Lemma 3.11, the biggest decrease for a degree d vertex is when
d− 1 nodal lines collide and only one exits. This can happen at most M − 1 times at
each vertex.

This gives us the following two-sided bound:

(3.8) N(fk1)− (M−1)
∑

v∈Vi

(deg(v)−2) ≤ N(F0) ≤ N(fkM )+(M−1)
∑

v∈Vi

(deg(v)−2) .

We are ready to finish the proof of Theorem 2.1.

Proof of Theorem 2.1. We know from [8, Theorem 5.28] that k−1 ≤ N(fk) ≤ k−1+β
for any eigenfunction fk of HW . Combining theses inequalities with equation 3.8 gives
us the following:

(3.9) k1−1−(M−1)
∑

v∈Vi

(deg(v)−2) ≤ N(F0) ≤ kM−1+β+(M−1)
∑

v∈Vi

(deg(v)−2) .

Now, recalling that β = |E| − |V |+ 1, we have that the following:

∑

v∈Vi

(deg(v)− 2) =
∑

v∈V

deg(v)− |Vb| − 2|Vi| ,

= |Vb|+ (2|E| − 2|Vb| − 2|Vi|) ,
= |Vb|+ 2β − 2 .(3.10)

Combining (3.9) and (3.10) completes the proof of Theorem 2.1.
�

Remark. It is clear from the proof that the condition that Γ is W -generic can be

replaced by the condition that the eigenfunctions in the linear combination are non-zero

at inner vertices.

4. Saturating examples for the upper bound - proof of Theorem 2.2

Let G(s, ε) be a star graph with one edge of length 1 and s edges of length ε.

Figure 4.1. G(s, ε) for s = 7

This graph has some interesting properties if ε is taken small enough:

Lemma 4.1. For any s and M we can take ε small enough such that the following

occurs:

(a) The first M eigenvalues of G(s, ε) are all simple.
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(b) The first M eigenfunctions are all invariant with respect to permutations of the

small edges.

(c) For any n ≤ M , each eigenfunction fn of − ∂2

∂x2 has exactly n− 1 zeroes on the

long edge and no zeroes on the small edges or on the inner vertex.

Proof. By [9, Theorem 4.5], as ε→ 0 the eigenvalues of G(s, ε) converge to those of the
unit interval. Therefore, for any integer M and α > 0 small, there exists ε0 > 0 small
enough such that for any 0 < ε < ε0 and 1 ≤ n ≤M + 1, |λn(G(s, ε))− π2n2| < α.

As a consequence, the first M eigenvalues are simple for any ε < ε0. This completes
the proof of the first part of Lemma 4.1.

Let v be the inner vertex ofG(s, ε). Fix ε < ε0 such that for 1 ≤ n ≤M , ε
√
λn < π/2.

Since the restriction of fn to any small edge is equal to C sin(
√
λn)x) up to a constant,

this ensures that fn(v) 6= 0 for any n ≤M . Furthermore, since fn(v) is well-defined by
the continuity assumptions on the graph, this constant is the same for any small edge.
This implies that for any n ≤ M , fn is invariant with respect to permutations of the
small edges. This completes the proof of the second part of Lemma 4.1.

By [2], fn has exactly n − 1 zeroes. However, since ε
√
λn < π/2, fn does not have

a zero inside any small edge, which imples that fn has n − 1 zeroes on the long edge.
This completes the proof of the third part of lemma 4.1.

�

We will now construct linear combinations of eigenfunctions of G(s, ε) with a high
nodal count:

Proposition 4.2.
For any M, s > 0, there exists ε1(M, s) small enough such that for any ε < ε1(M, s)

and any L ≤M , there exist linear combinations of the first L eigenfunctions of G(s, ε)
with exactly L− 1 + (L− 1)(s− 1) zeroes on the small edges.

Proof. We choose ε1(M, s) such that Lemma 4.1 applies and ε < ε1(M, s). For any

L ≤ M we can choose F :=
L∑

n=1

anfn such that F has L − 1 zeroes on a chosen

small edge of G(s, ε). This is a consequence of the linear independance of the first M
eigenfunctions on any small edge, since by Lemma 4.1 they are all non-zero on the small
edges. Since these fn are symmetric with respect to permutations of the small edges,
so is F . Therefore, F has exactly (L− 1)s = L− 1+ (L− 1)(s− 1) zeroes on the small
edges. �

Now, we note that this graph is not generic, since it is possible to find eigenfunctions
which are zero at the inner vertex (for instance by choosing λ = π2ε−2). In order to
find a saturating example in the set of 0-generic graphs, we will use the fact that for
a given graph, there exists an arbitrarily small perturbation of the edge lengths such
that the spectrum of the Laplacian is simple and no eigenfunction vanishes on a vertex
[10, Theorem 3.6].
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We will construct a perturbation of G(s, ε) and linear combinations of eigenfunctions
that have the same behaviour as in proposition 4.2:

Lemma 4.3. There exists a graph Gδ(s, ε) which has the following properties:

• Gδ(s, ε) is obtained by perturbing the edge length of G(s, ε) by at most δ.
• Gδ(s, ε) is 0-generic.

• For any L ≤M , there exists a linear combination Fδ of the first L eigenfunctions

on Gδ(s, ε) such that N(Fδ) = L− 1 + (L− 1)(s− 1).

This construction immediately implies Theorem 2.2.

Proof. First, we choose ε > 0 such that Lemma 4.1 applies to G(s, ε).
Now, for any δ > 0, it is possible to find a graph Gδ(s, ε) with one edge of length

1 and s edges ei of length lei ∈ (ε, ε+ δ) such that Gδ(s, ε) is 0-generic. Furthermore,
as δ → 0, the eigenvalues of Gδ(s, ε) converge to those of G(s, ε) (see for instance [3,
Appendix A], [18, Theorem 4.15] or [9, Theorem 3.6]).

We define the map φδ : Gδ(s, ε) → G(s, ε) that fixes the long edge and sends x ∈ ei
to (ε/lei)x.

Let fδ,n be the n-th eigenfunction on Gδ(s, ε).

We know from [8, Theorem 3.1.4] that eigenfunctions depend analytically on pertur-
bations of edge lengths. Therefore, since the first M eigenvalues of G(s, ε) are simple,
as δ goes to zero, sup

x∈Gδ(s,ε)

|fn(φδ(x)))− fδ,n(x)| will go to zero for any 1 ≤ n ≤M .

Now, for 1 ≤ L ≤ M , take a linear combination F =
L∑

n=1

anfn with L − 1 zeroes on

each small edge of G(s, ε). We define Fδ : Gδ(s, ε) → R, Fδ :=
N∑

n=1

anfδ,n with the same

coefficients an.

As δ → 0, sup
x∈Gδ(s,ε)

|Fδ(x)− F (φδ(x))| → 0.

Therefore, if we take δ small enough, Fδ will have at least as many zeroes as F on
each small edge by the mean value theorem. Also , Fδ cannot have any more zeroes
since it saturates the upper bound in theorem 2.1 and Gδ(s, ε) is 0-generic. Hence,
N(Fδ) = (L− 1)s, which completes the proof of lemma 4.3 and of theorem 2.2.

�

5. Examples of non-trivial lower bounds - proof of Theorem 2.3

Now, let I(m, ε) be the following graph: start with two edges e1 and e2 of length
1/2 and connect them with m parallel edges of length ε. This graph has 2 boundary
vertices v1 and v4 and 2 inner vertices v2 and v3 of degree m+ 1.

We will define the involution ψ : I(m, ε) → I(m, ε) as the reflection across the dotted
line in figure 5.1.
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v1 v2 v3 v4
e1 e2

Figure 5.1. I(m, ε) for m = 5

Lemma 5.1. For any m, there exists ε small enough such that I(m, ε) has the following

properties:

(a) The first three eigenvalues are simple.

(b) f2 ◦ ψ = −f2 and N(f2) = m.

(c) f3 ◦ ψ = f3 and N(f3) = 2.

Proof. As in the proof of Lemma 4.1, by [9], [3] and [18], when ε goes to zero the
eigenvalues of I(m, ε) converge to the eigenvalues of the unit interval with Dirichlet
boundary conditions. Since all the eigenvalues on the interval are simple, by taking ε
small enough the first three eigenvalues of I(m, ε) are simple. This completes the proof
of the first part of Lemma 5.1.

Since the first three eigenvalues are simple, for i = 1, 2, 3, fi ◦ ψ = ±fi.
Let us define the graph 1

2
G(m, ε), which is constructed by taking the graph G(m, ε)

that was defined in section 4 and dividing the length of every edge by two.

We notice that I(m, ε) is made by gluing two copies of the rescaled graph 1
2
G(m, ε)

along the small edges (and the boundary conditions removed at the gluing points since
these points become vertices of degree two). Therefore, if an eigenfunction on I(m, ε) is
zero at the center of each small edge, then its restriction to 1

2
G(m, ε) is an eigenfunction

on 1
2
G(m, ε).

The first eigenfunction on 1
2
G(m, ε), which we extend to an odd function f̃ with

respect to ψ, is an eigenfunction on I(m, ε). The first eigenvalue on 1
2
G(m, ε) converges

to 4π2, and the first and third eigenvalues on I(m, ε) tend to π2 and 9π2 respectively as

ε → 0. It means that for ε small enough, f̃ is the second eigenfunction f2 on I(m, ε).
Therefore, f2 ◦ ψ = −f2 and its only zeroes are at the center of each small edge. This
completes the proof of the second part of Lemma 5.1.

Finally, if f3 ◦ψ = −f3, then f3 would have to have a zero in the middle of each small
edge. Therefore, it would be an eigenvalue of 1

2
G(m, ε). However, as ε → 0, the first

two eigenvalues of 1
2
G(m, ε) tend to 4π2 and 16π2, while the third eigenvalue of I(m, ε)

tends to 9π2. This implies that f3 ◦ ψ = f3. Also, if f3 had a zero on a small edge, by
symmetry it would have at least two zeroes on each small edge, which is only possible
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if ε
√
λ3 ≥ π/2. By taking ε small enough, this cannot happen. Therefore, f3 has one

zero on each long edge and no other zeroes. This completes the proof of the third part
of Lemma 5.1.

�

We now construct a linear combination of f2 and f3 with only one zero:

Lemma 5.2. There exist ε small enough and b ∈ R such that N(f2 + bf3) = 1 on

I(m, ε).

Proof. We now fix the normalization of f2 and f3 such that ∂e1f2(v1) = ∂e1f3(v1) = 1.
This makes f3 strictly negative on the small edges.

There exists C > 0 such that sin(2πx) − C sin(3πx) > 0 for x ∈ (0, 1/2) and
sin(2πx) + C sin(3πx) has exactly one zero inside (0, 1/2). We recall that the eigen-
functions of I(m, ε) converge pointwise to that of the interval as ε → 0, that f2 is
antisymmetric and f3 is symmetric. This implies that for ε0 small enough there exists
C1 > 0 such that f2 − C1f3 has no zero on e1 and one zero on e2 for any ε < ε0.

We will now show that f2 − C1f3 has no zeroes on the small edges. As ε → 0, by
eigenfunction convergence the supremum of |f2| on the small edges converges to zero,
while the infimum of |f3| on the small edges converges to some strictly positive value C2

(the constant C2 can be computed explicitely but we will not do it here). Now, choose
ε < ε0 such that the infimum of |f3| on the small edges is greater than C2/2 and the
supremum of f2 on the small edges is smaller than C1C2/4. With this choice of ε, for
any x in a small edge,

f2(x)− C1f3(x) > −C1C2/4 + C1C2/2 > 0 .

Therefore, f2 −C1f3 has no zero on e1 or any small edge and exactly one zero on e2.
This completes the proof of Lemma 5.2. �

Since the graph I(m, ε) is not 0-generic, we will slightly perturb it without changing
the nodal count to complete the proof of Theorem 2.3.

Proof of Theorem 2.3. As in the proof of Lemma 4.3, we can construct a δ-small per-
turbation Iδ(m, ε) of I(m, ε) which is 0-generic. Let fδ,n be the n-th eigenfunction
on Iδ(m, ε). By a similar argument to the one in the proof of Lemma 4.3, we can
choose δ small enough such that N(fδ,2) = N(f2) = m, N(fδ,3) = N(f3) = 2 and
N(fδ,2 − C1fδ,3) = N(f2 − C1f3) = 1, which proves theorem 2.3. �
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