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DEFINING THE SPECTRAL POSITION OF A NEUMANN DOMAIN

RAM BAND, GRAHAM COX AND SEBASTIAN K. EGGER

A Laplacian eigenfunction on a two-dimensional Riemannian manifold provides a natural partition into
Neumann domains, a.k.a. a Morse–Smale complex. This partition is generated by gradient flow lines of
the eigenfunction, which bound the so-called Neumann domains. We prove that the Neumann Laplacian
defined on a Neumann domain is self-adjoint and has a purely discrete spectrum. In addition, we prove that
the restriction of an eigenfunction to any one of its Neumann domains is an eigenfunction of the Neumann
Laplacian. By comparison, similar statements about the Dirichlet Laplacian on a nodal domain of an
eigenfunction are basic and well-known. The difficulty here is that the boundary of a Neumann domain
may have cusps and cracks, so standard results about Sobolev spaces are not available. Another very useful
common fact is that the restricted eigenfunction on a nodal domain is the first eigenfunction of the Dirichlet
Laplacian. This is no longer true for a Neumann domain. Our results enable the investigation of the result-
ing spectral position problem for Neumann domains, which is much more involved than its nodal analogue.

1. Introduction and statement of results

Let M be a closed, connected, orientable surface with a smooth Riemannian metric g. It is well known
that the Laplace–Beltrami operator 1 is self-adjoint and has a purely discrete spectrum. We arrange the
eigenvalues in increasing order

0 = λ0 < λ1 ≤ λ2 ≤ · · · (1-1)

and let { fn}
∞

n=0 denote a corresponding complete system of orthonormal eigenfunctions, so that

1 fn = λn fn. (1-2)

While we are motivated by the study of eigenfunctions, most of the results and constructions in this paper
are valid for arbitrary Morse functions. It is well known that for a generic Riemannian metric all of the
Laplace–Beltrami eigenfunctions are Morse [Uhlenbeck 1976].

The main objects of study in this paper are the Neumann domains of a Morse function, to be defined
next. Given a smooth function f on M, we let ϕ : R × M → M denote the flow along the gradient vector
field, i.e., the solution to

∂tϕ(t, x)= − grad f |ϕ(t,x), ϕ(0, x)= x . (1-3)

For a critical point c of f , we define its stable and unstable manifolds by

W s(c) :=
{

x ∈ M : lim
t→∞

ϕ(t, x)= c
}
, W u(c) :=

{
x ∈ M : lim

t→−∞
ϕ(t, x)= c

}
. (1-4)

We denote the sets of minima, maxima and saddles of f by Min( f ), Max( f ) and Sad( f ), respectively.
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Figure 1.1. Left: An eigenfunction corresponding to the eigenvalue � = 17
on the flat torus with fundamental domain [0, 2⇡]⇥ [0, 2⇡]. Circles mark sad-
dle points and triangles mark extremal points (maxima by triangles pointing
upwards and vice verse for minima). The nodal set is marked by dashed
lines and the Neumann line set by solid lines. The Neumann domains are
the domains bounded by the Neumann line set. Right: A magnification of
the marked square from the left figure, showing Neumann domains with and
without cusps. (This figure was produced using [Tay18].)

While the Dirichlet Laplacian on any bounded open set has a purely discrete spectrum,
the same is not necessarily true of the Neumann Laplacian. Indeed, the essential spectrum
may be nonempty, and in fact can be an arbitrary closed subset of [0,1), see [HSS91].
Nevertheless, the Neumann Laplacian of a Neumann domain is well behaved.

Theorem 1.2. Let ⌦ be a Neumann domain of a Morse function f . Then the Neumann
Laplacian �N

⌦ on ⌦ (see Definition 4.1) is a non-negative, self-adjoint operator with purely
discrete spectrum, i.e. consisting only of isolated eigenvalues of finite multiplicity.

The main di�culty in proving this theorem is due to possible cusps on the boundary
of the Neumann domain; see Proposition 2.5 and the discussion preceding it. Such cusps
prevent the application of standard results on density and compact embeddings of Sobolev
spaces. We overcome this di�culty in the proof of Theorem 1.2 by using some particular
geometric properties that the Neumann domain boundary possesses.

It is well known that the restriction of f to any of its nodal domains is an eigenfunction
of the Dirichlet Laplacian. Similarly, we have
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Figure 1. Left: An eigenfunction corresponding to the eigenvalue λ= 17 on the flat torus
with fundamental domain [0, 2π ]×[0, 2π ]. Circles mark saddle points and triangles mark
extremal points (maxima by triangles pointing upwards and vice versa for minima). The
nodal set is marked by dashed lines and the Neumann line set by solid lines. The Neumann
domains are the domains bounded by the Neumann line set. Right: A magnification of
the marked square from the left figure, showing Neumann domains with and without
cusps. (This figure was produced using [Taylor 2018].)

Definition 1.1 [Band and Fajman 2016]. Let f be a Morse function on M.

(1) Let p ∈ Min( f ) and q ∈ Max( f ) such that W s( p)∩W u(q) ̸=∅. Each of the connected components
of W s( p)∩ W u(q) is called a Neumann domain of f .

(2) The Neumann line set of f is

N :=

⋃
r∈Sad( f )

W s(r)∪ W u(r). (1-5)

This defines a partition of the manifold M, which we call the Neumann partition. It is not hard to show
that M equals the disjoint union of all Neumann domains and the Neumann line set, under the assumption
that N ̸= ∅; see [Band and Fajman 2016, Proposition 1.3]. (Note that N = ∅ means f has no saddle
points; this is only possible when M is a sphere and f has exactly two critical points.) Figure 1 depicts
the Neumann partition of a particular eigenfunction on the flat torus.

By construction we have that grad f is parallel to the boundary of any Neumann domain �, as
the boundary is made up of gradient flow lines, so we conclude that the normal derivative vanishes,
∂ν f |∂� = 0, assuming ∂� is sufficiently smooth. This formal observation motivates our study of the
Neumann Laplacian on �, which we precisely define in Definition 4.1.

While the Dirichlet Laplacian on any bounded open set has a purely discrete spectrum, the same is
not necessarily true of the Neumann Laplacian. Indeed, the essential spectrum may be nonempty, and in
fact can be an arbitrary closed subset of [0,∞); see [Hempel et al. 1991]. Nevertheless, the Neumann
Laplacian of a Neumann domain is well-behaved.

Theorem 1.2. Let� be a Neumann domain of a Morse function f . Then the Neumann Laplacian1N
� on�

(see Definition 4.1) is a nonnegative, self-adjoint operator with purely discrete spectrum, i.e., consisting
only of isolated eigenvalues of finite multiplicity.
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The main difficulty in proving this theorem is due to possible cusps on the boundary of the Neumann
domain; see Proposition 2.5 and the discussion preceding it. Such cusps prevent the application of
standard results on density and compact embeddings of Sobolev spaces. We overcome this difficulty
in the proof of Theorem 1.2 by using some particular geometric properties that the Neumann domain
boundary possesses.

It is well known that the restriction of f to any of its nodal domains is an eigenfunction of the Dirichlet
Laplacian. Similarly, we have:

Theorem 1.3. If � is a Neumann domain of a Morse function f , then f |� ∈ D(1N
�). In particular, if f

is an eigenfunction of 1, then f |� is an eigenfunction of 1N
� with the same eigenvalue.

In fact, we prove much more: in Proposition 4.3 we completely characterize the domain of the Neumann
Laplacian, and in Proposition 4.8 and Corollary 4.9 we give some easily verified sufficient conditions for a
function to be in the domain of 1N

� . Given a Morse eigenfunction, by which we mean an eigenfunction of
the Laplace–Beltrami operator that is also a Morse function, Theorem 1.2 allows us to define its spectral
position as follows.

Definition 1.4. Let f be a Morse eigenfunction for an eigenvalue λ, and let � be a Neumann domain
of f . We define the spectral position of � as the position of λ in the Neumann spectrum of �, i.e.,

N�(λ) := |{µn ∈ σ(1N
�) : µn < λ}|, (1-6)

where σ(�) := {µn}
∞

n=0 is the Neumann spectrum of � (which is discrete by Theorem 1.2), containing
multiple appearances of degenerate eigenvalues and including µ0 = 0.

From Theorem 1.3 we in fact have λ= µn for some n, and so we can equivalently write

N�(λ)= min{n : µn = λ}.

In particular, if λ ∈ σ(1N
�) is simple, then λ= µn for a unique n, and hence N�(λ)= n. This equality

explains the terminology “spectral position” for N�(λ).
The spectral position is a key notion for Neumann domains. Finding its value is a great challenge

and is of major importance in studying Neumann domains and their properties [Band and Fajman 2016;
Band et al. 2021; Alon et al. 2020]. The corresponding notion for a nodal domain is trivial: if D is a
nodal domain of f , then f |D is always the first eigenfunction of the Dirichlet Laplacian on D. This is a
basic observation which serves as an essential ingredient in many nodal domain proofs. No such result
holds for Neumann domains, and in fact the spectral position of an eigenfunction restricted to a Neumann
domain can be arbitrarily high, by [Band et al. 2021, Theorem 1.4].

Structure of the paper. In Section 2 we describe some essential geometric properties of Neumann domains,
emphasizing the potentially singular nature of their boundary. In Section 3 we use this geometric structure
to establish fundamental properties of Sobolev spaces on Neumann domains, including nonstandard
density and compactness results. Finally, in Section 4 we use these properties to study the Neumann
Laplacian, in particular proving Theorems 1.2 and 1.3.
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2. Geometric properties of Neumann domains

As above, we take M to be a closed, connected, orientable surface with a smooth Riemannian metric g.
Note that all of the statements in this section hold for arbitrary Morse functions, and not only for
eigenfunctions. For convenience we recall the following definitions.

Definition 2.1. Let f : M → R be a smooth function.

(1) f is said to be a Morse function if the Hessian, Hess f ( p), is nondegenerate at every critical point p
of f .

(2) A Morse function f is said to be Morse–Smale if for all critical points p and q, the stable and unstable
manifolds W s( p) and W u(q) intersect transversely (see Lemma 2.4 for an equivalent definition in
two dimensions).

We now recall some basic topological properties of Neumann domains.

Theorem 2.2 [Band and Fajman 2016, Theorem 1.4]. Let f be a Morse function with a nonempty set
of saddle points. Let p ∈ Min( f ), q ∈ Max( f ) with W s( p) ∩ W u(q) ̸= ∅, and let � be a connected
component of W s( p)∩ W u(q), i.e., a Neumann domain. The following properties hold:

(1) The Neumann domain � is a simply connected open set.

(2) All critical points of f belong to the Neumann line set.

(3) The extremal points of f on � are exactly p and q.

(4) If f is a Morse–Smale function, then ∂� consists of Neumann lines connecting saddle points with p
or q. In particular, ∂� contains either one or two saddle points.

(5) If c ∈ R is such that f ( p) < c < f (q), then � ∩ f −1(c) is a smooth, non-self-intersecting one-
dimensional curve in �, with its two boundary points lying on ∂�.

Parts (2) and (4) of this theorem motivate us to examine individual Neumann lines and their connectivity
to the critical points of f .

Definition 2.3. (1) A Neumann line is the closure of a connected component of W s(r)\{r} or W u(r)\{r}
for some r ∈ Sad( f ).

(2) For a critical point c of f , we define its degree, deg(c), to be the number of Neumann lines connected
to c.

Each Neumann line is thus the closure of a gradient flow line, connecting a saddle point to another
critical point. Note that r is removed prior to taking the closure, as the closure of either W s(r) or W u(r)
will consist of two Neumann lines meeting tangentially at r . The connectivity of Neumann lines is directly
related to the Morse–Smale property of f .

Lemma 2.4 [Alon et al. 2020]. On a two-dimensional manifold a Morse function is Morse–Smale if and
only if there is no Neumann line connecting two saddle points.

The following properties of Neumann lines will be used throughout the rest of the paper.



DEFINING THE SPECTRAL POSITION OF A NEUMANN DOMAIN 2151

Proposition 2.5. Let f be a Morse function and � one of its Neumann domains.

(1) If c is a saddle point of f , then deg(c)= 4 and the angle between any two adjacent Neumann lines
which meet at c is π

2 .

(2) If c is an extremal point of f whose Hessian is not proportional to the metric g, then any two
Neumann lines meet at c with angle 0, π2 or π .

(3) Let c be an intersection point of a nodal line and a Neumann line. If c is a saddle point, then the
angle between those lines is π

4 . Otherwise, the angle is π
2 .

Remark 2.6. More generally, if c is a saddle point and there exist coordinates (x, y) near c in which f is
given by the homogeneous harmonic polynomial Re(x + iy)k , then deg(c)= 2k. For a nondegenerate
saddle the existence of such coordinates (with k = 2) is an immediate consequence of the Morse lemma,
so we obtain Proposition 2.5(1) as a special case of this remark. Sufficient conditions for f to be written
in this form are given in [Cheng 1976, Lemma 2.4].

The first and third parts of Proposition 2.5 were proved in [McDonald and Fulling 2014; Banyaga and
Hurtubise 2004, Theorem 4.2; Alon et al. 2020, Proposition 4.1]. The second part of the proposition is
proved below (see Remark 2.9 after the proof) using the following version of Hartman’s theorem, which
will also be used in the proofs of Lemma 3.2 and Proposition 3.3 to give a canonical description of the
boundary of a Neumann domain near a cusp point.

Proposition 2.7 [Hartman 1960]. Let E be an open neighbourhood of p ∈ R2. Suppose F ∈ C2(E,R2)

and let ϕ be the flow of the nonlinear system ∂tϕ(t, x) = F(ϕ(t, x)). Assume that F( p) = 0 and the
Jacobian DF( p) is diagonalizable and its eigenvalues have nonzero real part. Then, there exists a
C1-diffeomorphism 8 : U → V of an open neighbourhood U of p onto an open neighbourhood V of the
origin such that D8( p)= I and for each x ∈ U the flow line through x is mapped by 8 to

8(ϕ(t, x))= eDF( p)t8(x) (2-1)

for small enough t values.

Remark 2.8. The textbook version of Hartman’s theorem in n dimensions (see, for instance, [Perko
2001, p. 120]) only guarantees the existence of a homeomorphism 8. For n = 2, the proposition above
guarantees that 8 is a C1-diffeomorphism, but for n > 2 further assumptions on the Jacobian are required
to obtain this additional regularity. For instance, it suffices to assume that all of the eigenvalues of DF( p)
are in the same (left or right) half-plane; see [Perko 2001, p. 127]. That version of the theorem would
be sufficient for our purposes, since we only apply Proposition 2.7 at nondegenerate extrema, where all
eigenvalues have the same sign. However, it is interesting to note that Proposition 2.7 also applies at
saddle points in two dimensions.

Proof of Proposition 2.5(2). Let c be an extremal point of f whose Hessian is not proportional to g. Since
Hess f (c) is nondegenerate, both eigenvalues of Hess f (c) are either strictly positive or strictly negative.
We choose normal coordinates in an open neighbourhood Ẽ of c, with respect to which Ẽ is represented
by an open subset E ⊂ R2, c corresponds to the origin 0 ∈ R2, and gi j (0)= δi j .
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We now apply Proposition 2.7 to F = − grad f . Since DF(0)= − Hess f (0) is diagonalizable and has
nonzero eigenvalues, there exist U ⊂ E and V ⊂ R2, both containing the origin, and a C1-diffeomorphism
8 : U → V such that the gradient flow lines are mapped by 8 to the flow lines e−t Hess f (0)8(x) of the
linearized system. In [McDonald and Fulling 2014, Theorem 3.1; Alon et al. 2020, Proposition 4.1] it
was shown that the angle between such flow lines at an extremal point is either 0, π2 or π , under the
assumption that Hess f (0) is not a scalar matrix. This assumption holds, as the Hessian is not proportional
to the metric and we have chosen coordinates with respect to which g(0) is the identity.

It is left to relate the meeting angle between the gradient flow lines in M and the corresponding flow
lines e−t Hess f (0)8(x) in V. Since the tangent map D8(0) : T0U → T0V is the identity, and gi j (0)= δi j ,
the meeting angle of any two curves at 0 is preserved by 8; hence this angle is either 0, π2 or π . □

Remark 2.9. The argument for Proposition 2.5(2) given in [Alon et al. 2020, Proposition 4.1] is incomplete
and hence we have supplied a complete proof here. In particular, the Taylor expansion argument used in
the proofs of [McDonald and Fulling 2014, Theorem 3.1; Alon et al. 2020, Proposition 4.1] does not
suffice. Substituting the Taylor expansion of F into ∂tϕ(t, x)= F(ϕ(t, x)) gives(

x ′(t)
y′(t)

)
= DF( p)

(
x(t)
y(t)

)
+O(∥(x(t), y(t))∥2

R2), (2-2)

but this does not allow us to conclude that the flow may be approximated by et DF( p)( x0
y0

)
due to the

possible coupling of higher-order terms in (2-2). A simple example is F(x, y) = (−λ1x,−λ2 y + x2),
with 0< 2λ1 < λ2. For the resulting system x ′

= −λ1x , y′
= −λ2 y + x2 we have x(t)= x0e−λ1t, but

y(t)=

[
y0 −

x2
0

λ2 − 2λ1

]
e−λ2t

+
x2

0

λ2 − 2λ1
e−2λ1t (2-3)

is dominated by e−2λ1t for large t , and hence is not approximated by a solution to the linearized equation
y′

= −λ2 y.

From Proposition 2.5(2) we see that the boundary of a Neumann domain may possess a cusp (when
the meeting angle is 0) and so it can fail to be Lipschitz continuous. Furthermore, it may even fail to be
of class C , where we recall that the boundary of a domain is of class C if it can be locally represented as
the graph of a continuous function, alternatively, if the domain has the segment property (see [Edmunds
and Evans 1987; Mazya and Poborchi 1997] for details). To demonstrate that this is a subtle property, we
bring as an example the domains

�1 =
{
(x, y) ∈ R2

:
1
2 x2 < y < x2, 0< x < 1

}
,

�2 = {(x, y) ∈ R2
: −x2 < y < x2, 0< x < 1},

(2-4)

which are shown in Figure 2. The domain �1 does not satisfy the segment property at the origin, and
hence is not of class C , even though its boundary is the union of two smooth curves. On the other hand,
�2 (which contains �1) is of class C . This example will be important later, in the proof of Proposition 3.3.
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Figure 2. The regions �1 (left) and �2 (right) defined in (2-4) both have a cusp at the
origin. However, �1 is not of class C , whereas �2 is.

p

q

p

q
η

p

q

Figure 3. Possible types of Neumann domains for a Morse function: regular (left);
cracked (centre); and doubly cracked (right). Saddle points are represented by balls,
maxima by triangles pointing upwards and vice versa for minima. If f is Morse–Smale,
its Neumann domains must look like one of the first two examples, with either one or
two saddle points on the boundary. For the cracked domain shown in the centre, η is
the only Neumann line connected to q, hence deg(q)= 1. If f is not Morse–Smale, its
Neumann domains can have additional saddle points on the boundary, and can have both
extremal points of degree one, as shown on the right. (This last example has a Neumann
line connecting two saddle points, which is not possible if f is Morse–Smale, by
Lemma 2.4.)

We add that there is very little known in general regarding the asymptotic behaviour of Neumann lines
near cusps. In particular, methods to treat cusps in a spectral-theoretic context, as in, e.g., [Jakšić et al.
1992; Flamencourt and Pankrashkin 2020; Band et al. 2021], have to be generalized for our purpose.

We end this section by examining Theorem 2.2 and its implications for the structure of Neumann
domains. By the statement of the theorem, the boundary of a Neumann domain always contains a
maximum and a minimum, but no other extrema. It follows that each Neumann domain must belong to
one of the following two types (illustrated in Figure 3):

• a regular Neumann domain has on its boundary a maximum and a minimum, each of degree at least 2
(see Definition 2.3);

• a cracked Neumann domain has on its boundary an extremal point which is of degree 1.
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Moreover, since the boundary is made up of Neumann lines, it must contain at least one saddle point. If
f is Morse–Smale, the boundary contains at most two saddle points, by Theorem 2.2(4), but for a general
Morse function it is possible to have more. The possible existence of additional saddle points is irrelevant
for our analysis, however, since the boundary is Lipschitz near these points by Proposition 2.5(1).

Numerical observations suggest that generic Neumann domains are regular. However, it is not hard to
construct Morse functions having cracked Neumann domains; see the Appendix. Theorems 1.2 and 1.3
apply to both types of domains, but in the proofs we need to pay careful attention to cracked domains. In
particular, a cracked Neumann domain is not of class C , as the domain lies on both sides of its boundary.

Remark 2.10. In summary, a Neumann domain may fail to be of class C for two reasons: a cusp on the
boundary or a crack in the domain, i.e., a Neumann line contained in the interior of �. These are the
main technical obstacles to overcome in proving Theorems 1.2 and 1.3.

3. Sobolev spaces on Neumann domains

We now discuss properties of Sobolev spaces on Neumann domains. As described in the Introduction, and
indicated in Proposition 2.5(2) (see also Remark 2.10), the difficulty is that the boundary of a Neumann
domain need not be of class C , so standard density and compactness results do not apply.

In Section 3A we define Sobolev spaces on a Neumann domain and various subsets of its boundary. In
Sections 3B and 3C we describe some technical constructions (dissection and truncation) that allow us to
deal with cracks and cusps. Finally, in Section 3D we prove the main result of this section, Proposition 3.3,
which establishes density and embedding properties for the space W 1,2(�) on a Neumann domain.

3A. Preliminaries. As above, we assume that (M, g) is a smooth, closed, connected, oriented Riemannian
surface. For an open submanifold N ⊂ M, the Sobolev space W k,2(N ) is defined to be the completion of
C∞(N ) with respect to the norm

∥ f ∥
2
W k,2(N ) :=

k∑
j=0

∫
N

|∇
j f |

2, (3-1)

where ∇ denotes the covariant derivative with respect to the metric g. The norm depends on g, but since
M is compact, different metrics will produce equivalent norms. We will sometimes take advantage of
this fact and compute the Sobolev norm using a metric g̃ defined in a local coordinate chart to have
components g̃i j = δi j (so that covariant derivatives become partial derivatives, the Riemannian volume
form reduces to the Euclidean one, etc.). This allows us to apply standard methods in the theory of
Sobolev spaces on Lipschitz domains in M.

Now suppose that N ⊂ M is an open submanifold with Lipschitz boundary. We will later choose N to
be a Neumann domain �, or a proper subset thereof (see Section 3C) if ∂� has a crack or a cusp. We
define the boundary Sobolev spaces H s(∂N ) for |s| ≤ 1 via the Fourier transform and a suitable partition
of unity, following [McLean 2000, p. 96], so that the dual space is given by H s(∂N )∗ = H−s(∂N ).
Moreover, for any open subset 0 ⊂ ∂N we let

H s(0) := { f |0 : f ∈ H s(∂N )}, H̃ s(0) := closure of C∞

0 (0) in H s(0). (3-2)
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The space H̃ s(0) has an equivalent description that is often useful in practice:

H̃ s(0)= { f ∈ H s(∂N ) : supp f ⊂ 0}. (3-3)

This equivalence follows from [McLean 2000, Theorem 3.29]. Another convenient description, valid for
s ≥ 0, is

H̃ s(0)= { f ∈ L2(0) : f̃ ∈ H s(∂N )}, (3-4)

where f̃ denotes the extension of f by zero to ∂N \0; this is [McLean 2000, Theorem 3.33].
It follows from the definitions that H̃ s(0) ⊂ H s(0) for all |s| ≤ 1, and it is well known that these

spaces coincide for |s|< 1
2 . However, for |s| ≥ 1

2 we have H̃ s(0)⊊ H s(0) whenever 0 is a proper subset
of ∂N. To see this, consider the constant function f ≡ 1 on 0, which is clearly in H s(0) for any s. It is
easily verified that its extension f̃ , which is just the indicator function χ

0
, is not in H s(∂N ) for s ≥

1
2 , in

which case we conclude from (3-4) that f /∈ H̃ s(0). This distinction between the H s and H̃ s spaces will
be important when we consider the normal derivative of a function restricted to a subset of the boundary;
see in particular Lemma 3.1 and its application in the proof of Proposition 4.3.

The H̃ s spaces arise naturally as duals to the H s spaces. That is, for any |s| ≤ 1 we have H s(0)∗ =

H̃−s(0), from [McLean 2000, Theorem 3.30]. In particular,

H̃−1/2(0)= H 1/2(0)∗ ⊊ H̃ 1/2(0)∗ = H−1/2(0). (3-5)

Using (3-2) we obtain

ℓ= 0 in H−s(0) ⇐⇒ ℓ( f )= 0 for all f ∈ C∞

0 (0). (3-6)

We thus define for 0 ≤ s ≤ 1 the mapping

·
dual

: L2(0)→ H s(0)∗,

gdual( f ) := ⟨ f, g⟩L2(0), f ∈ H s(0),
(3-7)

observing that the L2 inner product is well-defined because H s(0)⊂ L2(0) for 0 ≤ s ≤ 1. As a result,
we will often abuse notation and use integral notation to denote the action of ℓ ∈ H s(0)∗ on f ∈ H s(0),
i.e., we will write

ℓ( f )=

∫
0

ℓ f

even when ℓ is not in the range of the map ·
dual; see in particular Green’s identity (3-10) below.

Given a decomposition ∂N = 01 ∪ 02, where 01 and 02 are disjoint, open subsets of ∂N, and a
distribution ℓ ∈ H−s(∂N ) for some s ≥ 0, we have ℓ|0i ∈ H−s(0i ) for i = 1, 2. For 0 ≤ s < 1

2 we obtain
the decomposition

ℓ(φ)= ℓ|01(φ|01)+ ℓ|02(φ|02)

for every φ ∈ H s(∂N ). However, this is not true for s ≥
1
2 , and in fact the right-hand side is not even

defined in this case, since φ|0i ∈ H s(0i ), whereas ℓ|0i ∈ H−s(0i ) might not be contained in H s(0i )
∗, as

indicated in (3-5). However, such a splitting does hold for ℓ if we assume that 01 and 02 are separated by
a third subset 00 on which ℓ vanishes.



2156 RAM BAND, GRAHAM COX AND SEBASTIAN K. EGGER

Lemma 3.1. Suppose ∂N = 00 ∪ 01 ∪ 02, where 00, 01, 02 are disjoint, open subsets of ∂N with
01 ∩02 = ∅. If ℓ ∈ H−1/2(∂N ) vanishes on 00, then ℓ|0i ∈ H̃−1/2(0i ) for i = 1, 2, and

ℓ(φ)= ℓ|01(φ|01)+ ℓ|02(φ|02) (3-8)

for every φ ∈ H 1/2(∂N ).

Such a partition of the boundary is illustrated in Figure 6, where N =�t ∩�r, 00 = γ0,t , 01 = η̃ and
02 = γ−,t .

Proof. We will use (3-3) to prove that ℓ|01 ∈ H̃−1/2(01). This does not follow immediately, however,
since ℓ is not necessarily supported in 01. Therefore, we will create a modified distribution, ℓ1, such that
supp ℓ1 ⊂ 01 and ℓ|01 = ℓ1|01 .

Since 01 ∩02 = ∅, we can find a smooth bump function χ1 that equals 1 on 01 and 0 on 02. Consider
the distribution ℓ1(φ) := ℓ(χ1φ), which is in H−1/2(∂N ). If suppφ ⊂00 ∪02, then supp(χ1φ)⊂00, and
hence ℓ1(φ)= ℓ(χ1φ)= 0, because ℓ vanishes on 00. This shows that supp ℓ1 ⊂ ∂N \ (00 ∪02)= 01.
On the other hand, if suppφ ⊂ 01, then χ1φ = φ, and hence ℓ1(φ) = ℓ(φ). We have thus shown that
ℓ|01 = ℓ1|01 ∈ H̃−1/2(01).

Similarly, we obtain ℓ2 ∈ H−1/2(∂N ), with supp ℓ2 ⊂ 02 and ℓ|02 = ℓ2|02 ∈ H̃−1/2(02). It follows
that the distribution

ℓ̂ := ℓ− ℓ1 − ℓ2 ∈ H−1/2(∂N )

has support in ∂N \ (00 ∪01 ∪02)= (00 ∩01)∪ (00 ∩02), which is a finite set. However, a distribution
in H−1/2 cannot be supported on a finite set of points, by [McLean 2000, Lemma 3.39], so we conclude
that ℓ̂ is identically zero, which completes the proof. □

Since N was assumed to have Lipschitz boundary, the trace map · |∂N : W 1,2(N ) → H 1/2(∂N ) is
continuous. To define the normal derivative we first introduce the weak Laplace–Beltrami operator,
1 : W 1,2(�)→ W 1,2

0 (�)∗, where �⊂ M is any open subset of M. By definition, 1ψ = f means∫
�

⟨gradψ, gradφ⟩ =

∫
�

f φ (3-9)

for all φ ∈ W 1,2
0 (�), where the integral on the right-hand side is shorthand for the action of f ∈ W 1,2

0 (�)∗

on φ ∈ W 1,2
0 (�). If 1ψ = f ∈ L2(�), then this is a genuine L2 inner product of f and φ.

The weak version of Green’s identity then says that for any ψ ∈ W 1,2(N ) with 1ψ ∈ L2(N ), there
exists a unique ∂νψ ∈ H−1/2(∂N ) such that∫

N
⟨gradψ, gradφ⟩ =

∫
N
(1ψ)φ+

∫
∂N
(∂νψ)φ (3-10)

for all φ ∈ W 1,2(N ) [McLean 2000, Theorem 4.4]. The boundary term has to be understood as the action
of ∂νψ ∈ H−1/2(∂N ) on φ|∂N ∈ H 1/2(∂N ), i.e., (∂νψ)(φ|∂N ), but to simplify the presentation we use
the integral notation of (3-10).

Finally, consider an open subset 0 ⊂ ∂N. For a function ψ ∈ W 1,2(N ) we define ψ |0 to be the
restriction of ψ |∂N ∈ H 1/2(∂N ) to 0, so that (3-2) implies ψ |0 ∈ H 1/2(0). Similarly, if ψ ∈ W 1,2(N )
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and 1ψ ∈ L2(N ), we have ∂νψ |0 ∈ H−1/2(0). It is not necessarily true that ∂νψ |0 is contained in the
smaller space H̃−1/2(0)= H 1/2(0)∗; see (3-5). However, this will be the case if ∂νψ vanishes on ∂N \0,
by Lemma 3.1. This fact will play a crucial role in the proof of Proposition 4.3 below.

We conclude the section by explaining our decision to use W k,2-Sobolev spaces on N but H s-Sobolev
spaces on ∂N. Recall that H 1(�) ⊂ W 1,2(�) holds for any open set �, but the inclusion can be strict
unless one has additional regularity of the boundary. In Definition 4.1 we construct the Neumann Laplacian
as the self-adjoint operator corresponding to a nonnegative, symmetric bilinear form. For this we require
the form to be closed, which is the case if the form domain is W 1,2(�), but need not be true if the form
domain is H 1(�). On the other hand, the H s-Sobolev spaces, defined via the Fourier transform, provide
a more natural setting for the discussion of traces: If N is an open submanifold with Lipschitz boundary,
there is a bounded, surjective trace map · |∂N : H 1(N )→ H 1/2(∂N ). For N Lipschitz we have the equality
H 1(N )= W 1,2(N ), and hence a well-defined trace map · |∂N : W 1,2(N )→ H 1/2(∂N ).

3B. Dissections of Neumann domains. The boundary of a cracked Neumann domain cannot be of
class C , whether or not there is a cusp on the boundary, due to the Neumann line η contained in the
interior of �; see Figure 3. We deal with this by dissecting such a Neumann domain into two pieces, as
shown in Figure 4, where one piece has Lipschitz boundary, and the other has boundary that is Lipschitz
except possibly at a cusp point; i.e., it has the same regularity as a regular Neumann domain. For doubly
cracked domains as in Figure 3, an analogous statement holds as the proof for that case is essentially the
same. The dissection thus reduces many of the proofs for cracked domains to the corresponding results
for regular domains.

This dissection is made possible by the following lemma.

Lemma 3.2. Assume f is a Morse function and let γ be a Neumann line. Then γ has finite length
L(γ ) <∞, and admits an arc-length parametrization with γ ∈ C1([0, L(γ )]), i.e., boundary points are
included.

Proof. We decompose γ = γ0 ∪ γ1 ∪ γ2, where γ1 is defined in a small neighbourhood of the initial
endpoint of γ and γ2 is defined in a small neighbourhood of the terminal endpoint. Then it is enough to
prove the corresponding statement for γ0, γ1 and γ2.

The result for γ0 follows by standard results for flows of smooth vector fields. Definition 2.3 implies
that the endpoints of γ are critical points of f . If the initial endpoint (which we label c) is a saddle,
then the result for γ1 follows, e.g., by [Banyaga and Hurtubise 2004, Theorem 4.2 (p. 94)]. On the other
hand, if c is an extremum we use the map 8 from Proposition 2.7. Then 8 ◦ γ1 is a flow line generated
by e− Hess f (c)t, and hence satisfies the properties of the claim, i.e., it is C1 up to the endpoint and has
finite length. As 8−1 is a C1 map and γ1 =8−1

◦ (8 ◦ γ1) is a composition of C1 functions, the claim
for γ1 follows. The proof for γ2 is identical. □

Now suppose that � is a cracked Neumann domain. The doubly cracked case in Figure 3 can be treated
analogously. Denote by q the extremum in the interior of �, and let η be the Neumann line attached to q;
see Figure 4. Choosing a Lipschitz curve η̃ in � that joins q with a noncusp point of ∂�, we obtain a
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p p

q q

η

η̃

�1

�2

Figure 4. The dissection of a cracked Neumann domain, as given in (3-11). The Neumann
line η is extended to a Lipschitz curve η ∪ η̃, so that �l is a Lipschitz domain and �r

possesses a cusp at p.

dissection of � into disjoint parts �l and �r, i.e.,

� \ η̃ =�l ∪�r, (3-11)

as shown in Figure 4. Lemma 3.2 guarantees that η∪ η̃ is a Lipschitz curve, so �l has Lipschitz boundary,
and �r has Lipschitz boundary with the possible exception of a cusp at p. This dissection induces an
isometric embedding

W 1,2(�)→ W 1,2(�l)⊕ W 1,2(�r),

φ 7→ (φ|�l, φ|�r).
(3-12)

3C. Truncated Neumann domains. To deal with potential cusps at the maximum and minimum of f ,
we introduce truncated versions of �. Denoting by p ∈ Min( f ) and q ∈ Max( f ) the minimum and
maximum of f in �, we observe that f (q) < f ( p), since otherwise f would be constant on �, which is
not possible as it is a Morse function. Adding a constant to f , which does not affect the gradient flow
lines, we can thus assume that f (q) < 0 < f ( p). (In the special case that f is an eigenfunction this
condition holds automatically, so it is not necessary to shift f .)

We then define for each 0< t < 1 the truncated domains

�t :=


{x ∈� : f (x) < t f (q)}, q is a cusp, p is not,
{x ∈� : t f ( p) < f (x)}, p is a cusp, q is not,
{x ∈� : t f ( p) < f (x) < t f (q)}, q and p are cusps,
�, otherwise.

(3-13)

Some examples of this construction are shown in Figure 5.
The boundary of �t can be decomposed as ∂�t = γ±,t ∪ γ0,t , where γ±,t are level lines defined by

γ+,t = {x : f (x)= t f (q)}, γ−, t = {x : f (x)= t f ( p)}, (3-14)

and γ0,t = ∂�t ∩ ∂� is the part of ∂� that remains after the truncation. Note that γ0,t ̸= ∅, and
Proposition 2.5(3) implies that γ±,t meets ∂� perpendicularly, except for a finite number of exceptional
times where γ±,t meets ∂� at a saddle point, in which case the meeting angle is π

4 ; see Figure 5.
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q

�t

p

p

�t

q
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�t

q

p

�t

q

Figure 5. Neumann domains and their truncations, with the dotted line indicating the
curve γ±,t . The top two figures show regular and cracked domains for t close to 1. For
the same cracked domain the bottom left figure shows an exceptional value of t , where
γ±,t meets ∂� at angle π

4 , and the bottom right figure shows a smaller value of t .

For a truncated Neumann domain�t we denote its complement in� by�c
t :=�\�t . For any 0< t < 1

and sufficiently small ϵ > 0, we can find a smooth cutoff function χ on M such that

χ(x)=

{
0, x ∈�t ,

1, x ∈�c
t+ϵ .

(3-15)

If desired, we can assume that χ is of the form α ◦ f for some α ∈ C∞(R), in which case χ has the same
level lines as f . For the arguments to follow, however, a generic smooth cutoff will suffice.

3D. Density and embedding results. We now state and prove the main result of this section.

Proposition 3.3. Let (M, g) be a closed, connected, oriented Riemannian surface. If � ⊂ M is a
Neumann domain of a Morse function f , the following hold:

(1) The embedding W 1,2(�)→ L2(�) is compact.

(2) If � is regular, then C1(�) is dense in W 1,2(�).

(3) If � is cracked, then there exists t ∈ (0, 1) such that the set of functions

{φ ∈ W 1,2(�) : φ|�c
t
∈ C1(�c

t )} (3-16)

is dense in W 1,2(�).

The result is known if ∂� is of class C (see [Mazya and Poborchi 1997]) but, as noted above, the
boundary of a Neumann domain does not need to have this property. If � is cracked and φ ∈ W 1,2(�),
its values on opposite sides of the crack η need not be close, so we cannot hope to approximate it by a
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function in C1(�). However, by choosing t sufficiently large, we can ensure that �c
t is disjoint from η,

and hence (3-16) holds.
The idea of the proof is to use Hartman’s theorem (Proposition 2.7) to find a canonical description of

the boundary near a cusp, and then apply the following lemma, which allows us to extend functions to a
larger domain which still has a cusp but is of class C ; see the domains �1 and �2 in Figure 2.

Lemma 3.4 [Mazya and Poborchi 1997, §5.4.1, Lemma 1, p. 285]. Consider the domain

�̃= {(x, y) ∈ R2
: c1ϑ(x) < y < c2ϑ(x), 0< x < 1}

for some c1 < c2, where ϑ ∈ C0,1([0, 1]) is an increasing function with ϑ(0)= 0 and ϑ ′(t)→ 0 as t → 0,
and define

G = {(x, y) ∈ R2
: |y|< Mϑ(x), 0< x < 1} (3-17)

for M ≥ max{|c1|, |c2|}. Then there exists a continuous extension operator E : W 1,2(�̃)→ W 1,2(G).

We will apply this lemma with ϑ(x)= xα for some α > 1.

Proof of Proposition 3.3. We first prove (1) and (2) for regular Neumann domains. Only the behaviour
near the cusps has to be investigated, as they are the only possible non-Lipschitz points on ∂�. A cusp is
either a maximum or a minimum by Proposition 2.5. Without loss of generality, let c ∈ Max( f ) be the
only cusp on ∂�.

We localize at c by taking a smooth cutoff function χ , as in (3-15), that equals 1 in �c
t+ϵ and vanishes

in �t , and hence is supported in �c :=�c
t . Now take φ ∈ W 1,2(�). We write φ = χφ+ (1 −χ)φ and

observe that χφ, (1 −χ)φ ∈ W 1,2(�). Thus, it is sufficient to prove the statements for both functions
separately. For the latter function the observation that it is supported in a Lipschitz domain implies both
(1) and (2) in Proposition 3.3.

For the former we choose t close to 1 and employ Proposition 2.7. Let 8 be the resulting C1-
diffeomorphism and define �̃c =8(�c). Owing to (2-1), the image in �̃c of the two boundary curves
meeting at c consists of flow lines obeying ∂tγ = − Hess f (c)γ . These are generated by e−t Hess f (c)x0,
where x0 is a suitable point on γ . An easy calculation as in [McDonald and Fulling 2014, Section 3; Alon
et al. 2020, Proof of Proposition 4.1] shows that the flow lines near the origin may be parametrized in
suitable coordinates by γ (x)= (x, cxα), where α > 0 depends only on the eigenvalues of Hess f (c) (in
fact only on their ratio). This implies that near the origin the domain �̃c is described by

(x, y) ∈ �̃c ⇐⇒ c1xα < y < c2xα and x > 0. (3-18)

We can assume that α > 1. (If α = 1, then �̃c is in fact Lipschitz near c, so there is nothing to prove;
if α < 1, we exchange x and y to obtain a similar description of the boundary with α replaced by 1/α.)
Now Lemma 3.4 says that there exists a continuous extension operator E : W 1,2(�̃c)→ W 1,2(G), where
�̃c ⊂ G and near 0 the domain G is characterized by

(x, y) ∈ G ⇐⇒ |y|< Mxα and x > 0, (3-19)
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with M large enough. Since the boundary ∂G is of class C , we can now infer by [Edmunds and Evans
1987, Theorem 4.17, p. 267; Mazya and Poborchi 1997, §1.4.2, Theorem 1, p. 28] that W 1,2(G) satisfies
statements (1) and (2) of the proposition. In particular, W 1,2(G) → L2(G) is compact and C1(G) is
dense in W 1,2(G).

Using the fact that 8 is a C1-diffeomorphism, it is easily shown that the pull-back map

8∗
: W 1,2(�̃c)→ W 1,2(�c), φ 7→ φ ◦8, (3-20)

is well-defined and bijective, with

1
C ′

∥φ∥
2
W 1,2(�̃c)

< ∥φ ◦8∥
2
W 1,2(�c)

< C ′
∥φ∥

2
W 1,2(�̃c)

for some C ′ > 0. Therefore, the inclusion W 1,2(�c)→ L2(�c) can be written as the composition of a
compact operator

W 1,2(�c)
(8−1)∗

−−−→ W 1,2(�̃c)
E

−→ W 1,2(G)−→ L2(G)

and a bounded operator

L2(G)−→ L2(�̃c)
8∗

−−→ L2(�c)

(where the first map is restriction), and hence is compact. This completes the proof of (1) for regular
Neumann domains.

To prove (2), let φ ∈ W 1,2(�c), so that φ ◦8−1
∈ W 1,2(�̃c) and E(φ ◦8−1) ∈ W 1,2(G). For any δ > 0,

there exists φ̃ ∈ C1(G) with ∥φ̃− E(φ ◦8−1)∥W 1,2(G) < δ, and hence

∥φ̃|�̃c
◦8−φ∥W 1,2(�c) ≤ C ′

∥φ̃|�̃c
−φ ◦8−1

∥W 1,2(�̃c)

≤ C ′
∥φ̃− E(φ ◦8−1)∥W 1,2(G) < C ′δ.

Since φ̃|�̃c
◦8 ∈ C1(�c), this completes the proof of (2).

We next prove (1) for cracked Neumann domains, using the decomposition (3-12). More precisely,
using Lemma 3.2 we may dissect � as in (3-11) and, without loss of generality, assume that the cusp is
located on the boundary of �r, as in Figure 3. Note that

W 1,2(�)→ W 1,2(�l)⊕ W 1,2(�r)→ L2(�l)⊕ L2(�r)= L2(�)

and so it is enough to prove compactness of the embedding W 1,2(�•)→ L2(�•) for • = l, r. For • = l
this follows from the Lipschitz property of ∂�l. For • = r we observe that ∂�r is Lipschitz except at the
cusp, and so the proof given above for regular domains applies.

Finally, we prove (3). For 0< t < 1 sufficiently close to 1 we have �c
t ⊂�• for either • = l or r (the

case • = r is shown in Figure 4), so we choose t sufficiently close to 1 and ϵ > 0 small enough that
�c =�c

t ⊂�•. Now let φ ∈ W 1,2(�). Given δ > 0, there exists by (2) a function φδ ∈ C1(O c) such that
∥φ−φδ∥W 1,2(�c) < δ. Choosing a smooth cutoff function χ that equals 1 in �c

t+ϵ and vanishes in �t , we
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define φ̃δ = χφδ + (1 −χ)φ ∈ W 1,2(�) and compute

∥φ− φ̃δ∥W 1,2(�) = ∥χ(φ−φδ)∥W 1,2(�c)

≤ K∥φ−φδ∥W 1,2(�c) < K δ, (3-21)

where K is a constant depending only on χ . Finally, since suppχ ⊂�c
t , we have

φ̃δ|�c
t
= χφδ|�c

t
∈ C1(�c

t ). □

4. The Neumann Laplacian on a Neumann domain

In this section we define the Neumann Laplacian on a Neumann domain �, and establish some of its
fundamental properties, in particular proving Theorems 1.2 and 1.3. This relies on the technical results of
the previous section, namely Proposition 3.3.

4A. Definition and proof of Theorem 1.2. We define the Neumann Laplacian in the usual way, via a
symmetric bilinear form.

Definition 4.1. The Neumann Laplacian on an open set �⊂ M, denoted by 1N
� , is the unique self-adjoint

operator corresponding to the bilinear form

a(ψ, φ) :=

∫
�

⟨gradψ, gradφ⟩, D(a) := W 1,2(�). (4-1)

More precisely, 1N
� is an unbounded operator on L2(�), with domain

D(1N
�)={ψ∈W 1,2(�):there exists fψ∈L2(�) with a(ψ,φ)=⟨ fψ ,φ⟩L2(�) for all φ∈W 1,2(�)}, (4-2)

and for any ψ ∈ D(1N
�) we have 1N

�ψ = fψ . The existence and uniqueness of such an operator follows
immediately from the completeness of the form domain D(a) = W 1,2(�) and standard theory of self-
adjoint operators, for instance [Reed and Simon 1972, Theorem VIII.15]. If ψ ∈ D(1N

�), then (4-2)
implies ∫

�

⟨gradψ, gradφ⟩ =

∫
�

(1N
�ψ)φ

for all φ ∈ W 1,2
0 (�), and hence 1ψ =1N

�ψ ∈ L2(�). That is, 1N
� acts as the weak Laplace–Beltrami

operator 1 defined in (3-9).
The next result is nontrivial, and relies on the special geometric structure of Neumann domains.

Proposition 4.2. If �⊂ M is a Neumann domain for a Morse function, then 1N
� has compact resolvent,

and hence has purely discrete spectrum σ(1N
�)⊂ [0,∞).

Proof. Proposition 3.3(1) says that the form domain W 1,2(�) is compactly embedded in L2(�), so the
result follows from [Reed and Simon 1978, Theorem XIII.64]. □
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4B. Domain of the Neumann Laplacian. We now describe the domain of the Neumann Laplacian,
working towards the proof of Theorem 1.3. Recalling the truncated domain �t introduced in Section 3C,
and the decomposition ∂�t = γ±,t ∪ γ0,t of its boundary in (3-14), we have the following.

Proposition 4.3. Let � be a Neumann domain of a Morse function f . The domain of the Neumann
Laplacian is given by

D(1N
�)=

{
ψ ∈ W 1,2(�) :1ψ ∈ L2(�), ∂ν(ψ |�t )|γ o

0,t
= 0 for all 0< t < 1

and lim
t→1

∫
γ±,t

∂ν(ψ |�t )φ = 0 for all φ ∈ W 1,2(�)
}

(4-3)

if � is regular, and

D(1N
�)=

{
ψ ∈ W 1,2(�) :1ψ ∈ L2(�), ∂ν(ψ |�t∩�l)|γ o

0,t
= ∂ν(ψ |�t∩�r)|γ o

0,t
= 0

for all 0< t < 1, and lim
t→1

∫
γ±,t

∂ν(ψ |�t )φ = 0 for all φ ∈ W 1,2(�)
}

(4-4)

if � is cracked.

That is, to be in the domain of 1N
� , a function must satisfy Neumann boundary conditions on the

Lipschitz part of the boundary, as well as a limiting boundary condition at each cusp. While this completely
characterizes the domain of 1N

� , the limiting boundary conditions on γ±,t may be difficult to check in
practice. Therefore, in the following section we will give simple criteria (Proposition 4.8 and Corollary 4.9)
which guarantee these limiting conditions are satisfied.

Remark 4.4. Our techniques actually give a more general result, not just valid for Neumann domains.
The key points are that ∂� is Lipschitz except for a finite number of cusps and cracks, and the cracks
admit a Lipschitz continuation. A stronger result will be given below (in Remark 4.7) that relies on the
detailed structure of the cusps, which for Neumann domains is a consequence of Hartman’s theorem.

In proving the proposition, we must take into account the fact that �l and �r need not be Lipschitz;
see Figure 4, where �r has a cusp on its boundary. We therefore combine the dissection and truncation of
Sections 3B and 3C, respectively. The resulting domains are shown in Figure 6. Note that the boundaries
of �t ∩�l and �t ∩�r can be partitioned into three parts: γ±,t coming from the truncation; η̃ coming
from the dissection; and γ0,t , coming from the original domain �. We emphasize that the dissection
(3-11) is an auxiliary construction, and our analysis does not depend on the specific choice of η̃.

Since η∪ η̃ has a Lipschitz neighbourhood in both �t ∩�l and �t ∩�r, see Figure 6, we have

(φ|�l)|η̃o = (φ|�r)|η̃o ∈ H 1/2(η̃o) for φ ∈ W 1,2(�), (4-5)

with ·
o denoting the interior in γ0,t ∪ η̃. Therefore, the map

W 1,2(�)→ H 1/2(ηo)⊕ H 1/2(ηo)⊕ H 1/2(η̃o),

φ 7→ ((φ|�l)|ηo, (φ|�r)|ηo, φ|η̃o),
(4-6)

is well-defined, where φ|η̃o denotes the common value in (4-5). We first analyze the normal derivatives on η̃.

Lemma 4.5. Let � be a cracked Neumann domain. If ψ ∈ W 1,2(�) and 1ψ ∈ L2(�), then

∂ν(ψ |�l)|η̃o + ∂ν(ψ |�r)|η̃o = 0 ∈ H−1/2(η̃o). (4-7)



2164 RAM BAND, GRAHAM COX AND SEBASTIAN K. EGGER

p

q ′

�c
t

η̃

�4�1
q

�t ∩�1
�t ∩�r

η̃

γ−,t

γ0,t

Figure 6. The dissected and truncated domains appearing in the proof of Proposition 4.3.
Here γ±,t is a result of the truncation, η̃ is from the dissection, and γ0,t is the part of the
original boundary, ∂�, that remains after the truncation.

Proof. The hypothesis 1ψ ∈ L2(�) means∫
�

⟨gradψ, gradφ⟩ = ⟨1ψ,φ⟩L2(�) (4-8)

for all φ ∈ C∞

0 (�). Together with Green’s formula (3-10), this implies∫
η̃

(∂ν(ψ |�l)+ ∂ν(ψ |�r))φ = 0 (4-9)

for all φ ∈ C∞

0 (�). Since any function in C∞

0 (η̃) can be realized as φ|η̃ for some φ ∈ C∞

0 (�), the result
follows from (3-6). □

We next analyze the normal derivative on the Lipschitz part of the boundary, γ0,t .

Lemma 4.6. If ψ ∈ D(1N
�), then

∂ν(ψ |�t∩�•
)|γ o

0,t
= 0 ∈ H−1/2((∂(�t ∩�•)∩ γ0,t)

o) (4-10)

for any 0< t < 1, where • = l, r.

Proof. We prove the result for�l, the argument for�r is identical. For any test function φ ∈ W 1,2(�t ∩�l)

with φ|η̃ = 0 and φ|γ+,t = 0, we get from Green’s formula (3-10) that∫
∂(�t∩�l)∩γ0,t

∂ν(ψ |�t∩�l)φ = 0.

The image of the trace map restricted to

{φ ∈ W 1,2(�t ∩�l) : φ|η̃ = φ|γ+,t = 0}

is precisely H̃ 1/2
(
(∂(�t∩�l)∩γ0,t)

o
)
, by (3-3) and [McLean 2000, Theorem 3.37], so the result follows. □

Now, equipped with our preliminary analysis of normal derivatives, we prove Proposition 4.3.

Proof of Proposition 4.3. We only prove (4-4); the proof of (4-3) for regular domains is similar but
less involved, so we omit it. Let ψ ∈ W 1,2(�). From (4-2) we have that ψ ∈ D(1N

�) if and only if
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1ψ ∈ L2(�) and ∫
�

(1ψ)φ =

∫
�

⟨gradψ, gradφ⟩ (4-11)

for all φ ∈ W 1,2(�). Thus, we fix ψ, φ ∈ W 1,2(�) with 1ψ ∈ L2(�). Since ⟨gradψ, gradφ⟩ and (1ψ)φ
are in L1(�), their integrals over �t converge to their integrals over � as t → 1 by the dominated
convergence theorem; hence (4-11) is equivalent to

lim
t→1

∫
�t

(1ψ)φ = lim
t→1

∫
�t

⟨gradψ, gradφ⟩. (4-12)

We now use the dissection (3-11), applying Green’s formula on the truncated and dissected domains to
obtain ∫

�t

⟨gradψ, gradφ⟩ =

∫
�t

(1ψ)φ+

∫
∂(�t∩�l)

∂ν(ψ |�t∩�l)φ+

∫
∂(�t∩�r)

∂ν(ψ |�t∩�r)φ.

Comparing with (4-12), we see that ψ ∈ D(1N
�) if and only if

lim
t→1

{∫
∂(�t∩�l)

∂ν(ψ |�t∩�l)φ+

∫
∂(�t∩�r)

∂ν(ψ |�t∩�r)φ

}
= 0 (4-13)

for each φ ∈ W 1,2(�). Therefore, it suffices to show that (4-13) is equivalent to the conditions in (4-4).
We claim that if ψ ∈ W 1,2(�) satisfies 1ψ ∈ L2(�) and ∂ν(ψ |�t∩�l)|γ o

0,t
= ∂ν(ψ |�t∩�r)|γ o

0,t
= 0, then∫

∂(�t∩�l)

∂ν(ψ |�t∩�l)φ+

∫
∂(�t∩�r)

∂ν(ψ |�t∩�r)φ =

∫
γ±,t

∂ν(ψ |�t∩�r)φ (4-14)

for any 0 < t < 1 and φ ∈ W 1,2(�). To prove this, we decompose the integrals over ∂(�t ∩�l) and
∂(�t ∩�r) into a sum of integrals over the different parts of the boundary. This is nontrivial, since this
integral notation actually represents the action of the normal derivative distribution on a test function
in H 1/2, and a distribution in H−1/2 does not necessarily split into the sum of its restriction to different
parts of the boundary, as discussed in Section 3A.

Here we make use of Lemma 3.1, as well as the assumption that ∂ν(ψ |�t∩�l)|γ o
0,t

= ∂ν(ψ |�t∩�r)|γ o
0,t

= 0.
Applying the lemma to N = �t ∩ �l, with the boundary decomposed into 01 = η̃, 02 = γ+,t and
00 = ∂(�t ∩�l)∩ γ0,t , we obtain∫

∂(�t∩�l)

∂ν(ψ |�t∩�l)φ =

∫
η̃

∂ν(ψ |�t∩�l)φ+

∫
γ+,t

∂ν(ψ |�t∩�l)φ.

Similarly, for �t ∩�r we get∫
∂(�t∩�r)

∂ν(ψ |�t∩�r)φ =

∫
η̃

∂ν(ψ |�t∩�r)φ+

∫
γ−,t

∂ν(ψ |�t∩�r)φ.

Adding these together and using Lemma 4.5 to cancel the η̃ terms completes the proof of (4-14).
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To finish the proof of the proposition, suppose that ψ ∈ D(1N
�), so (4-13) holds. Lemma 4.6 implies

that ∂ν(ψ |�t∩�l)|γ o
0,t

= ∂ν(ψ |�t∩�r)|γ o
0,t

= 0, so we can use (4-14) to conclude that

lim
t→1

∫
γ−,t

∂ν(ψ |�t∩�r)φ = 0

for any φ ∈ W 1,2(�). Therefore, the boundary conditions given in (4-4) are satisfied. Conversely, if ψ
satisfies the boundary conditions in (4-4), we take the limit of (4-14) to find that (4-13) holds and so
ψ ∈ D(1N

�). □

Remark 4.7. For the γ±,t boundary condition in (4-3) or (4-4), it is enough to check that

lim
t→1

∫
γ±,t

∂ν(ψ |�t )φ = 0 (4-15)

for test functions φ ∈ W 1,2(�) that are C1 in a neighbourhood of the cusp. If ψ satisfies this, and the
other conditions in (4-3) or (4-4), the proof of Proposition 4.3 shows that (4-11) holds for all such φ. It
then follows from Proposition 3.3(3) that (4-11) in fact holds for all φ ∈ W 1,2(�), and so ψ ∈ D(1N

�).

4C. Proof of Theorem 1.3. If � has no cusps or cracks, then Proposition 4.3 says that D(1N
�) simply

consists of functions that are sufficiently regular and satisfy Neumann boundary conditions everywhere
on ∂�. On the other hand, when a cusp is present we must also impose the condition (4-15), which says
the normal derivative of ψ on γ±,t does not blow up as the cusp is approached. We now give a simple
condition that guarantees this is the case.

For simplicity we only state the result for a cusp at q; the corresponding statement for a cusp at p is
analogous. We define the “doubly truncated domain”

�′

t = {x ∈� : t0 f (q) < f (x) < t f (q)} (4-16)
for a fixed 0< t0 < 1.

Proposition 4.8. If ψ ∈ W 1,2(�) and there exists t0 such that ψ ∈ W 2,2(�′
t) for all t0 < t < 1 and

(1 − t)1/2∥ψ∥
2
W 2,2(�′

t )
is bounded near t = 1, then (4-15) holds.

The proposition does not assume ψ is in W 2,2(�), but only that its W 2,2(�′
t) norm does not blow up

too quickly near the cusp. Of course this condition is automatically satisfied if ψ ∈ W 2,2(�).

Corollary 4.9. If ψ ∈ W 2,2(�), then (4-15) holds.

Since the Morse function f that generated the Neumann domain � was assumed to be smooth, f |�

satisfies the hypotheses of Corollary 4.9, and Theorem 1.3 follows immediately.
The main ingredient in the proof is a trace estimate for the doubly truncated domain �′

t , with controlled
dependence on t .

Lemma 4.10. There exist constants A, B > 0 such that∫
γ±,t

u2
≤

A
√

1 − t

∫
�′

t

u2
+ B

∫
�′

t

|∇u|
2 (4-17)

for all u ∈ W 1,2(�′
t) and t sufficiently close to 1.
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Proof. Increasing t0 if necessary, we can assume that q is the only critical point of f in �c
t0 . Consider the

vector field
X := χu2 ∇ f

|∇ f |
,

where χ is a smooth cutoff function that vanishes on γ+,t0 and equals 1 in a neighbourhood of q. Since
f is smooth and has no critical points in �′

t , we have X ∈ W 1,1(�′
t). Observe that ∇ f/|∇ f | is tangent

to γ0,t , whereas on γ+,t it coincides with the outward unit normal. This implies∫
∂�′

t

X · ν =

∫
γ+,t

u2

for any t large enough that χ |γ+,t ≡ 1. On the other hand, the divergence theorem implies∫
∂�′

t

X · ν =

∫
�′

t

div X =

∫
�′

t

(
∇(χu2) ·

∇ f
|∇ f |

+χu2 div
∇ f
|∇ f |

)
,

so we obtain ∫
γ+,t

u2
≤ B∥u∥

2
H1(�′

t )
+

∫
�′

t

u2
∣∣∣∣div

∇ f
|∇ f |

∣∣∣∣ (4-18)

for some constant B depending only on χ .
To estimate the integral on the right-hand side, we observe that the level sets of f have mean curvature

div(∇ f/|∇ f |). Using the Morse lemma, we can find coordinates (x, y) in a neighbourhood of q such
that f (x, y)= f (q)− x2

− y2. A straightforward computation (see [Beck et al. 2021, Lemma 4.7]) gives∣∣∣∣div
∇ f
|∇ f |

(x, y)
∣∣∣∣ ≤

C√
x2 + y2

=
C

√
f (q)− f (x, y)

and so we have the uniform estimate ∣∣∣∣div
∇ f
|∇ f |

∣∣∣∣ ≤
C

√
f (q)(t − 1)

on �′
t . Substituting this into (4-18) completes the proof. □

The other ingredient in the proof of Proposition 4.8 is the following geometric estimate.

Lemma 4.11. The length of γ±,t is o((1 − t)1/2) near t = 1.

Proof. We prove the result for γ+,t , assuming there is a cusp at the maximum q; the proof for γ−,t is
identical. Using the Morse lemma, we can find coordinates (x, y) near q such that f (x, y)= f (q)−x2

−y2,
and so γ+,t is contained in the circle of radius ρ =

√
(1 − t) f (q). More precisely, it is the arc bounded by

the angles θ1(t) and θ2(t). Parametrizing this as γ (θ)= (ρ cos θ, ρ sin θ), we have |γ ′(θ)|g ≤ C
√

1 − t ,
where | · |g denotes the length computed using the metric g and C is some constant depending on f (q)
and the components of g in this coordinate chart. This implies

L(γ+,t)=

∫ θ2(t)

θ1(t)
|γ ′(θ)|g dθ ≤ C

√
1 − t |θ2(t)− θ1(t)|.

Near q, the boundary ∂� consists of two Neumann lines meeting tangentially at q (since there is a cusp).
This implies |θ2(t)− θ1(t)| → 0 as t → 1 and completes the proof. □
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We are now ready to prove Proposition 4.8.

Proof. Since |∂νψ | ≤ |∇ψ |, it is enough to show that

lim
t→1

∫
γ±,t

|∇ψ |φ = 0 (4-19)

for all φ ∈ W 1,2(�) that are C1 in a neighbourhood of q; see Remark 4.7. Fix such a φ and define
u = χ |∇ψ |φ, where χ is a smooth cutoff function that equals 1 near q and is supported in the region
where φ is smooth. The hypotheses on ψ imply u ∈ L2(�) and u ∈ W 1,2(�′

t) for all t0 < t < 1, with

∥u∥L2(�) ≤ C∥ψ∥W 1,2(�), ∥u∥W 1,2(�′
t )

≤ C∥ψ∥W 2,2(�′
t )

for some constant C depending only on φ and χ .
Using Hölder’s inequality and Lemma 4.10, we obtain(∫

γ±,t

u
)2

≤

(∫
γ±,t

u2
)

L(γ±,t)

≤

(
A

√
1 − t

∥u∥
2
L2(�t )

+ B∥u∥
2
W 1,2(�′

t )

)
L(γ±,t)

≤ (A∥u∥
2
L2(�)

+ B
√

1 − t∥u∥
2
W 1,2(�′

t )
)

L(γ±,t)
√

1 − t
.

By Lemma 4.11 this tends to zero as t → 1. □

Appendix: Morse–Smale functions with cracked Neumann domains

In this appendix we construct Morse–Smale functions having cracked Neumann domains. As in the rest
of the paper, we assume M is a smooth, closed, connected orientable surface.

Theorem A.1. Let f be a Morse–Smale function on M and � a Neumann domain of f . Then there exists
a Morse–Smale function f̃ that has a cracked Neumann domain �̃⊂�.

We will see in the proof that f̃ can be chosen to agree with f outside an arbitrary open set U ⊂�.
However, the difference f̃ − f may be large inside U. The existence of f̃ is given by the following
general lemma.

Lemma A.2. Let U ⊂ M be an open subset and f : U → R a smooth function having no critical points.
There exists a smooth function f̃ : U → R, with supp ( f̃ − f ) ⊂ U, whose only critical points are a
nondegenerate maximum and a nondegenerate saddle.

Proof. Since f has no critical points in U, we can invoke the canonical form theorem for smooth
vector fields and find local coordinates (x, y) with respect to which f (x, y) = Ax + B for (x, y) ∈

(−1, 1)× (−1, 1). Now choose a smooth function α(x) with supp α ⊂ (−1, 1) and∫ 1

−1
α(x) dx = 0, (A-1)
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−A
x1 x2

Figure 7. The function α(x) used in the proof of Lemma A.2.

so that there exist points −1< x1 < x2 < 1 with

α(x) >−A, − 1< x < x1,

α(x)= −A, x = x1,

α(x) <−A, x1 < x < x2,

α(x)= −A, x = x2,

α(x) >−A, x2 < x < 1,

(A-2)

as shown in Figure 7.
We define

f̃ (x, y)= f (x, y)+β(x)γ (y) , (A-3)

where β(x) =
∫ x
−1 α(t) dt and γ (y) = exp{−1/(1 − y2)}. Note that γ is a nonnegative bump function

supported in (−1, 1) with γ ′(0)= 0 and γ ′′(0) < 0. It follows that

∂ f̃
∂x

= A +α(x)γ (y) and
∂ f̃
∂y

= β(x)γ ′(y),

and so the only critical points of f̃ in U are (x1, 0) and (x2, 0). We compute

∂2 f̃
∂x2 (x1, 0)= α′(x1)γ (0) < 0,

∂2 f̃
∂x2 (x2, 0)= α′(x2)γ (0) > 0,

∂2 f̃
∂y2 (xi , 0)= β(xi )γ

′′(0) < 0,

and conclude (x1,0) and (x2,0) are a nondegenerate maximum and a nondegenerate saddle, respectively. □

Proof of Theorem A.1. If � is cracked we simply choose f̃ = f and there is nothing to prove. Therefore
we assume that � is regular. Since f is Morse–Smale, Theorem 2.2 says the closure of � contains exactly
four critical points, all of which are on the boundary: a maximum q, a minimum p, and saddle points r1

and r2; see Figure 3.
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p

r2

r∗

q∗

r1

q

p

r2

r∗

q∗

r1

q
Figure 8. Left: The cracked Neumann domain constructed in Theorem A.1, with Neu-
mann lines shown in purple. Right: If two Neumann lines connected r∗ to q, one of them
(shown in red) would have to intersect another Neumann line, which is impossible. The
dashed line represents the boundary of the set U containing supp ( f̃ − f ).

Now choose f̃ according to Lemma A.2, for some open set U ⋐�. By construction, f̃ has two critical
points in �: a maximum q∗ and a saddle point r∗. Since f̃ is a Morse function, r∗ has degree 4; i.e., there
are four Neumann lines connected to r∗. We obtain the result by studying the endpoints of these lines, as
depicted in Figure 8. Since f̃ agrees with f in a neighbourhood of ∂�, the invariant manifolds W s(ri )

and W u(ri ) are unchanged by the perturbation. As a result, it is not possible for any of the Neumann
lines coming from r∗ to end at r1 or r2. Therefore, the four Neumann lines from r∗ can only end at q, p
or q∗, so it follows from Lemma 2.4 that f̃ is Morse–Smale. The two lines along which f̃ is decreasing
must end at p, since it is the only minimum in �. This means the two lines along which f is increasing
are connected to either q or q∗. We claim that there is one Neumann line connected to each maximum.

Suppose instead that both ended at q. Then the union of these Neumann lines forms a closed loop.
Similarly, the union of the two lines ending at p is a closed loop. Both loops intersect at r∗, where they
are orthogonal by Proposition 2.5(1). Since � is simply connected, this can only happen if the loops also
intersect at a point other than r∗, but this is impossible since gradient flow lines cannot cross. The same
argument shows that these lines cannot both be connected to q∗; hence one must end at each maximum.

Since all of the Neumann lines in � have been accounted for, this means q∗ has degree 1; hence the
Neumann domain with q∗ on its boundary is cracked. □
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