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Abstract
Neumann domains of Laplacian eigenfunctions form a natural counterpart of nodal
domains. The restriction of an eigenfunction to one of its nodal domains is the first
Dirichlet eigenfunction of that domain. This simple observation is fundamental in
many works on nodal domains. We consider a similar property for Neumann domains.
Namely, given a Laplacian eigenfunction f and its Neumann domain �, what is
the position of f |� in the Neumann spectrum of �? The current paper treats this
spectral position problem on the two-dimensional torus.We fully solve it for separable
eigenfunctions on the torus and complement our analytic solution with numerics for
random waves on the torus. These results answer questions from (Band and Fajman in
Ann Henri Poincaré, 17(9):2379–2407, 2016; Zelditch in Surv Differ Geom 18:237–
308, 2013) and raise new ones.
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1 Introduction

1.1 Neumann Domains

Let (M, g) be a two-dimensional, connected, orientable, and closed Riemannianman-
ifold. We denote by −� the self-adjoint Laplace–Beltrami operator. Its spectrum is
purely discrete since M is compact. We order the eigenvalues {λn}∞n=0 increasingly,
0 = λ0 < λ1 ≤ λ2 ≤ . . ., and denote a corresponding complete systemof orthonormal
eigenfunctions by { fn}∞n=0, so that we have

− � fn = λn fn . (1)

Let f be an eigenfunction (we suppress its position, for brevity). We introduce a flow
along the gradient vector field, ∇ f ,

ϕ : R × M → M,

∂tϕ(t, x) = −∇ f
∣
∣
ϕ(t, x)

,

ϕ(0, x) = x.

(2)

The set of critical points of f is denoted by C ( f ); the sets of saddle points and
extrema of f are denoted byS ( f ) andX ( f ); the sets of minima and maxima of f
are denoted by M− ( f ) and M+ ( f ), respectively.
For a critical point x ∈ C ( f ), we define its stable and unstable manifolds by

Ws(x) := { y ∈ M : lim
t→∞ ϕ(t, y) = x} and

Wu(x) : = { y ∈ M : lim
t→−∞ ϕ(t, y) = x}, (3)

respectively.
We assume in the following that the eigenfunctions f are Morse functions, i.e., the
determinant of the Hessian does not vanish at critical points. We call such an f a
Morse eigenfunction. Eigenfunctions are generically Morse, as was shown in [4,36].

Definition 1.1 [6] Let f be a Morse function.

1. Let p ∈ M− ( f ) , q ∈ M+ ( f ), such that Ws ( p) ∩ Wu (q) �= ∅. Each of the
connected components of Ws ( p) ∩ Wu (q) is called a Neumann domain of f .

2. The Neumann line set of f is

N ( f ) :=
⋃

r∈S ( f )

Ws(r) ∪ Wu(r). (4)

Note that the definition above may be applied to any Morse function and not nec-
essarily to eigenfunctions. Nevertheless, in this paper, we are interested to study the
Neumann domains and Neumann lines of Laplacian eigenfunctions.
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The Spectral Position of Neumann Domains on the Torus 4563

Fig. 1 Left: An eigenfunction corresponding to the eigenvalue λ = 25 of the flat torus whose fundamental
domain is [0, 2π ]× [0, 2π ]. Red (blue) colors indicate positive (negative) values of the eigenfunction. Red
(blue) circles mark maxima (minima) and yellow circles mark saddle points. The nodal set is drawn in gray
and the Neumann line set in purple. The Neumann domains are the domains bounded by the Neumann line
set. Right: A magnification of the marked square from the left figure. Three Neumann domains are marked
by (s), (l), and (w) (which stand for star, lens, and wedge) according to the three distinguished Neumann
domain types described in Sect. 6.3 (Color figure online)

It follows from basic Morse theory that Neumann domains are two-dimensional sub-
sets of M , whereas the Neumann line set is a union of one dimensional curves on
M . As an example, see Fig. 1 which shows an eigenfunction of the flat torus with its
partition to Neumann domains.

1.2 Spectral Position

Let f be an eigenfunction corresponding to an eigenvalue λ and let � be a Neumann
domain of f . The boundary, ∂�, consists of Neumann lines, which are particular
gradient flow lines. As the gradient ∇ f is tangential to the Neumann lines we get
that ∂ν f |∂� := ν̂ · ∇ f

∣
∣
∂�

= 0, where ν̂ is normal to ∂�. As a consequence, we
have that f |� is a Neumann eigenfunction of � and corresponds to the eigenvalue
λ, which is the reason behind the name Neumann domains. The proof that f |� is a
Neumann eigenfunction of a general Neumann domain �, goes beyond the classical
Sobolev embedding theorems1 and appears in [8]. In the current paper we only supply
a proof suited for the particular Neumann domains treated here (Proposition 3.4, (2)
and Remark 3.5).

Following the discussion above, we get that λ is a Neumann eigenvalue of �. It is
natural to ask what is the position of this λ in the Neumann spectrum of �.

1 The reason for this is that the boundary of a general Neumann domain might include a cusp and in general
we do not have an explicit expression of the cusp.
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4564 R. Band et al.

Definition 1.2 Let f be a Morse eigenfunction of an eigenvalue λ and let � be a
Neumann domain of f . We define the spectral position of � as the position of λ in
the Neumann spectrum of �. It is explicitly given by

N�(λ) := |{λn ∈ Spec(�) : λn < λ}| , (5)

where Spec(�) := {λn}∞n=0 is the pure point part of the Neumann spectrum of �,
containing multiple appearances of degenerate eigenvalues and including λ0 = 0.

Remark 1.3

1. If λ is a multiple eigenvalue of �, then by this definition the spectral position is the
lowest position of λ in the spectrum.

2. The spectral position is positive for any Neumann domain, i.e., N�(λ) > 0. Indeed,
N�(λ) = 0 is possible only for λ = 0, but the zero eigenvalue corresponds to the
constant eigenfunction which does not have Neumann domains at all.

For comparison, we mention what is the spectral position for nodal domains. Con-
sider a nodal domain 	 of some eigenfunction f corresponding to an eigenvalue λ.
It is known that f |	 is the first eigenfunction (aka ground-state) of 	 with Dirichlet
boundary conditions [11]. Namely, λ is the lowest eigenvalue in the Dirichlet spectrum
of 	, or if adopting the notation (5) for the Dirichlet spectrum we get N	(λ) = 0.
This observation is fundamental in many results concerning nodal domains and their
counting.

Thepurpose of this paper is to study the spectral positions ofNeumanndomains. The
general problem is quite involved (comparing to the easy answer for nodal domains,
as mentioned above) and in this paper, we concentrate on investigating this problem
for the two-dimensional flat torus.

A qualitative feeling on the value of N�(λ) might be given by [6, Theorem 1.4]
(see also [5, Theorem 3.2]). It is shown there that the “topography” of f |� cannot
be too complex; its domain, �, is simply connected; f |� has no critical points in the
interior of �; and its zero set is merely a single simple non-intersecting curve. These
observations suggest that f |� might not lie too high in the spectrum of �. Such a
belief appears also in [38], where it is written that possibly, the spectral position of
Neumann domains ’often’ equals one, just as in the case of nodal domains. Our task
is to study the possible values of N�(λ) and to find out to what extent λ is indeed the
first non-trivial eigenvalue of � (N�(λ) = 1).

1.3 Torus Eigenfunctions

We consider the flat torus with fundamental domainR2/Z2 equipped with the Laplace
operator. The eigenvalues are

λa,b : = π2

4

(
1

a2
+ 1

b2

)

, (6)
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The Spectral Position of Neumann Domains on the Torus 4565

Fig. 2 (i) The torus eigenfunction f (x, y) = cos(2πx) cos(4π y) with gray lines indicating its nodal set
and purple lines indicating the Neumann line set. (ii) and (iii) the star-like and lens-like Neumann domains
of a separable eigenfunction (8), with the typical lengths a, b marked as dashed lines. Saddle points are
marked by yellow circles and extrema by blue and red circles. An explicit expression for the boundary of
the Neumann domains is given in (11) (Color figure online)

where

a := 1

4mx
, b := 1

4my
, for mx ,my ∈ N. (7)

The separable eigenfunctions may be written as

fa,b(x, y) = cos
( π

2a
x
)

cos
( π

2b
y
)

, (8)

up to translations.
Each of those eigenfunctions has two types of Neumann domains. Half of them are

of a lens shape and congruent to each other and the other half are of a star shape and
also congruent (Fig. 2). We denote those domains by �star

a,b (Fig. 2,(ii)) and �lens
a,b (Fig.

2,(iii)), respectively. The size of those Neumann domains is determined by the values
of a, b in (7). We wish to study the spectral position of those Neumann domains.

First, observe that the symmetry of the problem allows us to consider only the case
b ≤ a. Second, the spectral position of either �star

a,b or �lens
a,b depends only on the ratio

a
b , as rescaling both a and b by the same factor amounts to an appropriate rescaling
of the Neumann domain together with its eigenfunction restriction. We then have the
following.

Theorem 1.4 1. The set of spectral positions of the lens-like domains
{

N�lens
a,b

(

λa,b
)}

a,b

is unbounded. In particular, N�lens
a,b

(

λa,b
) → ∞ for a

b → ∞.

2. There exists c > 1 such that if a/b > c then the spectral position of the star-like
domains equals one, i.e., N�star

a,b
(λa,b) = 1. In addition λa,b is a simple Neumann

eigenvalue of �star
a,b .

Remark 1.5 We may provide an estimate for the constant in the second part of the
theorem, which is c ≈ 1.1407. This is done in the course of the theorem’s proof (see
Remark 7.5). That this constant is close to one means that the result of the theorem is
quite close to being optimal (since we always assume a ≥ b). It is interesting to find
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4566 R. Band et al.

out whether the result in the theorem actually holds for all a ≥ b. We conjecture that
this is so and provide a numerical evidence2 to support this in Fig. 10.

Remark 1.6 In [6, Proposition 1.7] it was proven that
{

N�lens
a,b

(λa,b)
}

a,b
∪

{

N�star
a,b

(λa,b)
}

a,b
is unbounded. The first part of Theorem 1.4 is a refinement of that

result, showing that the unboundedness of the spectral position is due to the lens-like
Neumann domains.

The first part of Theorem1.4 is surprising in the light of the intuition described at the
end of Sect. 1.2. The original expectation was that the spectral positions of Neumann
domains would be relatively low, if not even equal to one, as in the case of nodal
domains. The theorem above shows that spectral positions may behave completely
differently from what is expected. The second part of the theorem somewhat revives
the original intuition about spectral positions. In essence, we show that the unbounded
spectral positions of the lens-like domains are compensated by the minimal spectral
positions of the other half of the Neumann domains—the star-like ones.

In general, the computation of spectral positions is not an easy task. In particular,
it is harder to show that the spectral position is low (rather than high). For example,
using test functions in the corresponding quadratic form (aka Rayleigh–Ritz quotient)
could only be used to prove lower bounds on spectral positions.

The outline of the paper is as follows. In the next section, we bring two proofs of
the first part of Theorem 1.4. The proof of the second part of Theorem 1.4 spreads
over Sects. 3, 4 and 5. In Sect. 3 we provide the basic spectral properties of the
Neumann eigenvalue problemon�star

a,b . Section 4 presents a symmetry reduction of this
eigenvalue problem. Section 5 then complements the proof by solving some required
eigenvalue comparison problems. In Sect. 6, we go beyond separable eigenfunctions
and combine a useful geometric parameter ρ, (29), with numerical methods to study
the generic behavior of spectral positions. Some technical computations needed for
the proofs are deferred to Appendix 1.

2 Two Proofs of Theorem 1.4, part (1)

(First proof of Theorem 1.4, (1))
Assume by contradiction that there exists a constant K ∈ N such that ∀a, b

λa,b ≤ λK (�lens
a,b ). By [20] we have λK (�lens

a,b )

∣
∣
∣�lens

a,b

∣
∣
∣ ≤ 8πK , where

∣
∣
∣�lens

a,b

∣
∣
∣ denotes

the area of �lens
a,b . Combining this with the contradiction assumption we get

∀a, b λa,b

∣
∣
∣�

lens
a,b

∣
∣
∣ ≤ 8πK . (9)

2 We thank Michael Levitin for suggesting this experiment and pointing out FEM++ for this purpose,
[*, [19]].
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The Spectral Position of Neumann Domains on the Torus 4567

In addition,

∀a, b λa,b

∣
∣
∣�

lens
a,b

∣
∣
∣ = π2

4

(
1

a2
+ 1

b2

) ∣
∣
∣�

lens
a,b

∣
∣
∣

= π2
(
a

b
+ b

a

)(
1

4ab

∣
∣
∣�

lens
a,b

∣
∣
∣

)

= π2
(
a

b
+ b

a

)(
1

4ab

(

4ab − ∣
∣�star

a,b

∣
∣
)
)

> π2
(
a

b
+ b

a

)

− π2

4

2

π
( j0)

2 (10)

where we used that
∣
∣
∣�lens

a,b

∣
∣
∣ +

∣
∣
∣�star

a,b

∣
∣
∣ = 4ab (since the union of a quarter of �lens

a,b and

a quarter of �star
a,b gives a rectangle a× b) and the last line is a consequence of Lemma

37.
Taking the limit a

b → ∞ in (10) we get λa,b

∣
∣
∣�lens

a,b

∣
∣
∣ → ∞, which contradicts (9).

Hence
{

N�lens
a,b

(λa,b)
}

a,b
is unbounded. ��

(Second proof of Theorem 1.4, (1)) The lens domain �lens
a,b is bounded within a

rectangle of width 2a and height 2b (see Fig. 2,(iii)). When taking the limit b → 0,
the lens domain shrinks into a one edge graph of length 2a. Applying results from
[21,24,34] (for example, we may use [24, Theorem 3.1] with α = 1) we get the
eigenvalue convergence

lim
b→0

λn

(

�lens
a,b

)

=
( π

2a
n
)2

.

Comparing this with the eigenvalue of the separable eigenfunction

λa,b = π2

4

(
1

a2
+ 1

b2

)

,

we see that when fixing the value of a and letting b → 0 the spectral position of λa,b

in the spectrum of �lens
a,b is indeed unbounded. ��

3 Basic Spectral Analysis onÄstar
a,b

In this section, we state and prove some basic spectral properties of the Neumann
domain �star

a,b which are needed for the proof of Theorem 1.4,(2).
The domain �star

a,b is given by

�star
a,b = {

(x, y) : − a < x < a, − γa,b(x) < y < γa,b(x)
}
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4568 R. Band et al.

where

γa,b(x) := 2b

π
arcsin

(
[

cos
( π

2a
x
)]( a

b )
2
)

. (11)

See Lemma 7.1 where the boundary curve γa,b is explicitly calculated.
In order to analyze the Neumann spectrum of �star

a,b , we need a suitable descrip-
tion of the operator and the relevant quadratic form. The domain �star

a,b possesses a
cusp (at x = ±a, y = 0), which prohibits the standard application of the Gauss-
Green identity (integration by parts), cf. [2] and prevents a direct characterization of
the Neumann Laplacian in terms of Neumann boundary conditions. Instead, we use
the approach which describes a semi-bounded self-adjoint operator by its uniquely
associated quadratic form.

We start by introducing a sesquilinear form on �star
a,b which then generates in a

canonical way ([32, Theorem VIII.15]) the operator −�a,b, which is the self-adjoint
Neumann Laplacian on �star

a,b . The form and its domain are

q[φ,ψ] :=
∫

�star
a,b

〈∇ψ(x),∇φ(x)〉C2dx,

Dom(q) := W 1,2 (

�star
a,b

)

,

(12)

where W 1,2(�star
a,b ) denotes the corresponding Sobolev space on �star

a,b . Indeed, q[·, ·]
yields an appropriate and well-defined Laplacian as the following proposition shows.

Proposition 3.1

1. (q,Dom(q)) defines a unique self-adjoint operator −�a,b,
2. −�a,b has purely discrete spectrum.

Proof The standard approach [32, Theorem VIII.15] to verify part (1) is to realize that
the form is non-negative and to show that the form domain, Dom(q) is complete under

the form norm ‖ · ‖q := (q[·, ·] + ‖ · ‖L2(�star
a,b ))

1
2 . Indeed, the latter coincides with the

standard Sobolev space norm on W 1,2(�star
a,b ), i.e. ‖ϕ‖W 1,2(�star

a,b ) = ‖ϕ‖q . Therefore,
the completeness of W 1,2(�star

a,b ) implies the completeness of the form domain.
To prove part (2), we start by noting that according to Lemma 7.3, the boundary

∂�star
a,b is of class C (which means that it is locally representable as a graph of a

continuous function - see exact definition in Lemma 7.3). This is equivalent to �star
a,b

having the segment property [12, Theorem V.4.4] (see also [3, Definition 2.1]). The
segment property of �star

a,b implies that the Neumann Laplacian, −�a,b has a compact
resolvent [33, Corollary 1 of TheoremXIII.75] and this is equivalent to the discreteness
of the spectrum [33, Theorem XIII.64]. ��
Remark 3.2 Note that the operator −�a,b acts as the standard (negative) weak Lapla-
cian, as canbe shownbyusingC∞

0 (�star
a,b ) functions to cut away the cusp and integrating

by parts.
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The Spectral Position of Neumann Domains on the Torus 4569

Remark 3.3 The statements of Proposition 3.1 analogously hold for the domain �lens
a,b

as well. Indeed, the boundary ∂�lens
a,b possesses no cusp and standard Lipschitz domain

arguments can be applied to show such statements.

We now investigate the operator domain Dom(−�a,b) in more detail and show that
the restrictions fa,b

∣
∣
�star
a,b

belong to Dom(−�a,b), which justifies the definition of the

spectral position for �star
a,b .

Proposition 3.4

1. The operator domain Dom(−�a,b) satisfies

Dom(−�a,b) ⊂
{

f ∈ W 2,2(�star
a,b ) : ∂ν f |∂�star

a,b
≡ 0

}

, (13)

where ∂ν f |∂�star
a,b

is the normal derivative.

2. Every separable eigenfunction fa,b satisfies fa,b
∣
∣
�star
a,b

∈ Dom(−�a,b).

Hence, fa,b
∣
∣
�star
a,b

is an eigenfunction of −�a,b.

Proof Part (1). We start by showing Dom(−�a,b) ⊂ W 2,2(�star
a,b ). Let f ∈

Dom(−�a,b) and denote g := −�a,b f . We may use [25, Proposition 8.3.2] to
conclude that there is a unique W 1,2(�star

a,b ) solution ψ (up to an additive constant
function) for the equation g = −�a,b(ψ). Explicitly, for the application of [25,
Proposition 8.3.2] we take q = q ′ = 1, l = 1, aα,β(x) ≡ δα,β (Kronecker
delta function) and verify that the assumption on the boundary near the outer cusp
(peak) is satisfied since γa,b(a) = 0 and limx→a γ ′

a,b(x) = 0 (see (11)). Next, we
use an elliptic regularity result of [18, Remark 3.3.3] to conclude that the equation
g = −�a,b(ψ) has a uniqueW 2,2(�star

a,b ) solution (up to an additive constant function).

From W 2,2(�star
a,b ) ⊂ W 1,2(�star

a,b ) and the uniqueness of the W 1,2(�star
a,b ) solution we

conclude that those solutions are the same and since f ∈ Dom(−�a,b) ⊂ W 1,2(�star
a,b )

we get that this unique solution isψ = f and f ∈ W 2,2(�star
a,b ). To apply the regularity

result of [18, Remark 3.3.3], we need to verify that the condition imposed there on
the boundary is satisfied. In terms of the notations of [18, Remark 3.3.3], we have
−φ1(x) = φ2(x) = γa,b(a − x) and the condition on these functions may be verified
with the aid of (36).

All is left to show is that ∂ν f |∂�star
a,b

≡ 0. This is done by employing standard

localization techniques, as follows. Let z ∈ ∂�star
a,b not identical to a cusp point (i.e.,

z /∈ {(0, a), (0,−a)}). Then there exists a neighborhood of z, say a disc B ⊂ R
2 which

does not contain any of the cusp points of�star
a,b . Choose a localizing non-negative C

∞

function such that supp η̃ = B. Denote η := η̃|�star
a,b
.
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For all f ∈ Dom(−�a,b) and ϕ ∈ W 1,2(�star
a,b ), we have

〈−�a,b f , ηϕ〉L2(�star
a,b ) = q[ f , ηϕ]

=
∫

�star
a,b

〈∇ f ,∇(ηϕ)〉C2dx

=
∫

supp η

〈∇ f ,∇(ηϕ)〉C2dx

= −
∫

supp η

div∇ f ηϕdx +
∫

∂
(

B∩�star
a,b

)(∂ν f )(ηϕ)dσ

= −
∫

�star
a,b

div∇ f ηϕdx +
∫

∂
(

B∩�star
a,b

)(∂ν f )(ηϕ)dσ

= 〈−�a,b f , ηϕ〉L2(�star
a,b ) +

∫

∂
(

B∩�star
a,b

)(∂ν f )(ηϕ)dσ,

(14)

where we stick to the div∇ notation and do not use the standard Laplacian notation in
order to distinguish this from −�a,b.

From (14), we get that the boundary integral vanishes. By calculus of variations,
we conclude that ∂ν f |

∂
(

B∩�star
a,b

) = 0 since {ηϕ|
∂
(

B∩�star
a,b

) : ϕ ∈ W 1,2(B ∩ �star
a,b )} is

dense in L2
(

∂
(

B ∩ �star
a,b

))

. In particular ∂ν f (z) = 0, as required.

To prove part (2), we first truncate the domain �star
a,b to remove the cusps. To this

end, we define the following family of auxiliary domain

�δ := {

(x, y) ∈ �star
a,b : |x | < a − δ

}

,

and notice that for every δ > 0, �δ is a Lipschitz domain. Let ψ ∈ C∞(�star
a,b ) ⊂

W 1,2(�star
a,b ) be an arbitrary test function. Then

q[ fa,b, ψ] = lim
δ→0

∫

�δ

〈∇ fa,b,∇ψ〉C2dx (15)

= lim
δ→0

[

−
∫

�δ

(div∇ fa,b)ψdx +
∫

∂�δ\∂�

(∂ν fa,b)ψdσ

]

= −
∫

�star
a,b

(div∇ fa,b)ψdx,

where moving to the last line we have used that both fa,b and div∇ fa,b are bounded,
so that the first integral in the limit converges to an integral over�star

a,b and the boundary
integral vanishes in the limit.

As is mentioned in the proof of Proposition 3.1, (2), the domain �star
a,b has the

segment property. This implies that C∞(�star
a,b ) is dense in W 1,2(�star

a,b ) [3, Theorem
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The Spectral Position of Neumann Domains on the Torus 4571

Fig. 3 The star-like domain,
�star
a,b with its two symmetry

axes, h, v. The upper-right
quarter, �a,b , is shaded

2.1]. Hence, we get from (15) that

∀ψ ∈ W 1,2(�star
a,b ) , q[ fa,b, ψ] = −

∫

�star
a,b

(div∇ fa,b)ψdx . (16)

Since Dom(q) = W 1,2(�star
a,b ) we get from (16) that fa,b|�star

a,b
∈ Dom(−�a,b) and

−�a,b fa,b = −div∇ fa,b = λa,b fa,b. ��
Remark 3.5 The Neumann Laplacian on the lens domain, �lens

a,b satisfies similar prop-
erties, as can be shownwith analogous arguments. In fact, using the Lipschitz property
of the boundary of�lens

a,b , one can employ standard arguments to show equality in (13),
explicitly characterizing the operator domain.

4 Symmetry-Based Analysis Towards Proof of Theorem 1.4,(2)

In the previous section, we have shown that there exists a natural self-adjoint Neumann
Laplacian on�star

a,b ,whichwedenote by−�a,b and that the spectrumof−�a,b is purely
discrete (Proposition 3.1). Next, we describe a spectral decomposition of−�a,b based
on the symmetry of �star

a,b , which would eventually lead to the proof of Theorem 1.4,
(2).

The domain �star
a,b has two symmetry axes, horizontal and vertical,

h := {(x, y) : y = 0} and v := {(x, y) : x = 0} (17)

and those dissect �star
a,b into four quarters (see Fig. 3).

We denote by �a,b the upper-right quarter,

�a,b = {

(x, y) : 0 < x < a, 0 < y < γa,b(x)
}

, (18)

and note that �a,b is bounded by γa,b, h and v, i.e.,

∂�a,b ⊂ h ∪ v ∪ γa,b. (19)
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4572 R. Band et al.

Fig. 4 The four Laplacians −�∅
a,b , −�h

a,b , −�v
a,b and −�h∪v

a,b , all defined on �a,b and differ only in
boundary conditions. Purple color indicates Neumann conditions and gray stands for Dirichlet (Color figure
online)

Next, we introduce four Laplace–Beltrami operators on �a,b, which differ only in
their boundary conditions. We denote those Laplacians by −�∅

a,b, −�h
a,b , −�v

a,b

and −�h∪v
a,b , and also use the notation −�D

a,b when we want to refer to either of them
(D ∈ {∅, h, v, h ∪ v}). The superscripts of those Laplacians indicate which part of
the boundary ∂�a,b serves as the Dirichlet boundary, whereas the rest of the boundary
is taken to be Neumann (see Fig. 4).

Using Proposition 2 in [28] or Property II,(3) in [7], we obtain the following spectral
decomposition3

Spec(−�a,b) = Spec(−�∅
a,b)∪Spec(−�h

a,b)∪Spec(−�v
a,b)∪Spec(−�h∪v

a,b ). (20)

The equality above holds also when taking into account the multiplicities of eigenval-
ues on both sides.

The spectral decomposition (20) may be also understood on an intuitive level,
as follows. Since the domain �star

a,b is symmetric with respect to reflection along
both h and v we get that the Neumann Laplacian, −�a,b commutes with each
of those symmetries. As a result, −�a,b possesses a complete set of eigenfunc-
tions which respects this symmetry. Namely, each eigenfunction in this basis is
either symmetric or anti-symmetric with respect to h and either symmetric or anti-
symmetric with respect to v. Each eigenfunction therefore belongs to one of four
symmetry classes and its corresponding eigenvalue belongs to either of the spectra
Spec(−�∅

a,b), Spec(−�h
a,b), Spec(−�v

a,b), Spec(−�h∪v
a,b ).

Now, Theorem 1.4,(2) follows when combining the spectral decomposition (20)
together with the following two propositions (the propositions are proven in the next
section).

3 To apply the theory in [7,28] for our case, we take the group to be C2 × C2 (the direct product of two
copies of the cyclic group, C2) with its regular representation.
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Fig. 5 Depicting properties of particular eigenfunctions of −�a,b . Gray curves indicate the nodal set
of the eigenfunction and purple curves mark vanishing of the normal derivative.Left: An eigenfunction
which is anti-symmetric both with respect to h and v (so that the corresponding eigenvalue satisfies λ ∈
Spec(−�h∪v

a,b )).Right: An eigenfunction which is symmetric both with respect to h and v (so that the

corresponding eigenvalue satisfies λ ∈ Spec(−�∅
a,b)) (Color figure online)

Proposition 4.1
λ1(−�a,b) /∈ Spec(−�∅

a,b) ∪ Spec(−�h∪v
a,b )

Proposition 4.2 There exists c > 1 such that if a/b > c then

λ1(−�v
a,b) < λ1(−�h

a,b). (21)

(Proof of Theorem 1.4,(2))
From the spectral decomposition (20) and Proposition 4.1 we get that either

λ1(−�a,b) = λ1(−�h
a,b) or λ1(−�a,b) = λ1(−�v

a,b). Then, by (21) we deduce
that actually λ1(−�a,b) = λ1(−�v

a,b) for a/b > c.
Now, assume a/b > c and consider the eigenfunction fa,b corresponding toλa,b (see

(8)). The restriction fa,b
∣
∣
�star
a,b

is symmetric with respect to h and anti-symmetric with

respect to v and hence λa,b ∈ Spec(−�v
a,b). Furthermore, the restriction to the quarter

star, fa,b
∣
∣
�a,b

has a single nodal domain so it is the first eigenfunction of −�v
a,b (this

follows from Courant’s bound [11] together with orthogonality of eigenfunctions),
i.e., λa,b = λ1(−�v

a,b). Combining this with λ1(−�a,b) = λ1(−�v
a,b) which we

obtained above, we get λa,b = λ1(−�a,b), so that N�star
a,b

(λa,b) = 1, as required.
Finally, the simplicity of λa,b as an eigenvalue of −�a,b also follows from the

arguments above. We got that λ1(−�a,b) = λ1(−�v
a,b) and also that λ1(−�a,b) /∈

Spec(−�∅
a,b) ∪ Spec(−�h

a,b) ∪ Spec(−�h∪v
a,b ). By the spectral decomposition (20),

this means that λ1(−�a,b) may be a multiple eigenvalue only if λ1(−�v
a,b) itself is a

multiple eigenvalue of −�v
a,b. But λ1(−�v

a,b) is the lowest eigenvalue of −�v
a,b and

hence must be simple.

5 Proofs of Propositions 4.1 and 4.2

(Proof of Proposition 4.1)
First, assume by contradiction that λ1(−�a,b) ∈ Spec(−�h∪v

a,b ). This means that
there exists an eigenfunction f corresponding to λ1(−�a,b), such that f is anti-
symmetric both with respect to the h axis and the v axis. In particular, the nodal

123



4574 R. Band et al.

set of f contains both h and v and therefore f has at least four nodal domains (see
Figure 5(Left)). This brings to a contradiction, since by Courant’s bound [11], each
eigenfunction which corresponds to λ1(−�a,b) has at most two nodal domains (note
that λ0(−�a,b) = 0, so that λ1(−�a,b) is the second lowest eigenvalue).

Next, assume by contradiction that λ1(−�a,b) ∈ Spec(−�∅
a,b). This means that

there exists an eigenfunction f corresponding to λ1(−�a,b), such that f is symmetric
both with respect to the h axis and the v axis. As above, f must have exactly two
nodal domains (it cannot have a single nodal domain, as f must be orthogonal to
the constant eigenfunction). The only possibility for f to be symmetric as above and
contain two nodal domains is if f has a single closed nodal line which is symmetric
with respect both to the h axis and the v axis (see Fig. 5(Right)). This brings to a
contradiction, as the first non-trivial Neumann eigenfunction cannot have a closed
nodal line [30] (see also [29]). There is a simple argument for that, which we bring
here for completeness. We denote the interior nodal domain of f (the one which does
not touch the boundary) by �̃. In particular we get that f |�̃ is a Dirichlet eigenfunction
of �̃ whose eigenvalue is λ1(−�a,b). Furthermore, f |�̃ has a single nodal domain

and hence it is the first Dirichlet eigenfunction of �̃, i.e., λ1(−�a,b) = λ
(D)
1 (�̃) (this

follows from Courant’s bound [11] together with eigenfunction orthogonality). If we
now denote by λ

(D)
1 (�star

a,b ) the first Dirichlet eigenvalue of �star
a,b , we get

λ
(D)
1 (�star

a,b ) ≤ λ
(D)
1 (�̃) = λ1(−�a,b) < λ

(D)
1 (�star

a,b ), (22)

where the left inequality above follows from themonotonicity of Dirichlet eigenvalues
and the right inequality appears already in [31] (see also [29] and note that it is actually
part of a more general interlacing property of Dirichlet and Neumann eigenvalues
[15,16]). Overall, (22) is a contradiction, which means that f cannot be symmetric
with respect to both the v and the h axes and λ1(−�a,b) /∈ Spec(−�∅

a,b).

Next, to prove Proposition 4.2, we need to compare the first eigenvalues of the
operators −�v

a,b and −�h
a,b. We do so by using a sector as an auxiliary domain and

proving that its first eigenvalue lies in between λ1(−�v
a,b) and λ1(−�h

a,b). This is
done in Lemmata 5.1 and 5.2 and for this purpose we denote

SR := {(r cos(φ), r sin(φ)) : 0 < r < R, |φ| < π/8} . (23)

In particular, we choose R to be such that the sector area equals the area of �star
a,b ,i.e.,

|SR | = π
8 R

2 = ∣
∣�a,b

∣
∣. We consider the Laplacian on SR with

Neumann boundary conditions on {(r cos(φ), r sin(φ)) : 0 < r < R, |φ| = π/8}

and Dirichlet boundary conditions on {(R cos(φ), R sin(φ)) : |φ| < π/8} .

We denote the first eigenvalue of this Laplacian on the sector by λ1(SR).

Lemma 5.1 We have
λ1(SR) < λ1(−�h

a,b). (24)
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Proof We employ a spectral isoperimetric inequality [9, SATZ 3] (see also [10, The-
orem 3.9]) to get

λ1(−�h
a,b) ≥ π/4

2
∣
∣�a,b

∣
∣
j20,1, (25)

where j0,1 ≈ 2.4048 is the first zero of J0, the zeroth Bessel function. The value π/4

in the RHS of (25) is determined in [10, Theorem 3.9] as the so called ’rotation’ of
the Neumann boundary of −�h

a,b (which is the curve v ∪ γa,b). The definition of the
rotation of a curve is given in [10, Sect. 2.3] and in our case, due to the concavity of
γa,b, it simply equals to the opening angle of ∂�a,b at (0, b). We note that λ1(SR) is
equal to the first Dirichlet eigenvalue of the disc of radius R. Namely,

λ1(SR) =
(
j0,1
R

)2

= j20,1
π/8

∣
∣�a,b

∣
∣
, (26)

which is the RHS of (25), so we get λ1(SR) ≤ λ1(−�h
a,b). This inequality is actually

strict since �a,b is not a circular sector [9, SATZ 3]. ��
Lemma 5.2 There exists c > 1 such that if a

b > c then

λ1(−�v
a,b) < λ1(SR). (27)

Proof We start by observing that λ1(−�v
a,b) = π2

4

(
1
a2

+ 1
b2

)

(see (6)). Indeed,

π2

4

(
1
a2

+ 1
b2

)

is the eigenvalue corresponding to the eigenfunction fa,b(x, y) =
sin

(
π
2a x

)

cos
(

π
2b y

)

on �star
a,b (see (8)). The restriction fa,b,

∣
∣
�a,b

is in the domain of

the operator −�v
a,b since it fulfills Dirichlet boundary conditions at v and Neumann

boundary conditions at h (and arguing similarly to Proposition 3.4,(2))). Furthermore,
fa,b,

∣
∣
�a,b

has a single nodal domain and hence it is the first eigenfunction, so that

λ1(−�v
a,b) = π2

4

(
1
a2

+ 1
b2

)

.

Noting λ1(SR) = j20,1
π/8

|�a,b| (see (26)), means that (27) is equivalent to

(
1

a2
+ 1

b2

)
∣
∣�a,b

∣
∣ <

( j0,1)2

2π
. (28)

We defer this last part of the proof to Lemma 7.4, where it is shown that there exists
c > 1 such that (28) holds whenever a

b > c. ��
Proposition 4.2 now follows as an immediate implication of Lemmata 5.1 and 5.2.

6 The Area-to-Perimeter Ratio and Numerics

In this section, we introduce a geometric parameter (a normalized area-to-perimeter
ratio) which promotes a further investigation of the spectral position from a numerical
perspective.
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6.1 The Normalized Area-to-Perimeter Ratio

Definition 6.1 [13] Let f be a Morse eigenfunction corresponding to the eigenvalue
λ and let � be a Neumann domain of f . We define the normalized area-to-perimeter
ratio of � by

ρ(�) := |�|
|∂�|

√
λ, (29)

with |�| being the area of � and |∂�| the total length of its perimeter.

This parameter was originally introduced in [13] for the study of nodal domain
geometry. If we consider merely the area-to-perimeter ratio (without normalizing by
the eigenvalue), then the value |�|

|∂�| has an interesting geometric meaning [26], being
equal to the mean chord length of the two-dimensional shape� (up to a multiplicative
factor of 1

π
). The mean chord length is defined as follows; consider all the parallel

chords in a chosen direction and take their average length; the uniform average of this
value over all directions is the mean chord length4.

Interestingly, the value of ρ(�) is also connected to the spectral position of the
Neumann domain, �.

Proposition 6.2 Let f be a Morse eigenfunction corresponding to eigenvalue λ. Let
� be a Neumann domain of f . We have

1. ρ(�) ≤ √
2N�(λ).

2. if N�(λ) = 1 then ρ(�) ≤ j ′1,1
2 ≈ 0.9206

3. if N�(λ) = 2 then ρ(�) ≤ j ′1,1√
2

≈ 1.3019,

where j ′1,1 ≈ 1.8412 is the first zero of the derivative of J1, the first Bessel function.

Proof We write ρ(�) = |�|
|∂�|

√
λ =

√|�|
|∂�|

√
λ |�|. The first factor in this product, is

bounded from above by the classical geometric isoperimetric inequality
√|�|
|∂�| ≤ 1

2
√

π

[14],[22, Theorem 14.1]. An equality occurs if and only is � is a disc. The second
factor is bounded from above in terms of the spectral position [20]

λ |�| ≤ 8πN�(λ), (30)

and combining both we get the first bound of the proposition. In the particular cases
of N�(λ) = 1 or N�(λ) = 2 the bound (30) may be improved as follows.

By the Szegö–Weinberger inequality [35,37] we have that if N�(λ) = 1 then

λ |�| ≤ π
(

j ′1,1
) 2. (31)

Combining this bound with the geometric isoperimetric inequality proves the second
part of the proposition.

4 We thank John Hannay for pointing out this interesting geometrical meaning to us.
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Fig. 6 The values ρ(�star
a,b ) and ρ(�lens

a,b ) for the twoNeumann domains of the separable eigenfunction fa,b ,
(8), as a function of the ratio a/b. The critical ρ values 0.9206, 1.3019 from Proposition 6.2 are marked

By the Giraurd–Nadirashvili–Polterovich inequality [17], we have that if N�(λ) =
2 then

λ |�| ≤ 2π
(

j ′1,1
) 2. (32)

Combining this bound with the geometric isoperimetric inequality proves the third
part of the proposition. ��

The last proposition allows to use numerics to estimate the spectral position of Neu-
mann domains. We note that the exact value of the spectral position cannot be easily
computed not even numerically. Part of the difficulty arises since for a general Neu-
mann domain we do not have an analytic expression of its boundary. So, computing
the spectrum is highly non-trivial. As opposed to that, the area-to-perimeter ratio is rel-
atively easily computed when the Neumann lines of an eigenfunction are numerically
found. Once calculating ρ(�), the last proposition allows to deduce that Neumann
domains whose ρ(�) value is large enough do not have low spectral positions.

6.2 Numerical Results for Separable Eigenfunctions

We use the parameter ρ to further investigate the spectral positions of Neumann
domains of separable eigenfunctions on the torus.Aswehave seen in previous sections,
a particular separable eigenfunction has only two congruence classes of Neumann
domains, the lens-like and the star-like (Fig. 2). So each separable eigenfunction has
just two possible ρ values, ρ(�star

a,b ) and ρ(�lens
a,b ). These ρ values change with the

eigenfunction and solely depend on the ratio a/b, where a, b are the values which
characterize the eigenfunction, (8).

Figure 6 shows how the valuesρ(�star
a,b ) andρ(�lens

a,b ) depend on a/b. In particular, we

observe that ρ(�lens
a,b ) increases with a/b. Using Proposition 6.2, we may conclude that

if a/b > 1.9079 then N�lens
a,b

(

λa,b
)

> 1. Similarly, if a/b > 5.9108 then N�lens
a,b

(

λa,b
)

>

2. Note that according to Theorem 1.4,(1) N�lens
a,b

(

λa,b
) → ∞ as a/b → ∞. The

numerical values above allow to slightly refine this result and estimate the growth rate
of N�lens

a,b

(

λa,b
)

with a/b.
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Fig. 7 Left: The Neumann partition of an eigenfunction with λ = 25 on the two-dimensional torus.Middle:
TheNeumann domains colored according to their ρ value.Right: OnlyNeumann domains for which ρ(�) >

j ′1,1
2 are colored according to their ρ value. The rest are colored as in the left part of the figure (Color figure

online)

Fig. 8 Left: The probability distribution of ρ values for Neumann domains of random eigenfunctions
drawn from three different eigenvalues (λ ∈ {65, 325, 925}). The vertical lines mark the bound j ′1,1/2
from Proposition 6.2,(2).Right: The probability distributions of ρ values for Neumann domains separated
according to the type of the Neumann domain (star, lens, wedge). The random eigenfunctions are of
eigenvalue λ = 925. The results are drawn according to 2494622 lens-like domains, 2670896 star-like
domains, and 3283304 wedge-like domains, numerically traced, and analyzed from approximately 9000
individual eigenfunctions (Color figure online)

6.3 Numerical Results for RandomWaves on the Torus

We start by demonstrating an application of Proposition 6.2 to estimate spectral posi-
tions of arbitrary Neumann domains. As an example, we show in Fig. 7 the Neumann
partition of an eigenfunction with λ = 25 on the two-dimensional torus. On the left
part, only the Neumann partition is shown. On the middle figure, each Neumann
domain � is colored according to its ρ(�) value and on the right, we keep colored
only Neumann domains with ρ(�) > j ′1,1/2 (the rest are left colored blue-red, as in the
left figure). From Proposition 6.2,(2) we deduce that all colored Neumann domains
have spectral position larger than one.
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Following this pictorial demonstration, we also calculate the probability distribu-
tion of ρ(�) values. We follow the random wave model in our computations. We
choose a certain non-simple eigenvalue of the torus. We consider a certain basis of
eigenfunctions of this eigenspace and take linear combinations of those eigenfunc-
tions, where the coefficients are chosen according to the standard normal distribution.
This describes the random ensemble that we use. We pick approximately 9000 eigen-
functions from this ensemble and for each we calculate ρ values for all of its Neumann
domains to obtain the probability distribution of ρ(�) for this particular eigenvalue.

The results are shown in Fig. 8. On the left, we plot the probability distribution of
three different eigenvalues (65, 325, 925) of the flat torus of side length 2π . A first
observation is that a substantial proportion (around 23%) of the Neumann domains
have a ρ value which is larger than j ′1,1/2 (indicated by a vertical line in the figure),
the upper bound in Proposition 6.2, (2). A combination of this numerical observation
and the proposition shows that at least some 23 percent of the Neumann domains have
spectral position larger than one. Furthermore, this plot suggests that the ρ distribution
might be independent of the particular eigenvalue.We currently do not have an analytic
explanation to this numeric finding.

Another interesting observation can be made from the right part of Fig. 8, which
separately shows the ρ distribution of three different types of Neumann domains.
Neumann domains may be classified into three types according to the angles their
boundary forms at the critical points. Neumann lines always meet perpendicularly at
saddle points, whereas at extremal points, Neumann linesmight meet either at an angle
of π or of 0, [5,27, Proposition 4.1]. If both angles at minimum and maximum points
of a Neumann domain are 0 we call the Neumann domain star-like. If both angles
are π we call it lens-like and if one angle is 0 and the other is π then the Neumann
domain is called wedge-like (see right part of Fig. 1). With this distinction, we may
compute the ρ values for each of the three types above separately (as before, according
to the random wave model). Doing so for random eigenfunctions of the eigenvalue
925 results with the right plot in Fig. 8. This plot might indicate that this threefold
classification affects the geometry of Neumann domains and might suggest a direction
for exploring the probability distribution of ρ and its possible universality.

We end by pointing out the role numerics play in our work. That the spectral
position may be higher than one is counter-intuitive (see end of Sect. 1.2) and is
stated in Theorem 1.4,(1). Yet, this result concerns to separable eigenfunctions which
are exceptional in some sense. One may wonder whether it is only for this special
case that the spectral position differs from one or it is more general than that. The
numerics we supply here for random eigenfunctions indicate that generically there is
a non-negligible probability that a Neumann domain would have a spectral position
larger than one. This calls for further investigations of the Neumann domains spectral
positions.

Acknowledgements We are grateful to Michael Levitin for his encouraging comments and useful ideas
for further investigations. We would like to thank Emanuel Milman for stimulating discussions and for
pointing out helpful references. We thank Gregory Berkolaiko and Mark Dennis for interesting discussions
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second proof of Theorem 1.4,(1). Band and Egger were supported by ISF (Grant No. 494/14). Taylor was
funded by the Leverhulme Trust Research Programme Grant No. RP2013-K-009.
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A. The Boundary ofÄstar
a,b and its Area

We consider a separable eigenfunction fa,b on the torus, (8), and its star-like Neumann
domain, �star

a,b . In this appendix, we derive the explicit expression for the boundary
of �star

a,b (Lemma 7.1) and show that it is of class C (Lemma 7.3). This boundary
characterization is needed to justify the application of some Sobolev space analysis
(done in Proposition 3.1). Furthermore, we perform here an asymptotic calculation
of the �star

a,b area (Lemma 7.4) which is used in the proofs of Theorem 1.4, (1) (first
proof) and Lemma 5.2.

Lemma 7.1 We have

�star
a,b = {

(x, y) : |x | < a, |y| < γa,b(x)
}

,

where

γa,b(x) := 2b

π
arcsin

(
[

cos
( π

2a
x
)]( a

b )
2
)

. (33)

Proof To prove the lemma, we parameterize the Neumann line which connects the
extremal point, (a, 0) to the saddle point, (0, b) (see Fig. 2,(ii)) and show that it is
given by (33). The other four Neumann lines which form the boundary of �star

a,b are
obtained by noting that �star

a,b is symmetric with respect to horizontal and vertical
reflections (see Fig. 3). Plugging the expression of the eigenfunction (8) in the flow
equations (2), we get

(

ẋ
ẏ

)

= −π

2

(
a−1 cos

(
π
2a x

)

cos
(

π
2b y

)

b−1 sin
(

π
2a x

)

sin
(

π
2b y

)

)

.

Hence, the tangent to any gradient flow line is

dy

dx
= a

b
tan

( π

2a
x
)

tan
( π

2b
y
)

.

Integrating this, we obtain the gradient flow lines

y(x) = 2b

π
arcsin

(

sin
( π

2b
y0

) [

cos
( π

2a
x
)]( a

b )
2)

, (34)

where (0, y0) is a point through which the gradient flow line passes. Note that for
−b<y0<b, each of the gradient flow lines in (34) is connected to the extremal point
(a, 0), but only the one with y0 = b is connected to the saddle point (0, b) and hence
it is the desired Neumann line5. ��
Remark 7.2 From the proof of Lemma 7.1, onemay also obtain that there is no gradient
flow line which connects two saddle points of the eigenfunction fa,b. From this, we
conclude that fa,b is a Morse–Smale function [5, Proposition A.7].

5 As a matter of fact, y0 = −b also gives a Neumann line, but it is connected to a different saddle point.
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The next lemma shows that the boundary of �star
a,b is regular enough for applying an

appropriate Sobolev space analysis. The classification of the boundary in the lemma
is based on [12, Definition 4.1].

Lemma 7.3 The boundary of the star-like domain, ∂�star
a,b , is of class C.

Namely, for any p ∈ ∂�star
a,b , there exists an open neighborhood U ( p) ⊂ R

2 and
a continuous function h ∈ C(I ) on an interval I ⊂ R such that for suitable local
Cartesian coordinates

∂�star
a,b ∩U ( p) = {(s, t) : t = h(s), s ∈ I } (35)

holds.

Proof Since the boundary consists of gradient flow lines, the claim is obvious for every
point p not being an end point of such a flow line (i.e., for every p which is not a
critical point). At a saddle point, any two adjacent Neumann lines meet with an angle
of π

2 , [27, Theorem 3.2.]. Hence, the boundary at a neighborhood of a saddle point is
also a continuous function. At the extremal points (±a, 0), adjacent Neumann lines
meet with an angle of 0 and form a cusp. We derive the asymptotics of γa,b(a − x),
x → 0+. Using

cos
( π

2a
(a − x)

)

= sin
(

π
2a x

) = π
2a x + O

((
π
2a x

) 3
)

(1 + x)β = 1 + O(x) for β > 0

arcsin(x) = x + O
(

x3
)

,

we get that for x → 0+

γa,b(a−x) = 2b

π
arcsin

(
[

cos
( π

2a
(a − x)

)]( a
b )

2
)

= 2b

π

( π

2a
x
)

( a
b )

2+O
(

x3(
a
b )

2
)

.

(36)
These asymptotics show that γa,b is strictly monotonically decreasing in a left

neighborhood of (a, 0) and its inverse exists there.Hence, the condition (35) is satisfied
in a neighborhood of (a, 0) by choosing

h(s) =
{

γ −1
a,b (s) s > 0

γ −1
a,b (−s) s < 0

.

��
Finally, we use the expression of γa,b to bound the area of �star

a,b which is needed in
the proofs of Theorem 1.4,(1) (first proof) and Lemma 5.2 (see (28) in that proof).
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Fig. 9 The left-hand side of (37) plotted as a function of a/b. The right-hand side of (37) is indicated together
with the corresponding a/b value

Lemma 7.4 There exists c > 1 such if a/b > c then

1

ab

(
b

a
+ a

b

)
∣
∣�star

a,b

∣
∣ <

2

π
( j0,1)

2 (37)

where j0,1 ≈ 2.4048 is the first zero of J0, the zeroth Bessel function.

Proof Using Lemma 7.1 we have

1

ab

∣
∣�star

a,b

∣
∣ = 8

πa

∫ a

0
arcsin

(
[

cos
( π

2a
x
)]( a

b )
2
)

dx

= 16

π2

∫ π/2

0
arcsin

(

[cos (z)](
a
b )

2)

dz. (38)

We may use the Taylor expansion of ln [cos (z)], which converges for |z| < π
2 (see

e.g., [1, 4.3.72] and [23, p. 27]) to obtain the bound

∀z ∈ (0,
π

2
), [cos (z)](

a
b )

2
< exp

[

−1

2

(a

b

)2
z2

]

. (39)

Another bound which we use is

∀w ∈ (0, 1), arcsin (w) ≤ w + (π/2 − 1) w3. (40)

To validate (40), we may observe that both functions at the RHS and LHS coincide
for w = 0 and w = 1 and further check that the difference does not vanish anywhere
else in (0, 1) (for example, since the difference has only a single critical point in this
interval).
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Fig. 10 The first eigenvalue of −�h
a,b , the first eigenvalue of −�v

a,b , and λa,b plotted as a function of 1/b
(i.e., we chose a = 1)

Plugging the bounds (39), (40) in (38) and using also the monotonicity of arcsin(w)

for w ∈ (0, 1) we get

1

ab

∣
∣�star

a,b

∣
∣ <

16

π2

∫ π/2

0

{

exp

[

−1

2

(a

b

)2
z2

]

+ (π/2 − 1) exp

[

−3

2

(a

b

)2
z2

]}

dz

<
16

π2

∫ ∞

0

{

exp

[

−1

2

(a

b

)2
z2

]

+ (π/2 − 1) exp

[

−3

2

(a

b

)2
z2

]}

dz

= 16

π2

{

1

2

√

2π

(a/b)2
+ (π/2 − 1)

1

2

√

2π

3 (a/b)2

}

≈ 2.7014 · b
a

, (41)

where moving to the last line we used integration over (half) Gaussian.

From the above, we get 1
ab

( a
b + b

a

)
∣
∣
∣�star

a,b

∣
∣
∣ � 2.7014 ·

(

1 + ( b
a

)2
)

. Now, since
2
π
( j0,1)2 ≈ 3.68 we get that (37) holds if b

a is small enough. ��

Remark 7.5 From the proof, one easily gets that (37) holds for a/b �
( 3.68
2.7 − 1

)−1/2 ≈
1.66. Numerically, it seems that choosing c ≈ 1.1407 already guarantees this bound.
This can be seen in Fig. 9 and shows that the methods in the proof of Theorem 1.4,
(2) cannot reduce the constant in the theorem below c ≈ 1.1407. Yet, a numerical
experiment (see Figure 10) shows that the statement of the theorem should be valid
also for c = 1 (which is the optimal result).
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