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Abstract. The Neumann points of an eigenfunction f on a quantum (met-
ric) graph are the interior zeros of f ′. The Neumann domains of f are
the sub-graphs bounded by the Neumann points. Neumann points and
Neumann domains are the counterparts of the well-studied nodal points
and nodal domains. We prove bounds on the number of Neumann points
and properties of the probability distribution of this number. Two basic
properties of Neumann domains are presented: the wavelength capacity
and the spectral position. We state and prove bounds on those as well as
key features of their probability distributions. To rigorously investigate
those probabilities, we establish the notion of random variables for quan-
tum graphs. In particular, we provide conditions for considering spectral
functions of quantum graphs as random variables with respect to the
natural density on N.
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1. Introduction

Nodal domains of Laplacian eigenfunctions form a central research area within
spectral geometry. Historically, the first rigorous results in the field are by
Sturm [47], Courant [26] and Pleijel [43]. Many works appeared since then,
treating nodal domains on manifolds, metric graphs and discrete graphs. The
nodal domain study on quantum (metric) graphs is a relatively modern topic,
starting1 with [33] which provides an analogue of Courant’s bound for graphs
and initial results on the statistics of the nodal count. Further results came
afterward, including proofs of bounds on the nodal count [1,10,18,44,46], study
of nodal statistics [4,5], solutions of nodal inverse problems [7,16,35] and vari-
ational characterizations of the nodal count [8,22].

The current paper is devoted to a closely related notion, called Neumann
domains. On a metric graph, nodal domains are sub-graphs bounded by the
zeros of the eigenfunction. Similarly, Neumann domains are the sub-graphs
bounded by the zeros of the eigenfunction’s derivative. To the best of our
knowledge, this is the first work on Neumann domains on graphs2. Even on

1Noting that the work of Sturm [47] on the interval may also be considered as a result on
the simplest metric graph.
2It is worthwhile to mention the interesting recent work on the related topic of Neumann
partitions on graphs [34,36].



Vol. 22 (2021) Neumann Domains on Quantum Graphs 3393

manifolds, Neumann domains are a very recent topic of research within spectral
theory and is currently mentioned only in [6,11,13,14,40,48]. Partial results of
the current paper were already announced in [6] which reviews the Neumann
domain research on manifolds and on graphs.

The paper is structured as follows. The rest of this section provides the
required preliminary definitions. Our main results are stated in Sect. 2. The
proofs are then split between a few sections: Sect. 3 provides the proofs for the
bounds, and Sects. 6 and 7 contain the proofs of the probabilistic statements. In
between, there are two sections which present and develop the tools needed for
proving the probabilistic statements. Section 4 presents existing methods from
the literature, whereas in Sect. 5 we state and prove the additional required
lemmas. In particular, Sect. 5 provides tools which ought to be useful for
anyone considering random variables in the context of quantum graphs. The
paper is concluded with a summary section (Sect. 8). “Appendix A” describes
in detail calculations of Neumann and nodal counts of some particular graph
families. Appendices B and C contain proofs to some lemmas.

1.1. Basic Graph Definitions and Notations

Throughout this paper, the graphs we consider are connected and have finite
number of edges and vertices. We denote a graph by Γ and denote by V and
E its sets of vertices and edges, correspondingly. We will always assume that
these sets are non-empty and denote their cardinalities by V := |V| > 0 and
E := |E| > 0. The graph is not necessarily simple. Namely, two vertices may
be connected by more than one edge, and it is also possible for an edge to
connect a vertex to itself. An edge connecting a vertex to itself is called a loop.

Given a vertex v ∈ V we denote the multi-set of edges connected to v by
Ev. We note that every loop connected to v will appear twice in Ev. The degree
of a vertex is denoted by deg(v) := |Ev|. The boundary of a graph is defined
to be ∂Γ := {v ∈ V |deg(v) = 1} . The rest of the vertices, V \ ∂Γ, are called
interior vertices. We denote the first Betti number of a graph by

β := E − V + 1. (1.1)

Formally, β is the rank of the graph’s first homology. Intuitively, β is the
number of “independent” simple closed paths in the graph. A graph with
β = 0 is called a tree graph.

We may further identify each edge ej ∈ E with a real interval of finite
length lj > 0. Such a graph whose edges are supplied with lengths is called a
metric graph, and it is a compact metric space. We commonly put all of the
graph edge lengths into a vector, �l = (l1, l2 . . . lE) and denote the sum of all
its entries by |Γ| :=

∑E
j=1 lj . This is also called the total length of the graph.

A common assumption in this paper is that the set of edge lengths form a
linear independent set over Q. We abbreviate and call such a set rationally
independent.
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1.2. Standard Quantum Graphs

It is convenient to describe a function f on a metric graph Γ in terms of its
restrictions to edges, f |e : [0, le] → C, for e ∈ E . The following function spaces
are also defined in this manner:

L2 (Γ) := ⊕e∈EL2 ([0, le]) , H2 (Γ) := ⊕e∈EH2 ([0, le]) , (1.2)

where H2 denotes a Sobolev space of order two. The Laplace operator Δ :
H2 (Γ) → L2 (Γ) is defined edgewise by

Δ : f |e �→ − d2

dx2
e

f |e, (1.3)

where xe ∈ [0, le] is a coordinate chosen along the edge e. In order for the
Laplacian to be self-adjoint, its domain is restricted to functions in H2 (Γ)
that satisfy certain vertex conditions. A description of all vertex conditions for
which the Laplacian is self-adjoint can be found, for example, in [20]. Through-
out this paper, we only consider the Neumann vertex conditions (for which the
Laplacian is indeed self-adjoint) . A function f ∈ H2 (Γ) is said to satisfy Neu-
mann vertex conditions (also known as Kirchhoff or standard conditions) at a
vertex v ∈ V if
(1) The function f is continuous at v ∈ V, i.e.,

∀e1, e2 ∈ Ev f |e1 (v) = f |e2 (v) . (1.4)

(2) The outgoing derivatives of f at v, denoted by ∂ef (v) for every e ∈ Ev,
satisfy

∑

e∈Ev

∂ef (v) = 0. (1.5)

A degree two vertex with Neumann conditions may be eliminated without
changing the graph’s spectral properties (see [19, ex. 2.2], [15, ex. 2]). This
allows to assume that the graph has no vertices of degree two, which we indeed
assume throughout this paper.

Definition 1.1. Let Γ be a connected metric graph, with finitely many vertices
and edges, and no vertices of degree two.
(1) The standard Laplacian on Γ is the Laplace operator with Neumann

vertex conditions at all vertices of Γ.
(2) Whenever a metric graph Γ as above is equipped with the standard Lapla-

cian, we abbreviate terminology and call it a standard graph.

Remark 1.2. This definition excludes the case of a single loop graph. In such
case, all eigenvalues are degenerate and so none of the results in this paper
applies to the loop graph.

If Γ is a standard quantum graph, then the corresponding Laplacian
is self-adjoint with real discrete spectrum, which we order increasingly, as
follows:

0 = λ0 < λ1 ≤ λ2 ↗ ∞, (1.6)



Vol. 22 (2021) Neumann Domains on Quantum Graphs 3395

noting that each eigenvalue in this sequence appears as many times as its
multiplicity. There exists a choice of a real orthonormal L2 (Γ) basis of eigen-
functions {fn}∞

n=0 corresponding to the eigenvalues sequence [20]. The choice
of this basis may not be unique (if there are non-simple eigenvalues) but the
results in this paper hold for any choice of basis. Note that the first index is
zero, so that f0 is the constant eigenfunction which corresponds to the eigen-
value λ0 = 0 (which is a simple eigenvalue, as we assume Γ is connected). For
convenience, instead of the eigenvalues themselves, we consider their square
roots, kn :=

√
λn. Further information on the fundamental theory of quantum

graphs may be found in [20,31].

1.3. Loop-Eigenfunctions and Generic Eigenfunctions

Let Γ be a standard graph. An eigenfunction which is supported on a sin-
gle loop and vanishes elsewhere on the graph is called a loop-eigenfunction.
Explicitly, a function f is a loop-eigenfunction supported on the loop e if and
only if

k ∈ 2π

le
N and f |e (x) = A sin (kx) , f |Γ\e ≡ 0, (1.7)

for some A ∈ C and arc-length parametrization x ∈ [0, le]. In particular, if a
graph has loops, then each of the loops has infinitely many loop-eigenfunctions
supported on it.

Definition 1.3. Let Γ be a standard graph. Let f be an eigenfunction of Γ. We
call f a generic eigenfunction if it satisfies all of the following.
(1) It corresponds to a simple eigenvalue.
(2) It does not vanish at vertices, ∀v ∈ V f (v) �= 0.
(3) None of the outgoing derivatives vanish at interior vertices, ∀v ∈

V\∂Γ , ∀e ∈ Ev ∂ef (v) �= 0.

Remark 1.4. It is shown in [20, Corollary 3.1.9] that if Γ is a tree, then any
eigenfunction f satisfying condition (2) must correspond to a simple eigen-
value. Hence, for trees it is enough for an eigenfunction to satisfy both condi-
tions (2) and (3) to be generic.

Once a certain basis of eigenfunctions, {fn}∞
n=0, is chosen, we may define

the following subsets of N:

G := {n ∈ N : fn is generic} (1.8)

L := {n ∈ N : fn is a loop-eigenfunction} . (1.9)

Observe that a loop-eigenfunction is not generic, so that G ∩ L = ∅. In
order to quantify how many of the eigenfunctions belong to those sets, we
introduce.

Definition 1.5. (1) Let A ⊂ N and denote A (N) := A∩{1, 2, . . . N} for some
N ∈ N. We say that A has natural density d (A) if the following limit
exists

d (A) := lim
N→∞

|A (N)|
N

. (1.10)
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(2) If G has a positive density, d(G) > 0 and A ⊂ G such that A has density,
we define the relative density of A in G by

dG (A) := lim
N→∞

|A(N)|
|G (N)| =

d (A)
d (G)

. (1.11)

The densities of L and G are given in the following theorem3.

Theorem 1.6 [2,5]. Let Γ be a standard graph with rationally independent edge
lengths. Then, both L and G have natural densities, given by

d (L) =
Lloops

2 |Γ| , d (G) = 1 − d (L) , (1.12)

where Lloops is the total length of the loops of the graph.
In particular, d(G) ≥ 1

2 and almost all non-loop-eigenfunctions are
generic.

The results of this paper are stated for generic eigenfunctions. Accord-
ingly, the probabilistic statements in the paper are stated using dG , rather
than the natural density, d (see Sect. 2). The last theorem shows that dG and
d differ only if the graph has loops.

1.4. Neumann Domains and Neumann Count

Definition 1.7. Let f be a generic eigenfunction of a standard graph Γ. An
interior point x ∈ Γ\V is called a nodal point if f (x) = 0 and is called a
Neumann point if f ′ (x) = 0.

Removing the nodal points of f from Γ disconnects the graph. The con-
nected components of this new graph are called the nodal domains of f . Simi-
larly, the connected components of Γ without f ’s Neumann points, are called
the Neumann domains of Γ (see Fig. 1). If a Neumann domain is a single
interval, we call it a trivial Neumann domain. Hence, a Neumann domain is
non-trivial if it contains some vertex of degree at least three.

Remark 1.8. Curiously, the Neumann points of a metric graph equipped with
the standard Laplacian, are exactly the nodal points of the same metric graph,
but equipped with the anti-standard (a.k.a anti-Kirchhoff) Laplacian [30].

The names nodal domains and Neumann domains are adopted from sim-
ilar definitions for manifolds. For graphs, these names might be deceiving, as
a nodal domain is actually a graph (which may be considered as a sub-graph
of Γ), and similarly for a Neumann domain.

If f is a generic eigenfunction, then it has a finite number of nodal points
and a finite number of Neumann points and we denote those numbers by

φ(f) := |{x ∈ Γ\V | f (x) = 0}| ,
ξ(f) := |{x ∈ Γ\V | f ′ (x) = 0}| ,

3This Theorem generalizes [5, Proposition A.1] and [21, Theorem 3.6], as is proven and
discussed in [2].
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(i) (ii) (iii)

Figure 1. (i) A graph Γ; (ii) an eigenfunction f of Γ (non-
vanishing at vertices); (iii) a decomposition of Γ into four
Neumann domains according to f . The middle two Neumann
domains are trivial Neumann domains

and correspondingly name them the nodal count and the Neumann count of
f (φ stands for sign f lips of f , and ξ stands for ex tremal points of f). The
nodal count is well studied both for graphs and manifolds. A fundamental
result (see4 [9,18,33]) is the following bounds for the nodal count of the nth

eigenfunction, fn,

0 ≤ φ (fn) − n ≤ β, (1.13)

where β is the graph’s first Betti number (1.1). It is common to denote σ(n) :=
φ(fn) − n and name this by nodal surplus. Analogously, denote

ω (n) := ξ (fn) − n, (1.14)

and call ω(n) the Neumann surplus. Note that the name surplus might be
misleading in this case, as possibly ξ(fn) < n (see Theorem 2.2).

We note that the functions σ and ω are defined not for every natural
number, but only for every n ∈ G.

1.5. Spectral Position and Wavelength Capacity

Spectral Position. The restriction of an eigenfunction to one of its nodal
domains is an eigenfunction of that domain with Dirichlet boundary condi-
tions. Furthermore, a well-known (and commonly used) observation is that
the restricted eigenfunction is the first Dirichlet eigenfunction (ground state)
of that domain. This statement holds for manifolds, as well as for graphs.

It is natural to inquire whether an analogous result holds for Neumann
domains, namely whether the restriction of an eigenfunction to a Neumann
domain is a Neumann eigenfunction of that domain; and whether it is the
first non-trivial (i.e., non-constant) Neumann eigenfunction. The quick (and
somewhat superficial) answer is that for manifolds, generically, the restricted
eigenfunction is indeed a Neumann eigenfunction, but it is not necessarily
the first non-trivial Neumann eigenfunction [11–14]. In the current paper we
treat this problem for quantum graphs. Given a generic eigenfunction f with
eigenvalue k2 and a Neumann domain Ω of f , it is easy to show that f |Ω
is an eigenfunction with eigenvalue k2 of Ω, considered as a standard graph
(just observe that the vertex conditions are satisfied). The interesting question

4To avoid confusion when comparing to those works, recall that we start indexing the eigen-
values from n = 0.
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would be what is the position of k2 in the spectrum of Ω. To fix terminology,
we introduce

Definition 1.9. Let f be a generic eigenfunction with eigenvalue k2 and let Ω
be a Neumann domain of f . We define the spectral position of Ω as

N(Ω) :=
∣
∣
{
0 ≤ λ < k2 |λ is an eigenvalue of Ω

}∣
∣ , (1.15)

where Ω is considered as a standard graph. This notation does not explicitly
include k, which is assumed to be understood from the context.

Wavelength capacity.

Definition 1.10. Let f be a generic eigenfunction with eigenvalue k2, and let
Ω be a Neumann domain of f . We define the wavelength capacity of Ω as

ρ(Ω) :=
|Ω| k

π
, (1.16)

where |Ω| is the sum of edge lengths of Ω. This notation of the wavelength
capacity does not explicitly include k. It is assumed that the value of k is
understood from the context.

The meaning of the definition is easily demonstrated when Ω is an inter-
val. Then, ρ(Ω) counts the number of oscillations of an eigenfunction f of
Ω which corresponds to the eigenvalue k2. In other words, ρ(Ω) counts the
number of ‘half-wavelengths’ of f within Ω, hence its name.

We further note that the wavelength capacity is the one-dimensional ana-
logue of a similar parameter for Neumann domains on manifolds. The normal-
ized area-to-perimeter ratio of a Neumann domain Ω on a two-dimensional
manifold is defined to be |Ω|√λ

|∂Ω| , where |Ω| is the area of the Neumann domain
and |∂Ω| is its perimeter length [6,28].

2. Main Results

Our main results concern the properties mentioned in the previous section:
Neumann count, nodal count, spectral position and wavelength capacity. The
Neumann count and the nodal count are properties of an eigenfunction on the
whole graph, so we call those global observables. The spectral position and
wavelength capacity are attributes of individual Neumann domains, and they
are called local observables. For each of those observables, we prove bounds
and basic features of their probability distributions. Denote G (N) := G ∩
{0, 1, . . . N}. The probability distribution we assign to an observable h : G → R

is characterized by

dG
(
h−1 (B)

)
:= lim

N→∞
|{n ∈ G (N) : h (n) ∈ B}|

|G (N)| ; B ⊂ R, (2.1)

if such a limit exists. Indeed, it is natural to define the probability distributions
of those observables in terms of the density, dG . However, dG is not necessarily
a probability measure on G. Hence, we are required to determine whether each
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of the observables is a random variable with respect to dG . (The answer is not
always obvious, as can be seen in the rest of this section.)

Definition 2.1. A function h : G → R is called a random variable with respect
to dG if for every Borel set B ⊂ R, dG(h−1(B)) exists and dG is a probability
measure on the σ-algebra generated by h.

2.1. Global Observables

Theorem 2.2. Let Γ be a standard graph whose first Betti number is β and
boundary size is |∂Γ|.
(1) Let fn be the n’s eigenfunction and assume it is generic. The Neumann

surplus ω(n) := ξ (f) − n is bounded by

1 − β − |∂Γ| ≤ ω(n) ≤ 2β − 1. (2.2)

(2) Further assume that Γ has rationally independent edge lengths. Then, the
following holds
(a) The Neumann surplus, ω, is a finite random variable with respect

to dG. In particular, the probability distribution of ω is

P(ω = j) := dG
(
ω−1(j)

)
. (2.3)

(b) If ω−1(j) �= ∅ then P(ω = j) > 0. In particular, any value which ω
attains is obtained infinitely often.

(c) The probability distribution of ω is symmetric around 1
2 (β − |∂Γ|).

Namely,

P(ω = j) = P(ω = β − |∂Γ| − j). (2.4)

Each of the random variables ω (Neumann surplus) and σ (nodal surplus)
has a symmetric probability distribution (see (2.4) here, and [5, Theorem 2.1]).
This symmetry implies their expected values as follows:

Corollary 2.3. Denoting G(N) := G ∩ {1, . . . , N}, we have

E (σ) = lim
N→∞

1
|G(N)|

∑

n∈G(N)

σ(n) =
β

2

E (ω) = lim
N→∞

1
|G(N)|

∑

n∈G(N)

ω(n) =
β − |∂Γ|

2
.

Thus, the expected values of the nodal surplus and of the Neumann sur-
plus store two topological properties of the graph. We discuss the importance
of this result in the context of inverse problems in Sect. 8.

The first part of Theorem 2.2 provides the bounds (2.2) on the Neumann
surplus. We conjecture that for β > 2, stricter bounds hold.

Conjecture 2.4. Let f be a generic eigenfunction whose spectral position is n.
The Neumann surplus ω(n) := ξ (f) − n is bounded by

− 1 − |∂Γ| ≤ ω(n) ≤ β + 1. (2.5)
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This conjecture is supported by a numerical investigation. In particular,
for β = 3 we found that the tetrahedron graph (complete graph of 4 vertices)
attains both upper and lower bounds in (2.5). In addition, we have analytic
results showing that the conjecture holds for several graph families, as seen in
“Appendix A”.

Theorem 2.2 sums up our knowledge on the probability distribution of
the Neumann surplus for general graphs. No explicit expression for this distri-
bution is known in general. Nevertheless, for particular graph families we do
have a concrete expression.

Definition 2.5. Let d1, d2 ∈ N. A graph, each of whose vertices is either of
degree d1 or of degree d2, is called a (d1, d2)-regular graph.

Theorem 2.6. Let Γ be a standard graph which is a (3, 1)-regular tree. If Γ
has rationally independent edge lengths, then the probability distribution of the
random variable −ω − 1 is binomial, Bin(|∂Γ| − 2, 1

2 ). Explicitly, for every
integer − |∂Γ| + 1 ≤ j ≤ −1,

P(ω = j) =
(|∂Γ| − 2

−j − 1

)

22−|∂Γ|. (2.6)

This last theorem may be perceived as the Neumann domain analogue of
[5, Theorem 2.3], though each of those theorems applies to completely different
families of graphs. A further discussion appears in Sect. 8.

2.2. Local Observables

Proposition 2.7. Let Γ be a standard graph with minimal edge length Lmin.
Let fn be a generic eigenfunction which corresponds to kn > π

Lmin
, and let Ω

be a Neumann domain of fn. The bounds on the spectral position of Ω and its
wavelength capacity are

1 ≤N(Ω) ≤ |∂Ω| − 1 (2.7)

1 ≤ 1
2
(N(Ω) + 1) ≤ρ(Ω) ≤ 1

2
(N(Ω) + |∂Ω| − 1) ≤ |∂Ω| − 1 (2.8)

Remark 2.8. The condition kn > π
Lmin

is satisfied for almost all eigenvalues.

Indeed, there are at most 2 |Γ|
Lmin

eigenvalues which do not satisfy this condition
[29, Theorem 1]. This condition is needed in the proposition above in order to
guarantee that Ω is a star graph (for more details, see Lemma 3.1). We also
note that the lower bounds in (2.7) and (2.8) hold even without conditioning
on the value of k (see also the proof of the proposition).

Remark 2.9. In “Appendix C”, we prove an analogous proposition for nodal
domains.

Next, we discuss the probability distributions of the local observables N
and ρ. As implied by Proposition 2.7, those observables have non-trivial values
only if the corresponding Neumann domain is non-trivial, i.e., has |∂Ω| > 2, or
equivalently if the corresponding Neumann domain contains an interior vertex
v ∈ V \ ∂Γ.
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Definition 2.10. Let fn be a generic eigenfunction of a standard graph Γ and
let v ∈ V \ ∂Γ be an interior vertex. We denote by Ω(v)

n the unique Neu-
mann domain of fn which contains v. We denote the spectral position of
this Neumann domain by N (v)(n) := N(Ω(v)

n ) and its wavelength capacity
by ρ(v)(n) := ρ(Ω(v)

n ).

Proposition 2.11. Let Γ be a standard graph with rationally independent edge
lengths. Let v ∈ V \ ∂Γ. Then, the following hold.
(1) The spectral position, N (v), is a finite random variable with respect to dG.

In particular, the probability distribution of N (v) is

P(N (v) = j) := dG

((
N (v)

)−1

(j)
)

. (2.9)

(2) The probability distribution of N (v) is symmetric around 1
2deg(v).

Namely,

P(N (v) = j) = P(N (v) = deg(v) − j). (2.10)

Proposition 2.12. Let Γ be a standard graph with rationally independent edge
lengths. Let v ∈ V \ ∂Γ.
(1) There exists a discrete measure p(v) supported on a finite set {xj}m

j=1,
and a density function π(v), such that for every interval (a, b) ⊂ R

dG

((
ρ(v)
)−1

((a, b))
)

=
∫ b

a

π(v) (x) dx +
∑

xj∈(a,b)

p(v) (xj) . (2.11)

(2) Both π(v) and p(v) are symmetric around 1
2deg(v).

By the proposition above the pre-image
(
ρ(v)
)−1

((a, b)) has density for
every interval (a, b) ⊂ R. Yet, if π(v) �≡ 0, then we prove that there exist
Borel sets, B ⊂ R, whose pre-images

(
ρ(v)
)−1

(B) do not have density5. In
this case, ρ(v) is not a random variable with respect to dG . See Lemma 5.4 and
Remark 5.5. Furthermore, we conjecture that π(v) �≡ 0 and p(v) ≡ 0, i.e., the
distribution on the RHS of (2.11) is absolutely continuous with no atoms and
so ρ(v) is never a random variable with respect to dG . See further discussion
after the proof of this proposition, in Remark 7.2.

2.3. Local-Global Connections

We end the results section by presenting some connections between the values
of local observables and those of global ones.

Proposition 2.13. Let Γ be a standard graph with minimal edge length Lmin.
Let fn be a generic eigenfunction which corresponds to kn > π

Lmin
.

(1) The sum of the spectral positions of all non-trivial Neumann domains is
∑

v∈V\∂Γ

N(Ω(v)
n ) = σ(n) − ω(n) + (E − |∂Γ|) . (2.12)

5Note that π(v) �≡ 0 is equivalent to Image(ρ(v)) being infinite.
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(2) The sum of the wavelength capacities of all non-trivial Neumann domains
is

∑

v∈V\∂Γ

ρ(Ω(v)
n ) =

|Γ| kn

π
− (ω(n) + n) + (E − |∂Γ|) . (2.13)

(3) The difference of the two expressions above is
∑

v∈V\∂Γ

(
N(Ω(v)

n ) − ρ(Ω(v)
n )
)

=
(

n − |Γ| kn

π

)

+ σ(n). (2.14)

Note that in the second part of the proposition, the term |Γ|kn

π may be
perceived as the wavelength capacity for the whole graph (and so it is another
global observable). This is also the value of the well-known Weyl term, which
approximates the spectral position of the eigenvalue kn.

The last part of the proposition is an immediate implication of the first
two parts. We mention it explicitly thanks to its insightful spectral meaning.
The term n − |Γ|kn

π in the RHS is the difference between the actual spectral
position of an eigenvalue kn and the Weyl term. This difference appears in
the so-called trace formula for quantum graphs, where it is expressed as an
infinite sum of oscillatory terms corresponding to periodic orbits on the graph
( [37,38]). In the LHS of (2.14), we have a sum over the local analogues of a
similar quantity, N(Ω(v)

n )−ρ(Ω(v)
n ). It is interesting that the deviation between

the global observable n− |Γ|kn

π and the sum of the local observables, N(Ω(v)
n )−

ρ(Ω(v)
n ), is given by the nodal surplus.

3. Proofs of Bounds and Basic Identities

Proof of Theorem 2.2, (1). The main step in the proof is to show that the
difference between the nodal count and the Neumann count of any generic
eigenfunction f on Γ satisfies the bounds

1 − β ≤ φ (f) − ξ (f) ≤ β − 1 + |∂Γ| . (3.1)

Once we have this, the bounds (2.2) follow by

(1) Observing that if f is the n-th eigenfunction, then φ(f) − ξ(f) = σ(n) −
ω(n).

(2) Applying the bounds for σ(n) when fn is generic (see [18, Thm 2.6], [8,
(1.16)]):

0 ≤ σ(n) ≤ β (3.2)

Now, to prove (3.1) we start with the following decomposition

φ (f) − ξ (f) =
∑

e∈E
φ (f |e) − ξ (f |e) , (3.3)

where φ (f |e) , ξ (f |e) are the nodal and Neumann counts on the edge e.
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Denoting the vertices of e by u, v and the outgoing derivatives of f at
those vertices by ∂ef (v) , ∂ef (u), we show next that

φ (f |e) − ξ (f |e) = − sgn (f (v) ∂ef (v)) + sgn (f (u) ∂ef (u))
2

, (3.4)

where

sgn (x) :=

{
1 x > 0
−1 x ≤ 0

. (3.5)

Clearly, for each e ∈ E we have f |e (x) = Ae cos (ϕe + kx), for some
Ae, ϕe ∈ R and arc-length parametrization x ∈ [0, le]. We continue by
assuming that all edge lengths satisfy le > 2π

k . This assumption is justified
by two observations: (a) extending the interval [0, le] by 2π

k , while keeping
f |e (x) = Ae cos (ϕe + kx) does not change the values and derivatives of f
at the endpoints of the interval (i.e., f(u), f(v), ∂ef(u), ∂ef(v) are not
changed by such an extension); (b) this extension does not change the value
of φ (f |e) − ξ (f |e).

The assumption le > 2π
k guarantees that there are at least two Neumann

points and two nodal points on each edge. Now, examine the sets of nodal and
Neumann points along the edge e. As the locations of these points interlace,
the difference in their count can be either 0 or ±1. To determine the value of
this difference, we only need to know whether a nodal point is the nearest to
the vertex v or is it a Neumann point (and similarly for the vertex u).

If v ∈ V \ ∂Γ, then f (v) ∂ef (v) �= 0 since f is assumed to be generic. If
f (v) ∂ef (v) > 0, then a Neumann point is closer to v than any nodal point,
and if f (v) ∂ef (v) < 0, it is the other way around. If v ∈ ∂Γ, then the nearest
point to v is always a nodal point and by the vertex conditions which f satisfies
we have f (v) ∂ef (v) = 0. The arguments above yield (3.4).

Substituting (3.4) in (3.3) and changing summation to be over vertices
give

φ (f) − ξ (f) = −1
2

∑

v∈V

∑

e∈Ev

sgn (f (v) ∂ef (v))

=
|∂Γ|
2

− 1
2

∑

v∈V\∂Γ

∑

e∈Ev

sgn (f (v) ∂ef (v)) , (3.6)

where moving to the last line, we used that sgn (f (v) ∂ef (v)) = −1 for all
v ∈ ∂Γ. Recalling that f is assumed to be generic we get that if v ∈ V \ ∂Γ
then f (v) ∂ef (v) �= 0 for every e ∈ Ev. But since by Neumann conditions we
have

∑
e∈Ev

f (v) ∂ef (v) = 0, we conclude that this sum must include at least
one positive term and at least one negative term, so that

∀v ∈ V \ ∂Γ,

∣
∣
∣
∣
∣

∑

e∈Ev

sgn (f (v) ∂ef (v))

∣
∣
∣
∣
∣
≤ deg(v) − 2. (3.7)
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Substituting (3.7) in (3.6) and using the identity

2E =
∑

v∈V
deg(v) = |∂Γ| +

∑

v∈V\∂Γ

deg(v) (3.8)

give
∣
∣
∣
∣φ (f) − ξ (f) − |∂Γ|

2

∣
∣
∣
∣ ≤

1
2

∑

v∈V\∂Γ

(deg(v) − 2)

=
1
2

(2E − |∂Γ|) − (V − |∂Γ|) (3.9)

= E − V +
|∂Γ|
2

= β − 1 +
|∂Γ|
2

, (3.10)

which are exactly the bounds (3.1). �

Before proceeding to prove Propositions 2.7 and 2.13, we bring a lemma
which is used in the proofs of both propositions (and in other proofs as well).

Lemma 3.1. Let Γ be a standard graph with minimal edge length Lmin. Let f
be a generic eigenfunction with eigenvalue k > π

Lmin
, and let Ω be a Neumann

domain of f . Then,
(1) Ω is either a star graph or an interval.
(2) f |Ω is a generic eigenfunction of Ω, considered as a standard graph.
(3) The spectral position of Ω equals the nodal count of f |Ω, i.e.,

N(Ω) = φ(f |Ω). (3.11)

Proof of Lemma 3.1. The first statement of the lemma follows quite straight-
forwardly from the assumption k > π

Lmin
. Indeed, for each edge e ∈ E we have

le > Lmin > π
k which implies that the eigenfunction f has at least one Neu-

mann point at each edge. Hence, no Neumann domain contains an entire edge
of the original graph. It follows that a Neumann domain is either an interval
(included in one of the graph edges) or a star graph (which contains one of the
graph’s interior vertices).

Next, we show that f |Ω is a generic eigenfunction of Ω, where Ω is con-
sidered as a standard graph. It is clear that f |Ω is an eigenfunction of Ω. In
addition, f does not vanish nor have vanishing derivatives at interior vertices of
Γ. Hence, the same holds for f |Ω, which means that f |Ω satisfies conditions (2)
and (3) in the genericity definition (Definition 1.3). As mentioned in Remark
1.4, it is enough to conclude that f |Ω is generic since Ω is a tree graph.

Finally, we prove (3.11). The genericity of f |Ω together with Ω being
a tree graph (β = 0) allows to apply (3.2) and conclude that the spectral
position of f |Ω (which is by definition the spectral position of Ω) equals the
nodal count of f |Ω, i.e., N(Ω) = φ(f |Ω). �

Proof of Proposition 2.13. In the current proof, we omit everywhere for
brevity the subscripts ’n’, using k, f and Ω(v) instead of kn, fn and Ω(v)

n

as in the statement of the Proposition.
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Proof of (2.12) Let u ∈ V\∂Γ. We start by applying equation (3.6) from
the proof of Theorem 2.2,(1). We apply (3.6) for the graph Ω(u) and its eigen-
function f |Ω(u) to get

φ (f |Ω(u)) − ξ (f |Ω(u)) =

∣
∣∂Ω(u)

∣
∣

2
− 1

2

∑

e∈Eu

sgn (f (u) ∂ef (u)) . (3.12)

By Lemma 3.1, we get that Ω(u) is a star graph, so that
∣
∣∂Ω(u)

∣
∣ = deg(u).

Lemma 3.1 also gives φ(f |Ω(u)) = N(Ω(u)). Furthermore, ξ(f |Ω(u)) = 0, since
Ω(u) is a Neumann domain and does not contain interior Neumann points.
Substituting all that in (3.12) gives

N
(
Ω(u)

)
=

deg(u)
2

− 1
2

∑

e∈Eu

sgn (f (u) ∂ef (u)) . (3.13)

Summing (3.13) over all u ∈ V\∂Γ and using (3.6) again yield
∑

u∈V\∂Γ

N
(
Ω(u)

)
=

∑

u∈V\∂Γ

deg(u)
2

+ φ (f) − ξ (f) − |∂Γ|
2

. (3.14)

Applying identity (3.8) gives
∑

u∈V\∂Γ

N
(
Ω(u)

)
= φ (f) − ξ (f) + E − |∂Γ| , (3.15)

which proves (2.12) since σ(n) − ω(n) = φ (f) − ξ (f).
Proof of (2.13)
We denote by W the set of all trivial Neumann domains of f . Those

are the Neumann domains which are intervals and do not contain any interior
vertex of the graph. We have that

|Γ| k
π

=
∑

v∈V\∂Γ

ρ
(
Ω(u)

)
+
∑

Ω∈W
ρ (Ω)

=
∑

v∈V\∂Γ

ρ
(
Ω(u)

)
+ |W| , (3.16)

where the first equality follows since the Neumann domains form a partition of
the graph Γ and the second equality follows since for all Ω ∈ W, ρ (Ω) = |Ω|

π k =
1. To complete the proof, we express |W| by using the following counting
argument. Each Neumann domain in W has two boundary points. Each non-
trivial Neumann domain is a star graph (Lemma 3.1) with deg(v) boundary
points (v being the central vertex of the star). So, counting the boundary
points of all Neumann domains of Γ (either trivial or non-trivial) gives 2 |W|+∑

v∈V\∂Γ deg(v). On the other hand, in this sum each Neumann point appears
twice and each boundary point of the graph appears once,

2 |W| +
∑

v∈V\∂Γ

deg(v) = 2ξ(f) + |∂Γ| . (3.17)
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Substituting (3.17), (3.8) and ω(n) = ξ(f) − n in (3.16) gives the required
(2.13). �

Proof of Proposition 2.7. Employing Lemma 3.1, the bounds we need to prove
in (2.7) are equivalent to

1 ≤ φ(f |Ω) ≤ |∂Ω| − 1. (3.18)

These bounds follow immediately from (3.1), when taking Γ = Ω and noting
that ξ(f |Ω) = 0 (no Neumann points within a Neumann domain) and that Ω
is a star graph, so its first Betti number is β = 0. Let us only remark that
the lower bound in (2.7) is trivial since N(Ω) ≥ 1 by definition. Hence, the
lower bound holds even without the condition k > π

Lmin
(as is also mentioned

in Remark 2.8).
Next, we prove the bounds in (2.8). Clearly, the external bounds follow

immediately from (2.7) and we only need to prove the internal bounds,
1
2
(N(Ω) + 1) ≤ ρ(Ω) ≤ 1

2
(N(Ω) + |∂Ω| − 1). (3.19)

The lower bound follows by applying [29, Theorem 1]. With our notations, the
statement of [29, Theorem 1] is k ≥ π

2|Ω| (N +1). From here, the required lower

bound in (3.19) follows, as ρ = |Ω|k
π . We note just as above that this lower

bound holds without assuming k > π
Lmin

(as is also mentioned in Remark 2.8).
We proceed to prove the upper bound in (3.19). It follows from the next

lemma, whose proof is given after the proof of the proposition.

Lemma 3.2. Let Ω be a standard star graph and f be a generic eigenfunction
of Ω with eigenvalue k. Assume that f has no Neumann points. Then, there
exists a dual standard star graph, Ω̃, which satisfies

(1) Both star graphs have the same number of edges, i.e., |∂Ω| =
∣
∣
∣∂Ω̃
∣
∣
∣.

(2) There exists a generic eigenfunction f̃ of Ω̃ with eigenvalue k.
(3) The eigenfunction f̃ has no Neumann points. Hence, it has a single

Neumann domain, which is the whole of Ω̃.
(4) The spectral positions and the wavelength capacities of both graphs obey

N(Ω) + N(Ω̃) = |∂Ω| and ρ(Ω) + ρ(Ω̃) = |∂Ω| (3.20)

Employing Lemma 3.1, we have that Ω is star graph (or an interval, which
is a particular case of a star graph) and that f |Ω is a generic eigenfunction
of Ω with eigenvalue k. Furthermore, as Ω is a Neumann domain, f |Ω has no
Neumann points. Hence, we may apply Lemma 3.2 and write

ρ(Ω) = |∂Ω| − ρ(Ω̃)

≤ |∂Ω| − 1
2
(N(Ω̃) + 1)

= |∂Ω| − 1
2
(|∂Ω| − N(Ω) + 1)

=
1
2
(N(Ω) + |∂Ω| − 1),
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where in the first and the third lines we have used (3.20) from Lemma 3.2;
and in the second line we have applied the lower bound in (3.19) for Ω̃. As a
result, we get the upper bound in (3.19).

This concludes the proof of the proposition, and it is left to provide a
proof for Lemma 3.2, which we do next. �
Proof of Lemma 3.2. The lemma is proved by providing an explicit construc-
tion of the mentioned dual star, Ω̃. We describe this construction below, and
it is also demonstrated in Fig. 2.

Denote by {lj}|∂Ω|
j=1 the edge lengths of the star graph Ω. We take Ω̃ to

be a star graph with the same number of edges, |∂Ω|, and such that the edge
lengths are taken to be l̃j := π

k − lj . So, every edge of Ω has a dual edge
in Ω̃. As usual, we consider Ω̃ to be a standard graph. First, to justify that
the construction above defines a valid graph, we need to show that l̃j > 0 for
all j. This is equivalent to showing that lj < π

k for all j. But this is clear,
since otherwise the derivative of f would vanish somewhere within the edge
ej , which violates the assumption of the lemma.

Note that by construction, statement (1) of the lemma is satisfied and
we need to verify that all other statements (2),(3),(4) hold as well. To do so,
note that f may be written as

∀1 ≤ j ≤ |∂Ω| , f |ej
(x) = Aj cos (k(lj − x)) , (3.21)

where x = 0 at the central vertex, and the coefficients Aj need to satisfy
certain relations to ensure that f satisfies Neumann conditions at the central
vertex. Define a function f̃ on Ω̃ by

∀1 ≤ j ≤ |∂Ω| , f̃ |ẽj
(x) = −Aj cos

(
k(l̃j − x)

)
, (3.22)

where here as well x = 0 at the central vertex. It is easy to see that f̃ satisfies
Neumann condition at all the boundary vertices. At the central vertex, we

(i)

v
1

v
1

u
1

u
3

u
2

v
2

v
2

v
3

v
3

(ii) (iii)

Figure 2. (i) A star graph Ω with three edges (in black) and
an eigenfunction f (in blue) whose derivative does not vanish
in the interior of Ω, so that Ω is a single Neumann domain
of f . (ii) Adding the continuation of each of the restrictions
f |ej

(in dashed red), which corresponds to f̃ |ẽj
(in the proof

of Lemma 3.2). (iii) The star graph Ω̃ (in black) which is the
dual of Ω and the corresponding eigenfunction f̃ (in dashed
red) of Ω̃
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have

f̃ |ẽj
(0) = −Aj cos

(
kl̃j

)
= Aj cos (klj) = f |ej

(0)

f̃ ′|ẽj
(0) = −kAj sin

(
kl̃j

)
= −kAj sin (klj) = −f ′|ej

(0) . (3.23)

Since f satisfies Neumann boundary conditions at the central vertex of Ω and
we have the two relations above, we conclude that f̃ satisfies Neumann vertex
conditions at the central vertex of Ω̃. Hence, f̃ satisfies Neumann vertex con-
ditions at all vertices of Ω̃, and it is therefore an eigenfunction of the standard
graph Ω̃ with an eigenvalue k. Moreover, the relations (3.23) together with the
genericity of f imply that f̃ satisfies conditions (2) and (3) of Definition 1.3
which is enough to conclude that f̃ is generic since Ω̃ is a tree (see Remark
1.4). This proves that statement (2) of the lemma holds.

By construction, the edge lengths of Ω̃ are bounded, l̃j < π
k . This together

with (3.22) shows that f̃ ′ vanishes only at the graph boundary vertices, so that
statement (3) of the lemma holds as well.

Finally, to show statement (4) of the lemma, we compute

ρ(Ω̃) =
|∂Ω|∑

j=1

k

π
l̃j =

|∂Ω|∑

j=1

k

π

(π

k
− lj

)
= |∂Ω| − ρ(Ω).

To compute the spectral position N(Ω̃) we observe that since f̃ was shown to
be generic eigenfunction and since Ω̃ is a star graph with first Betti number
β = 0, it follows (e.g., from (3.2)) that the spectral position N(Ω̃) equals the
nodal count of f̃ . Now, since l̃j < π

k and from (3.22) the number of nodal
points on each edge ẽj is either zero (if kl̃j < π

2 ) or one (if kl̃j > π
2 ). The

genericity of f̃ implies kl̃j �= π
2 (as otherwise f would vanish at the central

vertex). With those observations, we get

N(Ω̃) =
∣
∣
∣
{

1 ≤ j ≤ |∂Ω| : kl̃j >
π

2

}∣
∣
∣

=
∣
∣
∣
{

1 ≤ j ≤ |∂Ω| : klj <
π

2

}∣
∣
∣

= |∂Ω| − N(Ω).

�

4. Review of Existing Tools for Proving the Probabilistic
Statements

4.1. The Characteristic Torus and the Secular Manifold

Let Γ be a standard graph with E = |E| edges. We will use the notation Γ�l to
emphasize the dependence of Γ on its edge lengths, �l ∈ (0,∞)E . Whether or not
Γ�l has k as (a square root of) an eigenvalue is solely determined by the value
of exp(ik�l) :=

(
eikl1 , . . . , eiklE

)
(see [19,31] for this fundamental observation).

Hence, denoting �κ := k�l, we get that a graph’s spectrum is determined by
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the values of �κ modulus 2π. Furthermore, an eigenvalue k of a graph Γ�l may
be characterized by the eigenvalue 1 of the graph Γ�κ (see [3, Subsec. 4.2 ] for
further details). This motivates the following definition and lemma.

Definition 4.1. Let Γ be a graph with E edges.

(1) The flat torus TE := (R/2πZ)E is called the characteristic torus of Γ. We
consider the coordinates of TE as taking values in (0, 2π]E . We also denote
by [ ] : RE → (0, 2π]E the projection to the torus by taking modulus 2π
(with a slight abuse of the usual modulus operator, as 2π is in its image
here, rather than 0).

(2) The following subsets of TE ,

Σ :=
{�κ ∈ TE : 1 is an eigenvalue of Γ�κ

}
and

Σreg :=
{�κ ∈ TE : 1 is a simple eigenvalue of Γ�κ

}
, (4.1)

are called the secular manifold and its regular part.

We note that despite its suggestive name, Σ is not necessarily a smooth
manifold, and it may have singularities. Nevertheless, the set of its regular
points is exactly Σreg, which is a real analytic manifold of dimension E − 1,
see [3,5,17,25].

The following lemma summarizes some results from [3,5,17,25]. The
proofs of all sections of this lemma appear in [3,5,17,25] either explicitly or
between the lines. Nevertheless, for completeness and didactic purpose we pro-
vide in “Appendix B” a concise proof of the Lemma.

Lemma 4.2. [3,5,17,25] Let Γ be a standard graph.

(1) k > 0 is a simple eigenvalue of Γ�l if and only if
[
k�l
]

∈ Σreg.
(2) There exists a family of functions {f�κ}�κ∈Σreg such that

(a) For every �κ ∈ Σreg, f�κ is an eigenfunction of Γ�κ corresponding to
the eigenvalue 1.

(b) For every v, u ∈ V and e ∈ EV , there exist two real trigonometric
polynomials pu,v and qu,v,e such that for every �κ ∈ Σreg:

pu,v(�κ) = f�κ (u) f�κ (v), and (4.2)

qu,v,e(�κ) = f�κ (u) (∂ef�κ (v)). (4.3)

(3) Let k > 0 and �l such that �κ :=
[
k�l
]

∈ Σreg. Denote by f the real
eigenfunction of Γ�l which corresponds to the eigenvalue k. There exists
c ∈ C \ {0} such that for every v ∈ V and e ∈ Ev,

f (v) = cf�κ (v) (4.4)
1
k

∂ef (v) = c∂ef�κ (v) . (4.5)

Note that c may depend on �κ.
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We follow the terminology of [5] and call {f�κ}�κ∈Σreg the canonical eigen-
functions of the graph Γ.

The lemma above emphasizes the importance of the subset Σreg when
dealing with simple eigenvalues. To specialize our discussion for generic eigen-
functions, we need to define the generic manifold,

Σgen := {�κ ∈ Σreg | f�κ is generic} , (4.6)

the properties of which are described in the following lemma.

Lemma 4.3. [5, Thm 3.9], [2], [3, Section 5]
(1) Σgen is a real analytic sub-manifold of Σreg of dimension |E| − 1 and has

finitely many connected components.
(2) Let f be an eigenfunction of Γ�l with eigenvalue k. Then f is generic

⇔ �κ :=
[
k�l
]

∈ ΣG ⇔ f�κ is generic.

The proof of the first part of the lemma can be found in [5, Thm 3.9],
[3, Section 5] (note that our set Σgen is different than the one in [5, Thm 3.9];
yet the proof there carries over to our case). The second part of the lemma is
a straightforward implication of (4.4), (4.5) and (4.6).

4.2. The Barra–Gaspard Measure

We start by introducing the following general framework.

Definition 4.4. [27, Definition 4.19] Let X be a compact metric space, and let μ
be a Borel measure on X. A sequence {xn}n∈N

of points in X is equidistributed
according to μ if for any continuous function f ∈ C (X),

lim
N→∞

1
N

N∑

n=1

f(xn) =
∫

X

fdμ. (4.7)

Lemma 4.5. [27, Exercise 4.4.2] In Definition 4.4, the continuous function f
may be replaced by a Riemann integrable function (i.e., a function whose dis-
continuity set is of μ-measure zero).

Next, we specialize the discussion to graphs and their secular manifolds.

Definition 4.6. Let Γ be a standard graph with edge lengths �l. Let {kn}∞
n=1

be the multi-set of the (square root of) eigenvalues of Γ, where multiple eigen-
values appear more than once in this multi-set. The map ϕ�l : G → TE of the
graph is defined as

ϕ�l(n) :=
[
kn

�l
]
. (4.8)

By Lemma 4.3, we have that ϕ�l : G → Σgen.

Definition 4.7. Define a measure μ�l on the closure of the generic manifold,
Σgen by

dμ�l(�κ) =

{
C
∣
∣
∣�l · n̂

∣
∣
∣ds �κ ∈ Σgen

0 �κ ∈ ∂Σgen,
(4.9)
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where ds is the volume element on Σgen (which is an E − 1 Riemannian man-

ifold), n̂ is the normal to Σgen, and C =
(∫

Σgen

∣
∣
∣�l · n̂

∣
∣
∣ ds
)−1

is a normalization

constant6.

Following [25] we call μ�l, the Barra–Gaspard measure.

Theorem 4.8. [17], [23, Prop. 4.4], [25, Lem. 3.1] Let Γ be a standard graph
with rationally independent edge lengths �l. Then,

(1) The sequence
{
ϕ�l(n)

}
n∈G is equidistributed on Σgen with respect to the

measure μ�l.
(2) The measure μ�l is an �l dependent smooth strictly positive regular Borel

probability measure on Σgen.

Remark 4.9. In the references, [17], [23, Prop. 4.4], [25, Lem. 3.1] similar state-
ments to the above appear for the manifolds Σ and Σreg, with the measure
extended to the larger manifold (and normalized appropriately). Here, we
restrict to Σgen as all statements of the current paper concern generic eigen-
functions and those form a large enough venue for our explorations (see The-
orem 1.6). We further note that as the sequence

{
ϕ�l(n)

}
n∈G is contained in

Σgen and the measure μ�l is supported on Σgen, we employ the above theorem
directly for Σgen and not for its closure Σgen.

Definition 4.10. We say that a set A ⊂ Σgen has measure zero if it has zero
Barra–Gaspard measure, μ�l (A) = 0. We say that A is Jordan if its boundary
∂A ⊂ Σgen is of measure zero.

We do not specify for which �l as the above definitions are �l independent.
To see that observe that for any �l, μ�l has a strictly positive density on Σgen

(see (4.9)). Hence, for any measurable A ⊂ Σgen,

μ�l (A) = 0 ⇐⇒
∫

A
ds = 0. (4.10)

The observation that the indicator function χA is Riemann integrable if and
only if A is Jordan gives:

Corollary 4.11. Let Γ be a standard graph with rationally independent edge
lengths �l. Let A ⊂ Σgen be a Jordan set, then

dG
({

n ∈ G : ϕ�l(n) ∈ A}) = μ�l (A) . (4.11)

It is easy to demonstrate that the corollary above does not hold for sets
whose boundary is not of measure zero. Take, for example, A = ∪n∈Gϕ�l(n)
which violates (4.11), since dG

({
n ∈ G : ϕ�l(n) ∈ A}) = 1, but μ�l (A) = 0.

6The normalization constant is computed explicitly in [2,3,5] as part of the proof of Theorem

1.6. It is given by C = π
L

1
(2π)E

(
1 − Lloops

2L

)
and if �l is rationally independent, then C =

π
L

1
(2π)E d (G).
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4.3. Inversion Map on the Secular Manifold

The following lemma is useful for proving that some probability distributions
are symmetric (Theorem 2.2 and Propositions 2.11 and 2.12). A proof of a
similar lemma is found in [5]. Nevertheless, we provide a concise proof of the
lemma in “Appendix B”.

Lemma 4.12. Let Γ be a standard graph with edge lengths �l. Let I : TE → TE

be the inversion map of the torus, defined by I (�κ) = [−�κ].
(1) Each of the manifolds, Σ, Σreg and Σgen is invariant under the inversion

map.
(2) The restriction of the inversion to the generic part of the secular manifold,

I|Σgen , preserves the Barra–Gaspard measure, μ�l.
(3) For any v, u ∈ V and e ∈ E, there are pu,v and qu,v,e which satisfy the

requirements of Lemma 4.2 (2) and has the following symmetryn anti-
symmetry relations:

pu,v ◦ I =pu,v (4.12)

qu,v,e ◦ I = − qu,v,e. (4.13)

5. Developing Further Tools: Functions on Σgen and Random
Variables on G

This section provides the needed tools for the proofs related to the probabil-
ity distributions of the observables discussed in the paper (Neumann count,
spectral position, wavelength capacity). In order to do so, we first relate those
observables to functions on the secular manifold (Lemma 5.2). Then, we pro-
vide lemmas which aid in determining whether those observables may be con-
sidered as random variables (Lemma 5.3) or not (Lemma 5.4).

5.1. Functions on the Secular Manifold

The next theorem is an essential ingredient in the proofs of the main results
of [5,7].

Theorem 5.1. [5] Let Γ be a graph with first Betti number β. There exists a
function σ on Σgen with the following properties:
(1) For any choice of edge lengths �l ∈ (0,∞)E, let Γ�l be the corresponding

standard graph with generic index set G. Then, for any n ∈ G,

∀n ∈ G, σ(n) = σ(ϕ�l(n)). (5.1)

(2) σ is constant on each connected component of Σgen

(3) σ is anti-symmetric with respect to the inversion I in the following sense

σ (I(�κ)) = β − σ (�κ) . (5.2)

The next lemma is similar in spirit to Theorem 5.1.

Lemma 5.2. Let Γ be a graph with first Betti number β, and let v ∈ V\∂Γ be
an interior vertex of degree deg(v). There exist functions ω, N (v) and ρ(v)

on Σgen with the following properties:
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(1) For any choice of edge lengths �l ∈ (0,∞)E, let Γ�l be the corresponding
standard graph with generic index set G. Then, for any n ∈ G,

ω(n) = ω(ϕ�l(n)). (5.3)

Moreover, denote the minimal edge length by Lmin and the sum of edge
lengths by

∣
∣Γ�l
∣
∣, and let {Ω(v)

n }n∈G be the sequence of Neumann domains
containing v (see Definition 2.10). Then, for any n ∈ G such that n ≥
2 |Γ|

Lmin
,

N(Ω(v)
n ) = N (v)(ϕ�l(n)), and (5.4)

ρ(Ω(v)
n ) = ρ(v)(ϕ�l(n)). (5.5)

(2) The functions ω and N (v) are constant on each connected component of
Σgen.

(3) ρ(v) is real analytic on Σgen.
(4) ω, N (v) and ρ(v) are anti-symmetric with respect to the inversion I in

the following sense

ω(I(�κ)) = β − |∂Γ| − ω(�κ), (5.6)

N (v)(I(�κ)) = deg(v) − N (v)(�κ), and (5.7)

ρ(v)(I(�κ)) = deg(v) − ρ(v)(�κ). (5.8)

Proof. The functions pv,v and qv,v,e (defined in Lemmas 4.2 and 4.12) are
used for expressing the functions ω, N (v) and ρ(v) stated in the lemma. Let
us therefore recall some of their properties that are stated in Lemmas 4.2
and 4.12. For each v ∈ V\∂Γ and e ∈ Ev, the functions pv,v and qv,v,e are
real trigonometric polynomials in �κ that do not vanish on Σgen. Their signs,
sgn(pv,v) and sgn(qv,v,e), are therefore constant on each connected component
of Σgen. Moreover, pv,v and qv,v,e are symmetricn anti-symmetric with respect
to I. That is,

pv,v ◦ I = pv,v, and (5.9)

qv,v,e ◦ I = −qv,v,e. (5.10)

In addition, for any �κ ∈ Σgen, the canonical eigenfunction f�κ (i.e., the eigen-
function of Γ�κ with eigenvalue k = 1) is generic and satisfies:

pv,v (�κ) = |f�κ (v)|2 �= 0, and (5.11)

qv,v,e (�κ) = f�κ (v) ∂ef�κ (v) �= 0. (5.12)

Another useful observation is that since both pv,v and qv,v,e are real, continuous
and non-vanishing on Σgen.

The rest of the proof is divided into three parts, each treating one of the
functions ω, N (v) and ρ(v).

Proof for the Neumann surplus, ω

We refer to the proof of Theorem 2.2, (1) and employ equation (3.6) to
write
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ω(n) = σ(n) − (φ(fn) − μ(fn))

= σ(n) − |∂Γ|
2

+
1
2

∑

v∈V\∂Γ

∑

e∈Ev

sgn
(
fn (v) ∂efn (v)

)
. (5.13)

Now, we express all terms in the RHS of (5.13) as functions on Σgen. By
Theorem 5.1, there exists a function σ on Σgen such that σ(n) = σ(ϕ�l(n)) for
all n ∈ G and the function σ is constant on each connected component of Σgen.
In addition, by (4.3),(4.4) and (4.5) in Lemma 4.2

∀n ∈ G, ∀v ∈ V, ∀e ∈ Ev,
1
kn

fn (v) ∂efn (v) = |c|2 fϕ�l(n)(v)∂efϕ�l(n)(v)

(5.14)

= |c|2 qv,v,e

(
ϕ�l(n)

)
, (5.15)

for some c ∈ C \ {0}. Hence, defining

ω(�κ) := σ(�κ) − |∂Γ|
2

+
1
2

∑

v∈V\∂Γ

∑

e∈Ev

sgn (qv,v,e (�κ)) , (5.16)

we get that for all n ∈ G, ω(n) = ω(ϕ�l(n)), as required. Parts (2) and (4) of the
Lemma (for ω) follow easily. Indeed, ω is constant on each connected compo-
nent of Σgen, as both σ and sgn (qv,v,e) have this property. That ω attains only
finitely many values follows from (5.16) together with the statement that σ
attains finitely many values by Theorem 5.1. In addition, the anti-symmetric
property of ω, (5.6), follows immediately from the anti-symmetry of qv,v,e,
(4.13) and of σ (5.2).

Proof for the spectral position, N (v)

The nth eigenvalue is bounded, kn ≥ π
2|Γ| (n+1), [29, Theorem 1]. Hence,

assuming n ≥ 2 |Γ|
Lmin

as in (5.4), we get that kn > π
Lmin

. This together with
n ∈ G is the required assumptions in Lemma 3.1. That lemma guarantees
that Ω(v)

n is a star graph, that fn|
Ω

(v)
n

is a generic eigenfunction and that

N(Ω(v)
n ) = φ(fn|

Ω
(v)
n

).

To do so, we employ equation (3.6), taking the graph to be Ω(v)
n , and

getting

φ(fn|
Ω

(v)
n

) =
1
2
deg(v) − 1

2

∑

e∈Ev

sgn
(
fn (v) ∂efn (v)

)
(5.17)

=
1
2
deg(v) − 1

2

∑

e∈Ev

sgn
(
fϕ�l(n)(v)∂efϕ�l(n)(v)

)
(5.18)

=
1
2
deg(v) − 1

2

∑

e∈Ev

sgn
(
qv,v,e

(
ϕ�l(n)

))
, (5.19)

where moving to the second line we used (4.4) and (4.5) in Lemma 4.2 and the
last line follows from (4.3). This motivates us to define N (v) : Σgen → N by
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N (v) (�κ) :=
1
2
deg(v) − 1

2

∑

e∈Ev

sgn (qv,v,e (�κ)) . (5.20)

From all the arguments above, we obtain that N(Ω(v)
n ) = φ(fn|

Ω
(v)
n

) =

N (v)(ϕ�l(n)), for any n ∈ G such that n ≥ 2 |Γ|
Lmin

. Parts (2) and (4) of the
Lemma (for N (v)) now follow easily. Indeed, N (v) is constant on connected
components of Σgen, as sgn (qv,v,e) have this property. That N (v) attains only
finitely many values follows immediately from (5.20). In addition, (5.7), the
anti-symmetric property of N (v) follows from the anti-symmetry of qv,v,e,
(4.13).

Proof for the wavelength capacity, ρ(v)

Similar to the previous part of the proof, we get that the assumption
n ∈ G and n ≥ 2 |Γ|

Lmin
in (5.5) implies that Ω(v)

n is a star graph and that fn|
Ω

(v)
n

is a generic eigenfunction. We denote the edges of Ω(v)
n by {ẽj}deg(v)

j=1 and the

corresponding edge lengths by {l̃j}deg(v)
j=1 . With this notation, we may write the

eigenfunction fn|
Ω

(v)
n

as

fn|ẽj
(x) = Cj cos

(
kn(l̃j − x)

)
, (5.21)

for some real coefficients Cj and using the arc-length parametrization x ∈
[0, l̃j ] with x = 0 at the central vertex. The genericity of fn|

Ω
(v)
n

implies that

neither its value nor its derivative vanishes at the central vertex. Since Ω(v)
n is

a Neumann domain, the derivative of fn|
Ω

(v)
n

does not vanish at the interior
of the edges, ẽj . It vanishes only at the boundary vertices. These restrictions
on values and derivatives of fn|ẽj

together with (5.21) imply that for all j,

kn l̃j ∈ (0, π
2

) ∪ (π
2 , π
)
. Hence, using (5.21) we write

tan
(
kn l̃j

)
=

fn|ẽj
· 1

kn
∂ẽj

fn

∣
∣
ẽj

f2
n|ẽj

∣
∣
∣
∣
∣
x=0

=
fϕ�l(n)(v) · ∂ej

fϕ�l(n)(v)

fϕ�l(n)(v)fϕ�l(n)(v)

=
qv,v,ej

(
ϕ�l(n)

)

pv,v

(
ϕ�l(n)

) , (5.22)

where moving to the second line we used (4.4) and (4.5) in Lemma 4.2, and
also identified the edge ẽj of Ω(v)

n as a subset of an edge ej on the whole
graph, so that ∂ẽj

= ∂ej
. The last line in (5.22) follows from (4.2),(4.3). Next,

to express kn l̃j , we use the following branch of the inverse tangent, tan−1 :
R\ {0} → (

0, π
2

) ∪ (π
2 , π
)
, which is valid since we have shown above that

kn l̃j ∈ (0, π
2

) ∪ (π
2 , π
)
. Summing over all edges of the star graph Ω(v)

n gives

ρ(Ω(v)
n ) =

1
π

deg(v)∑

j=1

kn l̃j
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=
1
π

deg(v)∑

j=1

tan−1

(
qv,v,ej

(
ϕ�l(n)

)

pv,v

(
ϕ�l(n)

)

)

.

Hence, to obtain the required relation (5.5), we define the wavelength capacity
function ρ(v) : Σgen → R as

ρ(v)(�κ) :=
1
π

deg(v)∑

j=1

tan−1

(
qv,v,ej

(�κ)
pv,v (�κ)

)

. (5.23)

Parts (3) and (4) of the Lemma (for ρ(v)) now follow. To show that ρ(v) is real
analytic, we first notice that qv,v,ej

and pv,v are real trigonometric polynomials
(on TE) and as such are real analytic on TE . With the aid of the real analytic
version of the implicit function theorem [39], we get that the restrictions of
qv,v,ej

and pv,v to the real analytic manifold Σgen are real analytic, and so does
qv,v,ej

pv,v
, as pv,v does not vanish on Σgen. Since tan−1 is also real analytic, we

get that ρ(v) is real analytic on Σreg.
In addition, the anti-symmetric property of ρ(v),(5.8), follows straight-

forwardly by combining the anti-symmetry of qv,v,e, (5.10), the symmetry of
pv,v, (5.9), and the anti-symmetry of the branch of tan−1 we have chosen,
tan−1(−x) = π − tan−1(x). �

5.2. Observables as Random Variables

This paper concerns various functions (observables) such as the nodal surplus,
σ, the Neumann surplus, ω, the spectral position, N (v) and the wavelength
capacity, ρ(v). All those functions are defined on the generic index set, G. In
this section, we provide the tools needed to show whether such a function may
be considered as a random variable with respect to dG (see Definition 2.1). To
this end, we need to achieve two tasks: first present a well-defined probability
space on G with the probability measure dG ; and second, to show that the
considered function is measurable. Even the first task is non-trivial, as the
density dG is not countably additive on the power set of G and we should
carefully choose our σ-algebra on G to ensure this.

Lemma 5.3. Let Γ be a standard graph with rationally independent edge lengths
�l. Let α : Σgen → R and α : G → R such that

∀n ∈ G, α(n) := α
(
ϕ�l(n)

)
. (5.24)

If each element of the σ-algebra generated by α is a Jordan set (i.e., having
boundary of measure zero), then α is a random variable with respect to dG.
Moreover the probability distribution of α is given by

∀j ∈ Image (α) dG
(
α−1 (j)

)
= μ�l

(
α−1 (j)

)
, (5.25)

where μ�l is the Barra–Gaspard measure (4.9).

Proof. Let Fα be the σ-algebra on G generated by α, and let Fα be
the σ-algebra on Σgen generated by α. These can be described by Fα ={
α−1 (B) : B ⊂ R is Borel

}
and similarly for Fα . Let B ⊂ R be a Borel
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set and consider the two sets, α−1 (B) ⊂ G and α−1 (B) ⊂ Σgen, so that
α−1 (B) =

{
n ∈ G : ϕ�l(n) ∈ α−1 (B)

}
. By the assumption, α−1 (B) is Jor-

dan since it is an element in Fα . Hence, by Corollary 4.11:

μ�l
(
α−1 (B)

)
= dG

(
α−1 (B)

)
. (5.26)

This proves (5.25) and that every element in Fα has density. In order to con-
clude that dG is a probability measure on (G,Fα) we are left with showing that
dG is σ-additive on Fα and dG (G) = 1. Since the image of α is countable, then
dG is σ-additive on Fα if for any subset J ⊂ Image (α),

dG
(∪j∈Jα−1 (j)

)
=
∑

j∈J

dG
(
α−1 (j)

)
. (5.27)

This follows from (5.26), using α−1 (J) = ∪j∈Jα−1 (j) and the fact that μ�l is
a measure (hence σ-additive):

dG
(
α−1 (J)

)
=μ�l

(
α−1 (J)

)
=
∑

j∈J

μ�l
(
α−1 (j)

)
=
∑

j∈J

dG
(
α−1 (j)

)
. (5.28)

Applying (5.26) to B = R gives:

dG (G) = dG
(
α−1 (R)

)
= μ�l

(
α−1 (R)

)
= μ�l (Σgen) = 1. (5.29)

Therefore, dG is a probability measure on (G,Fα), and so α is a random variable
with respect to dG (see Definition 2.1). �

The lemma above is used in order to show that all the observables dis-
cussed in the paper, with the exception of ρ(v), are random variables (see proofs
for Theorem 2.2 and Proposition 2.11). In the other direction, the next lemma
aids in showing that there are observables (we believe that ρ(v) is such) which
cannot be considered as random variables.

Lemma 5.4. Let Γ be a standard graph with rationally independent edge lengths
�l. Let α : Σgen → R be a Riemann integrable function (i.e., having discontinu-
ity set of measure zero), and define α : G → R by

∀n ∈ G, α(n) := α
(
ϕ�l(n)

)
. (5.30)

If α is a random variable with respect to dG, then there exists X ⊂ Σgen of full
measure, μ�l (X) = 1, such that Image (α|X) is countable.

Remark 5.5. As an immediate corollary from the lemma above, we deduce that
if α : Σgen → R is continuous and non-constant on some connected open set,
then α is not a random variable. Due to this we cannot generally regard the
wavelength capacity, ρ(v), as a random variable. For the wavelength capacity to
be considered as a random variable, we need that the corresponding function
on the secular manifold, ρ(v) be constant on each connected component of
Σgen. This is unlikely by (5.23) (see also numerical findings in Sect. 8) and we
even make a stronger conjecture that there is no open set of Σgen at which
ρ(v) is constant (see Remark 7.2).
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Proof of Lemma 5.4. Observe that the image of α is countable and that for any
value j ∈ Image (α), the set α−1(j) ⊂ Σreg is measurable since α is a measur-
able function (it is even Riemann integrable). Define X := �j∈Image(α)α

−1(j).
We will show that for all j ∈ Image(α), μ�l(α

−1(j)) ≥ dG(α−1(j)) and conclude

μ�l(X) =
∑

j∈Image(α)

μ�l(α
−1(j)) ≥

∑

j∈Image(α)

dG(α−1(j))

= dG(�j∈Image(α)α
−1(j)) = dG(G) = 1, (5.31)

where the first equality follows since μ�l is a measure and X = �j∈Image(α)α
−1(j)

is a disjoint countable union; and all equalities on the second lines are by
assumption of the lemma that dG is a probability measure. The statement of
the lemma now follows from (5.31) and μ�l(X) ≤ μ�l(Σ

gen) = 1. It is left to fin-
ish the proof by showing that for all j ∈ Image(α), μ�l(α

−1(j)) ≥ dG(α−1(j)),
which we do next.

Let j ∈ Image(α) and denote the closure of α−1(j) by A = α−1(j).
Notice that the points in A \ α−1(j) are discontinuity points of α. Since α
was assumed to be Riemann integrable, then A \ α−1(j) is of measure zero
and so

μ�l(α
−1(j)) = μ�l(A). (5.32)

Using that μ�l is a regular measure (Theorem 4.8) we have that for every ε > 0,
there exist an open set Uε such that A ⊂ Uε and μ�l (Uε\A) < ε. By Urysohn’s
lemma, there exist a continuous function fε : Σgen → [0, 1] supported inside
Uε and such that fε|A ≡ 1. By this construction,

∀n ∈ α−1(j), fε(ϕ�l(n)) = 1. (5.33)

Denoting G(N) := {n ∈ G : n ≤ N}, we get

dG(α−1(j)) = lim
N→∞

∣
∣
{
n ∈ G(N) : n ∈ α−1(j)

}∣
∣

|G(N)|
≤ lim

N→∞
1

|G(N)|
∑

n∈G(N)

fε(ϕ�l(n))

=
∫

Σgen
fεdμ�l

=
∫

A
fεdμ�l +

∫

Uε\A
fεdμ�l

< μ�l (A) + ε = μ�l
(
α−1(j)

)
+ ε, (5.34)

where moving to the third line we use that
{
ϕ�l(n)

}
n∈G is an equidistributed

sequence and fε is continuous, and the last equality is due to (5.32). As (5.34)
holds for every ε > 0, we get the required inequality μ�l(α

−1(j)) ≥ dG(α−1(j)),
which finishes the proof. �
Remark. We note that the results of the current subsection (Lemmata 5.3 and
5.4) may be similarly proved for a general compact metric space, a measure on
it and a corresponding equidistributed sequence. Also, the random variables
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discussed above are scalars, but the same statements hold for random vector
variables whose range of definition is Rn (for any n ∈ N).

6. Probability Distributions of the Neumann Count and the
Spectral Position

6.1. Existence and Symmetry of the Probability Distributions (Proofs of The-
orem 2.2,(2), and Proposition 2.11)

Proof of Theorem 2.2,(2). We wish to apply Lemma 5.3 in order to show that
the Neumann surplus, ω : G → Z, is a random variable with respect to dG . For
this purpose, we use the function ω : Σgen → Z, whose existence and properties
are established in Lemma 5.2 and in particular, ω(n) = ω(ϕ�l(n)) for all n ∈ G.
By Lemma 5.2, the function ω is constant on connected components of Σgen.
Let Fω be the σ-algebra generated by ω. Then, each element in Fω is a
union of connected components of Σgen. Σgen has a finite number of connected
components, by Lemma 4.3, and each of them is both open and close since
Σgen is locally connected. Hence, each element in Fω is also open and closed
and as such has no boundary and is Jordan. This is exactly the condition in
Lemma 5.3, by which we get that ω is a random variable with respect to dG .
Furthermore, ω is a finite random variable. Indeed, by the above Image(ω) is
finite and so Image(ω) is finite as well7. This completes the proof of part (2a)
of the theorem.

To prove the next two parts of the theorem note that another implication
of Lemma 5.3 is

∀j ∈ Image(ω), dG(ω−1(j)) = μ�l(ω
−1(j)). (6.1)

Let j be such that ω−1(j) �= ∅, so ω−1 (j) �= ∅. As argued above, ω−1(j)
is an open set. This together with μ�l being strictly positive (Theorem 4.8,(2))
yields μ�l(ω

−1(j)) > 0. By (6.1), this proves part (2b) of the theorem.
Finally, to prove part (2c) of the theorem, we use the inversion map,

I : �κ �→ [−�κ] which acts on Σgen. Since by Lemma 4.12 (2), I preserves the
measure μ�l we have

∀j μ�l(ω
−1(j)) = μ�l(I(ω−1(j)))

= μ�l((ω ◦ I)−1 (j))

= μ�l(ω
−1(β − |∂Γ| − j)), (6.2)

where in the second line we used that I is an involution and the third line is
obtained from (5.6), which reads (ω ◦ I) (�κ) = β − |∂Γ| − ω(�κ). Combining
(6.2) with (6.1) gives the desired symmetry of the probability distribution.
�

7This was also proven in Theorem 2.2,(1).
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The next proof is quite similar to the previous one. The only essential
difference8 is in introducing an auxiliary random variable with respect to dG .

Proof of Proposition 2.11. We start by recalling the function N (v) : Σgen →
N, whose existence and properties are established in Lemma 5.2 and introduce
Ñ (v) : G → N by

∀n ∈ G, Ñ (v)(n) = N (v)(ϕ�l(n)). (6.3)

Following exactly the same arguments as in the beginning of the preceding
proof (proof of Theorem 2.2,(2)), we get that Ñ (v) is a finite random variable
with respect to dG . We need to obtain a similar statement for N (v). To do so,
we note that by (5.4) and (6.3)

∀n ∈ G s.t. n ≥ 2
|Γ|

Lmin
, N (v)(n) = Ñ (v)(n), (6.4)

where Lmin is the minimal edge length of Γ and |Γ| is the sum of all edge
lengths. Thanks to (6.4), for any Borel set B ⊂ R the pre-images

(
N (v)

)−1
(B)

and
(
Ñ (v)

)−1

(B) differ by a finite number of elements from Gsingletons. Since

the density of
(
Ñ (v)

)−1

(B) exists (because Ñ (v) is a random variable with

respect to dG), so does the density of
(
N (v)

)−1
(B), and both are equal. A

similar argument shows that dG is a probability measure on the σ-algebra
generated by N (v), and so N (v) is a random variable with respect to dG . It
is finite since Ñ (v) is finite and their images may differ by at most a finite
number of values. This proves the first part of the proposition.

To prove the second part, we use the inversion map, I : �κ �→ [−�κ] which
acts on Σgen. By Lemma 2 I preserves the measure μ�l, and so

∀j μ�l

((
N (v)

)−1

(j)
)

= μ�l

(

I
((

N (v)
)−1

(j)
))

= μ�l

((
N (v) ◦ I

)−1

(j)
)

= μ�l

((
N (v)

)−1

(deg(v) − j)
)

,

where in the second line we used that I is an involution and the third line is
obtained from (5.7), which reads

(
N (v) ◦ I) (�κ) = deg(v)−N (v)(�κ). To finish

the proof observe that

∀j dG

((
N (v)

)−1

(j)
)

= dG

((
Ñ (v)

)−1

(j)
)

= μ�l

((
N (v)

)−1

(j)
)

,

(6.5)

where the first equality was shown above, and the second follows from (5.25)
in Lemma 5.3. �
8This difference is due to the special role which is played by a finite number of eigenvalues
appearing in the beginning of the spectrum—see details within the proof.
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6.2. The Neumann Count Distribution of (3, 1)-Regular Trees (Proof of The-
orem 2.6)

Theorem 2.6 is proved using the following.

Definition 6.1. A bridge (or cut-edge) of a graph Γ is an edge of Γ, whose
removal increases the number of connected components of Γ.

Proposition 6.2. Let Γ be a standard graph with rationally independent edge
lengths. Let Γ̃ be a sub-graph of Γ such that all edges between Γ̃ and Γ\Γ̃
are bridges of Γ. Let ṽ be a vertex of Γ̃ with degree deg(ṽ) > 1 and denote its
spectral position random variable by N (ṽ). Further denote by

−→
N (Γ\Γ̃) the vector

of all the spectral position random variables of interior vertices (of Γ) in Γ\Γ̃.
Then,

∀ 1≤j ≤ dṽ − 1, P

(
N (ṽ) =j | −→N (Γ\Γ̃)

)
=P

(
N (ṽ) =dṽ − j | −→N (Γ\Γ̃)

)
. (6.6)

Namely, N (ṽ) is symmetrically distributed, independently of all spectral posi-
tion random variables of Γ\Γ̃.

Before proving the proposition above, we first point out and prove a few
of its implications, the last of which is exactly the statement of Theorem 2.6.

Corollary 6.3. Let Γ be a standard graph with rationally independent edge
lengths.

(1) If Γ is a tree graph and v, u ∈ V\∂Γ are two different vertices, then their
spectral positions are uncorrelated random variables.

(2) If Γ is a (3, 1)-regular tree graph, then its spectral position random vari-
ables

{
N (v)

}
v∈V\∂Γ

are mutually independent.
(3) If Γ is a (3, 1)-regular tree graph, then the probability distribution of the

random variable −ω − 1 is binomial, Bin(|∂Γ| − 2, 1
2 ).

Proof. Proof of part (1). To apply Proposition 6.2 choose for Γ̃ any sub-graph

of Γ which contains v, but does not contain u (we may even choose Γ̃ to be
just v). Since Γ is a tree, each of its edges is a bridge and hence indeed any
such choice of Γ̃ satisfies the conditions of Proposition 6.2.

Now, as a particular case of (6.6) we get that

∀ 1 ≤ j ≤ dv − 1, P

(
N (v) = j |N (u)

)
= P

(
N (v) = dv − j |N (u)

)
(6.7)

and so

E

[(

N (v) − dv

2

)(

N (u) − du

2

)]

=
dv−1∑

j=1

du−1∑

i=1

(

j − dv

2

)(

i − du

2

)

P

(
N (v) = j ∧ N (u) = i

)

=
dv−1∑

j=1

du−1∑

i=1

(

j − dv

2

)(

i − du

2

)

P

(
N (v) = j |N (u) = i

)
P

(
N (u) = i

)
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=
du−1∑

i=1

(

i − du

2

)

P

(
N (u) = i

) dv−1∑

j=1

(

j − dv

2

)

P

(
N (v) = j |N (u) = i

)
= 0,

(6.8)

where the sum over j in the last line contains terms which cancel each other
by (6.7) and so the whole sum vanishes. By Proposition 2.11,(2) we have
E
[
N (v) − dv

2

]
= E

[
N (u) − du

2

]
= 0, and so E

[(
N (v) − dv

2

) (
N (u) − du

2

)]
=

E
[
N (v) − dv

2

]
E
[
N (u) − du

2

]
and N (v)− dv

2 , N (u)− du

2 are uncorrelated random
variables. We conclude that N (v), N (u) are uncorrelated random variables.

We remark that the calculation in (6.8) may be extended to include not
just two individual vertices, but any two sets of vertices, and thus prove a more
general statement.

Proof of part (2)
Let ṽ be a vertex of Γ\∂Γ. Namely, ṽ is not a boundary vertex, and so

as Γ is (3, 1)-regular, dṽ = 3. Choose Γ̃ to be ṽ and apply (6.6) in Proposition
6.2, with dṽ = 3 and j = 1 to get

P

(
N (ṽ) = 1 | −→N (V\ṽ)

)
= P

(
N (ṽ) = 2 | −→N (V\ṽ)

)
, (6.9)

where
−→
N (V\ṽ) indicates the vector of random variables of spectral positions of

all non-boundary vertices of Γ except ṽ. Now, as N (ṽ) gets only the two values
1 and 2, we obtain that it is independent from all other random variables in−→
N (V\ṽ), as stated in part (2) of the Proposition.

Proof of part (3)
Applying (2.12) in Proposition 2.13 gives

∑

v∈V\∂Γ

N (v) = σ − ω + (|E| − |∂Γ|). (6.10)

As Γ is a tree graph, we have |E| = |V| − 1 and σ ≡ 0 (see (3.2)) and so

ω = −
∑

v∈V\∂Γ

N (v) + |V\∂Γ| − 1, (6.11)

which we rewrite as

− ω − 1 =
∑

v∈V\∂Γ

(
N (v) − 1

)
. (6.12)

The right-hand side of (6.12) is a sum of independent random variables, N (v)−
1, as is proven in the previous part. In addition, by Proposition 2.11 (2), each
N (v) − 1 is a symmetric Bernoulli random variable (it obtains 0 and 1, each
with probability 1

2 ), and so their sum is distributed as Bin(|V\∂Γ| , 1
2 ). To

prove the required statement, we only need to show that |V\∂Γ| = |∂Γ| − 2,
which follows from

|E| = |V| − 1 and 2 |E| = 3 |V\∂Γ| + |∂Γ| . (6.13)

The first equality above comes from Γ being a tree and the second from sum-
ming all vertex degrees and using that Γ is (3, 1)-regular. �
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We proceed to prove Proposition 6.2. The next lemma forms an essen-
tial tool toward this proof. This lemma is of similar spirit to Lemma 4.12; it
provides an involution of the secular manifold, which is applicable for a graph
that contains a bridge.

Lemma 6.4 [5, Lem. 4.15]. Let Γ be a standard connected graph. Let e be a
bridge of Γ and denote by Γ1,Γ2 the sub-graphs of Γ which are the two con-
nected components of Γ\{e}. Let v be the vertex of Γ1 which is connected to e.
There exists a map Rv,e : TE → TE (which we call the bridge-inversion map)
such that

(1) The bridge-inversion is an involution, (Rv,e)2 = Id.
(2) Each of the manifolds, Σ, Σreg and Σgen is invariant under the bridge-

inversion.
(3) The restriction of the bridge-inversion to the generic part of the secular

manifold, Rv,e|Σgen , is a map which preserves the Barra–Gaspard mea-
sure, μ�l.

(4) For every u ∈ V and e ∈ Eu the functions pu,u and qu,u,e (defined in
Lemmas 4.2 and 4.12) satisfy the following symmetryn anti-symmetry
with respect to Rv,e:

∀�κ ∈ Σreg, pu,u (Rv,e (�κ)) = pu,u (�κ) , (6.14)

and

∀�κ ∈ Σreg, qu,u,e (Rv,e (�κ)) =

{
qu,u,e (�κ) u ∈ V1

−qu,u,e (�κ) u ∈ V2

. (6.15)

The proof of this lemma may be found within the proofs of [5, Lem. 4.15]
and [3, Lem. 4.42].

Proof of Proposition 6.2. This proof is somewhat similar in spirit to the one
of Proposition 2.11 (2), where it was proven that the spectral position of any
vertex is a symmetric random variable. Yet, to prove that it is not only sym-
metric, but independently symmetric (when conditioning on spectral position
of other vertices), requires some more work.

Let Γ, Γ̃ and ṽ as in the statement of the proposition. Let j ∈ N and
let �n be a vector of natural numbers of length

∣
∣
∣Γ\
(
∂Γ ∪ Γ̃

)∣
∣
∣. So, to prove the

proposition we need to show that

P

(
N (ṽ) = j ∧ −→

N (Γ\Γ̃) = �n
)

= P

(
N (ṽ) = dṽ − j ∧ −→

N (Γ\Γ̃) = �n
)

. (6.16)

Translating (6.16) into densities gives

dG

((
N (ṽ)

)−1

(j) ∩
(−→
N (Γ\Γ̃)

)−1

(�n)
)

= dG

((
N (ṽ)

)−1

(dṽ − j) ∩
(−→
N (Γ\Γ̃)

)−1

(�n)
)

. (6.17)
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This may be further translated into the corresponding Barra–Gaspard measure
on the secular manifold,

μ�l

((
N (ṽ)

)−1

(j) ∩
(−→
N (Γ\Γ̃)

)−1

(�n)
)

= μ�l

((
N (ṽ)

)−1

(dṽ − j) ∩
(−→
N (Γ\Γ̃)

)−1

(�n)
)

, (6.18)

where N (ṽ) and
−→
N (Γ\Γ̃) are the spectral position functions on the secular

manifold which are introduced in Lemma 5.2. The argument for translating
the natural densities, dG to the Barra–Gaspard measure, μ�l , is as in the proof
of Proposition 2.11 (see (6.5) there).

We proceed to prove (6.18). Let {ei}m
i=1 be all the edges which connect

Γ̃ to Γ\Γ̃. By assumption, all those edges are bridges. For each ei denote by vi

the vertex of Γ̃ which is connected to ei. Further denote by Γi the connected
component of Γ\ei which does not contain Γ̃. With those notations, we may
write the following decomposition of the graph

Γ = Γ̃ ∪
m⋃

i=1

ei ∪
m⋃

i=1

Γi, (6.19)

which is disjoint up to the vertices at the endpoints of the bridges {ei}m
i=1.

Consider the following composition of involutions, I · Rv1,e1 · . . . · Rvm,em
and

note that all those involutions are μ�l measure preserving (Lemma 4.12,(2) and
Lemma 6.4,(3)). Therefore, in order to prove (6.18) it is enough to show that

I ◦ Rv1,e1 ◦ . . . ◦ Rvm,em

((
N (ṽ)

)−1

(j)
)

=
(
N (ṽ)

)−1

(dṽ − j) (6.20)

and

I ◦ Rv1,e1 ◦ . . . ◦ Rvm,em

((−→
N (Γ\Γ̃)

)−1

(�n)
)

=
(−→
N (Γ\Γ̃)

)−1

(�n). (6.21)

To verify both, we recall that (see (5.20))

∀v ∈ V, N (v)(�κ) =
1
2
dv − 1

2

∑

e∈Ev

sgn (qv,v,e (�κ)) (6.22)

and that (by Lemmas 4.12 and 6.4)

∀v ∈ V ∀e ∈ Ev, qv,v,e (I (�κ)) = −qv,v,e (�κ) , (6.23)

∀v ∈ V ∀e ∈ Ev, qv,v,e (Rvi,ei(�κ)) =

{
qv,v,e (�κ) v ∈ Γ\Γi

−qv,v,e (�κ) v ∈ Γi

. (6.24)

Each vertex v ∈ Γ\Γ̃ belongs to exactly one of the Γi graphs, so by (6.23)
and (6.24) we have that (6.22) is invariant under I ◦ Rv1,e1 ◦ . . . ◦ Rvm,em

(as
each sgn (qv,v,e) is inverted twice by its action and hence unchanged). This
implies

N (v)(I ◦ Rv1,e1 ◦ . . . ◦ Rvm,em
(�κ)) = N (v)(�κ), (6.25)
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which proves (6.21). Similarly, any vertex ṽ ∈ Γ̃ is not contained in any of the
Γi graphs and so by (6.23) and (6.24) we have that each sgn (qṽ,ṽ,e) in (6.22)
is inverted once by the action of I ◦ Rv1,e1 ◦ . . . ◦ Rvm,em

. This implies

N (ṽ)(I ◦ Rv1,e1 ◦ . . . ◦ Rvm,em
(�κ)) = deg(v) − N (ṽ)(�κ) (6.26)

and proves (6.20). �

7. Probability Distribution of the Wavelength Capacity (Proof
of Proposition 2.12)

The proof of Proposition 2.12 is based on the existence and properties of the
function ρ(v) defined on Σgen (Lemma 5.2). In the proof, we need to argue
that some level sets of ρ(v) are of measure zero. To show it we use that Σgen

(and actually even Σreg) is a real analytic manifold [3,5,25] and the following.

Lemma 7.1. Let M ⊂ TE be a connected real analytic manifold of dimension
E − 1, and let dμ be its volume element. Let g be a real analytic function on
M.

(1) Either g|M ≡ 0 or the zero set of g is of co-dimension at least one in M.
(2) If g is not constant on M, then the pre-image by g of any set of (Lebesgue)

measure zero is of μ-measure zero.

Proof. Denote the zero set of g by Zg := {�κ ∈ M| g (�κ) = 0} . Choose some
atlas {(Un, ϕn)} for M, such that for all n, ϕn : Un → On ⊂ RE−1. Since
M is a real analytic manifold and g is real analytic, we get that for all n,
gn := g ◦ ϕ−1

n is real analytic on On ⊂ RE−1. By [41, Prop. 3] we get that
either gn|On

≡ 0 or its zero set, ϕn (Zg ∩ Un) is of co-dimension at least one
in RE−1. Hence, either g|Un

≡ 0 or Zg ∩Un has a positive co-dimension in Un.
We use this dichotomy to define

N1 := {n : Un ⊂ Zg}
N2 := {n : Zg ∩ Un has a positive co-dimension in Un}

and

A = ∪n∈N1Un, B = ∪n∈N2Un.

Clearly, A ∩ B = ∅ and so we get the partition of M = A � B as a union of
disjoint open sets. Since M is connected, we get either A = M which implies
g|M ≡ 0 or B = M which implies that Zg is of positive co-dimension in M
and proves the first part of the lemma.

To prove the second part of the lemma, consider the gradient of gn which
we denote by ∇gn : On → RE−1 and its zero set which we denote by Z∇gn

.
Each of the components of ∇gn is real analytic, since gn itself is real analytic.
Next, apply the argument from the first part of the proof for each component
∂ign of the gradient. We get that either the zero set of ∂ign is On or it is
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of positive co-dimension. If for all components ∂ign the zero set is On, this
implies that gn is constant on Un. We denote

N3 := {n : gn is constant}
N4 := {n : gn is not constant}

and

C = ∪n∈N3Un, D = ∪n∈N4Un.

Exactly as above we get that since M is connected either C = M or D = M. In
the former case g is constant on M. But, g is not constant by the assumption
of our lemma and so D = M and gn is not constant (for any n). By the
argument above, this means that for each n there exists ∂ign, whose zero set
is of positive co-dimension, which implies that the zero set of the gradient,
∇gn is of positive co-dimension and hence is of measure zero (with respect to
Lebesgue measure on RE−1). This is the condition stated in [45, Thm. 1], from
which we deduce that if B ⊂ R is of measure zero, then g−1

n (B) ⊂ RE−1 is
of measure zero. Therefore, ϕ−1

n (g−1
n (B)) = g−1(B) ∩ Un is of μ-measure zero

and this holds for all charts (since D = M). Hence, we get that g−1(B) is of
μ-measure zero. �

Proof of Proposition 2.12. The first step in the proof is to express the LHS of
(2.11) as

∀a < b, dG

((
ρ(v)
)−1

((a, b))
)

= μ�l

((
ρ(v)

)−1

((a, b))
)

, (7.1)

where ρ(v) : Σgen → R is the real analytic function whose existence and
properties specified in Lemma 5.2. In order to show (7.1), we need to argue
that

(
ρ(v)

)−1
((a, b)) is a Jordan set and then apply Corollary 4.11.

To prove that
(
ρ(v)

)−1
((a, b)) is a Jordan set, we start by noting that

ρ(v) : Σgen → R is a continuous function (being even real analytic). Hence, for
every open I ⊂ R

∂

{(
ρ(v)

)−1

(I)
}

=
(
ρ(v)

)−1

(I)\
(
ρ(v)

)−1

(I)

⊂
(
ρ(v)

)−1 (
I
) \
(
ρ(v)

)−1

(I) =
(
ρ(v)

)−1

(∂I) (7.2)

where and ∂ denote, correspondingly, the closure and boundary operators
(in R or in Σgen according to the context). Now using that I is open we get
I ∩ ∂I = ∅ and in particular,

(
ρ(v)

)−1
(I) ∩ (ρ(v)

)−1
(∂I) = ∅. As the first set

is open and the second is closed, we have

∂

{(
ρ(v)

)−1

(I)
}

∩
{(

ρ(v)
)−1

(∂I)
}◦

= ∅, (7.3)
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where ◦ denotes the interior operator. Combining (7.3) with (7.2) yields the
stronger inclusion

∂

{(
ρ(v)

)−1

(I)
}

⊂ ∂

{(
ρ(v)

)−1

(∂I)
}

. (7.4)

In particular, choosing I = (a, b) gives

∂

{(
ρ(v)

)−1

((a, b))
}

⊂ ∂

{(
ρ(v)

)−1

(a)
}

∪ ∂

{(
ρ(v)

)−1

(b)
}

. (7.5)

Hence, since Σgen has finitely many connected components (Lemma 4.3)
and by Lemma 7.1, we get that each of

{(
ρ(v)

)−1
(a)
}

and
{(

ρ(v)
)−1

(b)
}

is a finite union of connected components of Σgen and sets of positive co-
dimension in Σgen. The boundary of a connected component of Σgen is an
empty set9. The boundary of a set of positive co-dimension has itself pos-
itive co-dimension and is therefore of measure zero. Hence, the boundaries
∂
{(

ρ(v)
)−1

(a)
}

and ∂
{(

ρ(v)
)−1

(b)
}

are of measure zero and by (7.5) we

conclude that ∂
{(

ρ(v)
)−1

((a, b))
}

is also of measure zero. We conclude that
(
ρ(v)

)−1
((a, b)) is indeed a Jordan set and may now apply Corollary 4.11 and

get

dG

(

ϕ�l
−1

((
ρ(v)

)−1

((a, b))
))

= μ�l

((
ρ(v)

)−1

((a, b))
)

. (7.6)

From here, we obtain (7.1) from the beginning of the proof by observing that
the sets ϕ�l

−1
((

ρ(v)
)−1

((a, b))
)

and
(
ρ(v)
)−1

((a, b)) differ by at most finitely
many elements. Indeed, this was shown in (5.5) of Lemma 5.2.

Having shown (7.1), the first part of the proposition is therefore equiva-
lent to

μ�l

((
ρ(v)

)−1

((a, b))
)

=
∫ b

a

π(v) (x) dx +
∑

xj∈(a,b)

p(v) (xj) , (7.7)

for any interval (a, b), where π(v) is a density function and p(v) is a discrete
measure supported on the finite set {xj}m

j=1. To define p(v) recall that Σgen

has finitely many connected components (Lemma 4.3), denote the connected
components on which ρ(v) is constant by {Mi}m

i=1 and denote their union by

Σgen
disc = ∪m

j=1Mj . (7.8)

Let {xj}m
j=1 be the values of ρ(v) on Σgen

disc such that ρ(v)|Mi
≡ xi. Note that

not all xi are necessarily different. Define a discrete measure on R by

p(v) :=
m∑

j=1

μ�l (Mj) δxj
, (7.9)

9We have shown in the proof of Theorem 2.2, (2) that a connected component of Σgen is
open and closed and hence, it has an empty boundary.
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where δxj
is the Dirac measure at xj . For any Borel set B ⊂ R,

p(v) (B) = μ�l

(

Σgen
disc ∩

(
ρ(v)

)−1

(B)
)

. (7.10)

Denote the complement Σgen
cont = Σgen \Σgen

disc and define ζ(v) := ρ(v)
∗
(
μ�l|Σgen

cont

)

as the push-forward by ρ(v) of the restricted Barra–Gaspard measure μ�l|Σgen
cont

.
Namely, for any Borel B ⊂ R,

ζ(v) (B) = μ�l

(

Σgen
cont ∩

(
ρ(v)

)−1

(B)
)

. (7.11)

Summing (7.10) and (7.11) gives that for any Borel B ⊂ R,

ζ(v) (B) + p(v) (B) =μ�l

((
ρ(v)

)−1

(B)
)

.

We will now show that ζ(v)(B) + p(v)(B) is a decomposition of a measure to
an absolutely continuous part and a discrete part10. As p(v) was defined as a
discrete measure, we only need to show that that ζ(v) is absolutely continuous.
Once proving that ζ(v) is absolutely continuous, we may prove (7.7) by defining
π(v) (x) as the Radon–Nykodym derivative of ζ(v) with respect to the Lebesgue
measure, so that we get dζ(v) (x) = π(v) (x) dx.

The measure ζ(v) is absolutely continuous if for every B ⊂ R of Lebesgue
measure zero, ζ(v) (B) = 0. Let B ⊂ R of Lebesgue measure zero and let
M be a connected component of Σgen

cont, with the volume element dμ. As M
is a connected real analytic manifold and the restriction ρ(v)|M is a non-
constant real analytic function, we may use Lemma 7.1,(2) to deduce that
μ((ρ(v))−1(B) ∩ M) = 0. Since μ and the restriction of the Barra–Gaspard
measure μ�l|M are equivalent, we get that also μ�l((ρ

(v))−1(B) ∩ M) = 0. As
this holds for every connected component of Σgen

cont, taking the union gives

ζ(v) (B) = μ�l
(
ρ(v)−1

(B) ∩ Σgen
cont

)
= 0, (7.12)

which finishes the first part of the proof.
Next, we prove part (2) of the proposition,

π(v)(x) = π(v)(deg(v) − x) and p(v)(x) = p(v)(deg(v) − x). (7.13)

By (5.8) in Lemma 5.2, we have that ρ(v) (I (�κ)) = deg(v) − ρ(v) (�κ), where
I : �κ �→ [−�κ] is the inversion (see Sect. 4.3). If Mi is a connected component
of Σgen

disc, on which ρ(v)|Mi
≡ xi then I (Mi) is a connected open subset of Σgen

on which ρ(v)|I(Mi) ≡ deg(v) − xi. It follows I (Mi) is contained in some Mj ,
connected component of Σgen

disc. Since I2 (Mi) = Mi then in fact I (Mi) = Mj ,
with xj = deg(v) − xi. This argument shows that Σgen

disc is I invariant, and
since we know that Σgen is also I invariant (Lemma 4.12 (1)) then so does

10Actually, we conjecture that there is no connected component on which ρ(v ) is constant,
and so p(v) ≡ 0. See Remark 7.2 after the proof.
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Σgen
cont. Given the relation ρ(v) (I (�κ)) = deg(v) − ρ(v) (�κ), then for any Borel

set B ⊂ R and its reciprocal set:

deg(v) − B := {deg(v) − x : x ∈ B} , (7.14)

we have

I
(

Σgen
disc ∩

(
ρ(v)

)−1

(B)
)

= Σgen
disc ∩

(
ρ(v)

)−1

(deg(v) − B) , and

I
(

Σgen
cont ∩

(
ρ(v)

)−1

(B)
)

= Σgen
cont ∩

(
ρ(v)

)−1

(deg(v) − B) .

The symmetry of both p(v) and ζ(v) is now a consequence of I being μ�l pre-
serving (Lemma 4.12):

p(v) (B) =μ�l

(

Σgen
disc ∩

(
ρ(v)

)−1

(B)
)

= μ�l

(

Σgen
disc ∩

(
ρ(v)

)−1

(deg(v) − B)
)

=p(v) (deg(v) − B)

ζ(v) (B) =μ�l

(

Σgen
cont ∩

(
ρ(v)

)−1

(B)
)

= μ�l

(

Σgen
cont ∩

(
ρ(v)

)−1

(deg(v) − B)
)

=ζ(v) (deg(v) − B) .

�

Remark 7.2. We conjecture that the probability distribution of the wavelength
capacity does not contain a discrete part, namely that p(v) ≡ 0. In view of the
proof above, this is equivalent to the function ρ(v) not being constant on
connected components of Σgen. Apart from an intuition (as demanding ρ(v)

to be constant is highly restrictive) our conjecture is supported by numerical
investigations, which show no atoms for the probability distribution of ρ(v) on
various graphs (see discussion in Sect. 8 and Fig. 5).

8. Discussion and Open Problems

This paper presents Neumann domains on metric (quantum) graphs. Neumann
domains may be perceived as the counterpart of nodal domains. Nodal domains
are sub-graphs which are bounded by the zeros of the eigenfunction, whereas
Neumann domains are sub-graphs bounded by zeros of the eigenfunction’s
derivative. This close similarity between nodal domains and Neumann domains
calls for a comparison. On the one hand, there are analogous results for both:
bounds and probability distributions of their counts (compare Theorem 5.1
for Neumann count with [5, Theorem 2.1] for nodal count). Yet, there are
also similar statements which have different incarnations. The nodal count of
graphs with disjoint cycles is similar to the Neumann count of (3, 1)-regular
tree graphs—both counts have binomial distributions (compare [5, Theorem
2.3] with Theorem 2.6 here).

A useful viewpoint for comparison between the nodal count and the Neu-
mann count is the perspective of inverse problems, namely which information



3430 L. Alon and R. Band Ann. Henri Poincaré

on the underlying graph is stored in the nodaln Neumann count sequence11.
A partial (but quite satisfying) answer lies in Corollary 2.3. By this corollary,
the expected value of the nodal surplus distribution equals 1

2β, where β is the
first Betti number of the graph; and the expected value of the Neumann nodal
surplus distribution equals 1

2 (β − |∂Γ|), where |∂Γ| is the size of the graph’s
boundary. An easy demonstration of the difference between these two ‘pieces’
of information may be given in terms of tree graphs. By Corollary 2.3, it is evi-
dent that the nodal surplus distribution reveals whether the underlying graph
is a tree (β = 0) or not. Furthermore, all tree graphs have exactly the same
nodal count sequence [1,44,46], which distinguishes them from any non-tree
graph [7]. But, this also means that the nodal count sequence does not store
any information which allows to distinguish between different trees. For tree
graphs, the Neumann surplus sequence is more informative as it predicts |∂Γ|,
the size of the tree’s boundary. Furthermore, we find numerically that there
are trees, which share the same boundary size, yet their Neumann surplus
distributions are different (though with the same expected value); see Fig. 3.
This raises the additional challenge of exposing which information is stored in
the Neumann surplus sequence beyond the value of β − |∂Γ|.

Having demonstrated the differences between the nodal count and the
Neumann count, let us consider also uniting their forces. Namely, what we can
infer on the underlying graph if we know both its nodal count sequence and
its Neumann count sequence. A simple calculation, taking into account that
the minimal degree of an interior vertex is at least three, gives

V ≤ 2β + 2 |∂Γ| − 2

E ≤ 3β + 2 |∂Γ| − 3.

The above shows that knowing the values of β and |∂Γ| (which are stored in
the nodal and Neumann count sequences), bounds the number of vertices and
edges and by this restricts the possible candidates to a finite set of graphs. This
is a huge progress in solving the inverse problem, as it reduces the infinitely
many possible graphs (e.g., in the example of tree graphs mentioned above) to
a finite number.

A related inverse problem concerns isospectrality. Isospectral graphs are
graphs which share the same eigenvalues. It was conjectured that such graphs
would have different nodal count [32], or in other words that nodal count
resolves isospectrality12. This conjecture in its most general form has been
refuted by now in [16,24,35,42]. Yet, given the discussion above, one may ask
whether isospectrality is resolved by combining both the nodal count and the
Neumann count.

The next step would be to investigate the joint probability distribution of
the nodal and Neumann surpluses. See Fig. 4. This figure shows in particular

11Here we do not claim that the nodaln Neumann surplus can be measured in an experiment
and applied to reveal the graph’s properties. We merely treat the problem from a theoretical
point of view as is common in the spectral geometry community.
12The scope of the conjecture was actually broader than just for quantum graphs, and it
was stated also for isospectral manifolds and isospectral discrete graphs.
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(i) Γ1 (ii) Γ2 (iii) Γ3

Pr
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Figure 3. The Neumann surplus distribution of three differ-
ent trees with the same boundary size, |∂Γ| = 5. The expected
value of all three probability distributions is the same, but
the distributions themselves are different. The numerical data
were calculated for ∼ 106 eigenfunctions per graph

that the random variables σ and ω are dependent. It is interesting to study
the correlation coefficient between both corr(σ, ω) := E[(σ−E[σ])(ω−E[ω])]√

V[σ]V[ω]
, where

E and V indicate the corresponding expected values and variances. In this
context, see also in “Appendix A” a related discussion on the bounds for ω−σ
and for ω.

We end the discussion of the Neumann surplus distribution with

Conjecture 8.1. Let
{
Γ(m)

}∞
m=1

be a sequence of standard quantum graphs
each with rationally independent edge lengths. Denote by β(m) and

∣
∣∂Γ(m)

∣
∣

the first Betti number and the boundary size of the graph Γ(m), cor-
respondingly. Denote by ω(m) the Neumann surplus random variable of
Γ(m). If we assume that the graphs in the sequence increase, in the sense
limm→∞

(
β(m) +

∣
∣∂Γ(m)

∣
∣
)

= ∞, then

ω(m) − E
[
ω(m)

]

√
V
[
ω(m)

]
D−−−−→

m→∞ N(0, 1), (8.1)
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0 β
1-β

-1

β+1

2β-1

β
1-β

-1

β+1

2β-1

(a)

(b)

Figure 4. The nodal and Neumann statistics for a random
6 regular graph with 16 vertices. The upper two figures show
the probability distributions of the nodal surplus, σ, and the
Neumann surplus, ω. The lower left figure shows the joint
probability distribution, as a 2d histogram of the pair (σ, ω)
in a log scale. The support of (σ, ω) in this example is bounded
by 7 ≤ σ ≤ 26, 4 ≤ ω ≤ 28 and −16 ≤ σ − ω ≤ 17. The white
diagonal lines (a) and (b) in the lower left figure represent the
support of σ−ω. In the lower right figure, the support of (σ, ω)
is presented with respect to the bounds on ω and σ − ω. The
region which contains the allowed values for σ − ω is shaded
with gray colors; light gray is for the ω bounds of Theorem
2.2 (1) and dark gray for Conjecture 2.4. The numerical data
were calculated for ∼ 106 eigenfunctions
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where the convergence is in distribution and N(0, 1) is the standard normal
distribution.

Observe that (8.1) describes a convergence of finitely supported distri-

butions,
ω(m)−E[ω(m)]
√

V[ω(m)]
, in to a continuous distribution, N (0, 1). This can only

happen if the size of the support of ω(m) is unbounded. The size of the sup-
port of ω(m) is bounded by 3β + |∂Γ|−2 according to Theorem 2.2 (1), and by
β+|∂Γ|+2 if Conjecture 2.4 is true. Both bounds diverge if and only if β+|∂Γ|
diverges, which is why we consider the limit, limm→∞

(
β(m) +

∣
∣∂Γ(m)

∣
∣
)

= ∞,
in the conjecture.

Note that by Corollary 2.3 it is known that E
[
ω(m)

]
= 1

2 (β(m)−∣∣∂Γ(m)
∣
∣),

but we do not have a general expression for the variance. There are a few
sources of support toward this conjecture. First, by Theorem 2.6, we get that
the conjecture holds for an increasing family of (3, 1)-regular tree graphs.
Indeed, the Neumann surplus of each such graph is binomially distributed,
so that the central limit theorem guarantees the convergence to the normal
distribution, as in the conjecture. Furthermore, we tested the validity of this
conjecture by various numerical explorations. We have checked increasing fam-
ilies of graphs such as random d-regular graphs and complete graphs. For each
such family, we have calculated the Kolmogorov–Smirnov distance from a nor-
mal distribution and observed that this distance converges to zero in the limit
of increasing graphs. We also provide an analytic evidence to the above con-
jecture in an ongoing work, where we prove that families of stowers and man-
darins (see “Appendix A”) satisfy the above conjecture. Finally, both authors
together with Berkolaiko conjecture a similar statement for the nodal surplus.
See [4] for the exact details, as well as supportive evidence. We believe that
the work on these two conjectures should be done in parallel and that their
confirmation might occur simultaneously.

We dedicate the last part of the discussion to the role of the local observ-
ables: the spectral position and the wavelength capacity. Those serve as a
fundamental tool for studying Neumann domains. Analogous observables are
defined for Neumann domains on manifolds [11–14]. For manifolds, estimating
the spectral position may serve as a tool toward calculating the asymptotics
of the Neumann count. But, determining the spectral position of a Neumann
domain on a manifold is a hard task (even numerically). To aid this, it was
shown in [6] that the wavelength capacity13 is bounded from above in terms
of the spectral position. Hence, computation of the former allows to estimate
the latter and tackle the problem mentioned above. In the current paper we
show that even a stronger connection exists for quantum graphs—bounds from
both sides of the wavelength capacity are expressed in terms of the spectral
position.

Taking the perspective of inverse problems, we consider the probabil-
ity distributions of the wavelength capacity, π(v) and p(v), as described in

13The analogue of the wavelength capacity for manifolds is called the area to perimeter ratio
in [6].
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Figure 5. The top line shows a graph with two marked ver-
tices v and u such that deg(v) = 5 and deg(u) = 3. Next
to the graph are the probability distributions π(v) and π(u).
The bottom line shows a different graph with a marked vertex
w of deg(w) = 5 and the probability distribution π(w). The
numerical data were calculated for ∼ 106 eigenfunctions per
graph

Proposition 2.12. We ask what information on the graph is stored in those
distributions. First, as those distributions are symmetric around 1

2deg(v), the
degree of that particular vertex is revealed. But, those distributions obviously
do not solely depend on deg(v), as is demonstrated in Fig. 5.

A stimulating problem would be to understand better the probability
distribution π(v) and the information it stores on the graph. In particular,
the exact values at which it gets minima and maxima (see Fig. 5) are yet
unknown. Another numerical observation is that the probability distribution
of the wavelength capacity contains no atoms. Namely, p(v) ≡ 0. We conjecture
that this is always the case—see Remark 7.2.
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Appendix A. Nodal and Neumann Surpluses of Particular
Examples

An intensive numerical investigation led us to believe that the Neumann sur-
plus bounds in Theorem 2.2 are not optimal and to propose better bounds in
Conjecture 2.4. In this appendix, we provide analytic evidence supporting the
conjectured bounds, by calculating the support of the Neumann surplus for
three families of graphs:
(1) Stowers—Proposition A.2.
(2) Mandarins—Proposition A.6.
(3) Trees—Proposition A.12.

See Fig. 6 for examples of a stower and a mandarin. Using the support of the
stowers we deduce that the bounds on σ−ω, as presented in (3.1), are optimal
in terms of β and |∂Γ|.
Remark A.1. Lemmas A.5 and A.9 are developed in collaboration with Gre-
gory Berkolaiko during our joint work on [4].

A.1. Stowers

We say that Γ is an (n,m)-stower graph with n loops (petals) and m tails
(leaves), if it has only one interior vertex v (the central vertex), m boundary
vertices, each connected to the central vertex, and n loops connecting the
central vertex to itself. See Fig. 6 for example. In such case the first Betti
number is β = n and the boundary size is |∂Γ| = m.

Proposition A.2. Let Γ be a stower, then its Neumann surplus ω is bounded
by

1 − |∂Γ| ≤ ω ≤ β − 1. (A.1)

Figure 6. On the left, a stower graph with n = 3 loops and
m = 4 tails. On the right, a mandarin graph with E = 7 edges
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Moreover, if Γ has rationally independent edge lengths, then its Neumann sur-
plus and nodal surplus distributions satisfy

∀j ∈ {1 − |∂Γ| , . . . , β − 1} P (ω = j) > 0

∀j ∈ {1 − β, . . . , β + |∂Γ| − 1} P (σ − ω = j) > 0,

and if |∂Γ| > 0, then

∀j ∈ {0, . . . , β} P (σ = j) > 0. (A.2)

In the case of |∂Γ| = 0, namely Γ is a flower graph, the nodal surplus is
bounded by

1 ≤ σ ≤ β − 1, (A.3)

and

∀j ∈ {1, . . . , β − 1} P (σ = j) > 0. (A.4)

This result shows that for any possible choice of β and |∂Γ| there is a
corresponding stower graph such that its σ − ω sequence achieves both upper
and lower bounds in (3.1). This result supports Conjecture 2.4 and shows that
the bounds in (3.1) are optimal.

To prove Proposition A.2, let us first state the following.

Definition A.3. Let Γ be a stower with m tails and n loops. For distinction,
denote points in TE by (�y, �z) such that �y ∈ Tn corresponds to loops and �z ∈ Tm

corresponds to tails. Call a tail coordinate zj “bad” if either sin(zj) = 0 or
cos(zj) = 0. Similarly, a loop coordinate yi is “bad” if either sin(yi

2 ) = 0 or
cos(yi

2 ) = 0.
Denote the set of points in TE which have at least one “bad” coordinate

by B(1), and the similarly denote the set of points with at least two “bad”
coordinates by B(2).

Remark A.4. Notice that dim
(
B(j)

)
= E − j.

Lemma A.5. Let Γ be a stower with m tails and n loops and consider the
notations of Definition (A.3). Then,

(1) Σgen is given by

Σgen =

{

(�y, �z) ∈ T
E \ B (1) :

m∑

j=1

tan(zj) + 2

n∑

i=1

tan
(yi

2

)
= 0

}

. (A.5)

(2) We denote for (�y, �z) ∈ Σgen

itails(�z) := |{1 ≤ j ≤ m : tan (zj) < 0}| ,
iloops(�y) :=

∣
∣
∣
{

1 ≤ i ≤ n : tan
(yi

2

)
< 0
}∣
∣
∣ .

Then, the Neumann surplus and nodal surplus functions (introduced in
Lemma 5.2) satisfy,

ω (�y, �z) = n − (itails (�z) + iloops (�y)),

σ (�y, �z) = iloops (�y) .
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The proof of Lemma A.5 appears after the proof of Proposition A.2:

Proof of Proposition A.2. According to Theorem 2.2 (2b), Theorem 4.8 and
Lemma 5.2, it is enough to prove that the functions σ and ω, defined on Σgen,
satisfy

Image (ω) = {1 − |∂Γ| , . . . , β − 1} , (A.6)

Image (σ − ω) = {1 − β, . . . , β + |∂Γ| − 1} , (A.7)

and

Image (σ) =

{
{0, . . . β} |∂Γ| > 0
{1, . . . β − 1} |∂Γ| = 0

. (A.8)

Let Γ be a stower with m tails and n loops and consider the notations of
Definition (A.3). For every point (�y, �z) ∈ TE , define tj , si ∈ R ∪ {∞} by
tj := tan (zj) and si := tan

(
yi

2

)
for all coordinates zj and yi. Notice that

(�y, �z) ∈ TE \ B(1) if and only if all tj ’s and sj ’ lie in R \ {0}. According to
Lemma A.5 (1), (�y, �z) ∈ Σgen if and only if (�y, �z) ∈ TE \ B(1) and

m∑

j=1

tj + 2
m+n∑

j=1+m

sj = 0. (A.9)

The itails (�z) and iloops (�y) indices, defined in Lemma A.5 (2), are equal to the
number of negative tj ’s and sj ’s correspondingly. Observe that

0 ≤ itails ≤ m, and (A.10)

0 ≤ iloops ≤ n, (A.11)

however a solution to (A.9) with nonzero tj ’s and sj ’ must have at least one
positive and one negative summands, and therefore

1 ≤ itails + iloops ≤ m + n − 1. (A.12)

Using Lemma A.5 (2) and the bounds in (A.10), (A.11) and (A.12), proves the
corresponding bounds on ω, σ and σ − ω and hence inclusion in (A.6), (A.7)
and (A.8).

In order to prove the actual equalities in (A.6),(A.7) and (A.8), namely
that every value is attained, we show that for any integers it and is satisfying

0 ≤ it ≤ m,

0 ≤ is ≤ n, and
1 ≤ it + is ≤ m + n − 1,

there exist (�y, �z) ∈ Σgen for which itails (�z) = it and iloops (�y) = is. Clearly, one
can construct a solution to (A.9) for which all tj ’s and sj ’ lie in R\{0} and there
are exactly it negative tj ’s and is negative sj ’s. Consider tan−1 : R \ {0} →(
0, π

2

) ∪ (π
2 , π
)

and define zj = tan−1 (tj) for all j ≤ m and yi = 2 tan−1 (si)
for 1 ≤ i ≤ n. By construction, (�y, �z) ∈ Σgen and satisfies itails (�z) = it and
iloops (�y) = is. �

It remains to prove Lemma A.5:
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Proof of Lemma A.5. The first part of the lemma is an explicit characteriza-
tion Σgen. To do so consider the standard graph Γ( �y,�z), i.e., with edge lengths
�l = (�y, �z). In the following, we construct an eigenfunction f of Γ�κ with eigen-
value k = 1, providing the conditions on (�y, �z) ∈ TE for which such an eigen-
function exists.

Let v be the central vertex of Γ, and consider a parametrization of each
tail ej by arc-length parametrization xj ∈ [0, zj ] with xj = 0 at v. Consider a
similar parametrization for each loop ei but let xi ∈ [−yi

2 , yi

2

]
such that xi =

±yi

2 at v. Let f be an eigenfunction of eigenvalue k = 1, then its restriction to
every tail ej can be written as:

f |ej
(xj) = Aj cos (zj − xj) , (A.13)

and its restriction to every loop ei can be written as:

f |ei
(xi) = Ci cos (xi) + Bi sin (xi) . (A.14)

For every loop ei, consider the inversion defined by xi �→ −xi on ei while fixing
Γ \ ei. It is an isometry of Γ( �y,�z) and so we may choose all eigenfunctions of
Γ( �y,�z) to be either symmetric or anti-symmetric with respect to this inversion.
Anti-symmetric eigenfunctions are loop-eigenfunctions (as defined in Sect. 1.3)
and are not generic eigenfunctions (in the sense of Definition 1.3). A loop-
eigenfunction which is supported on ei exists if and only if yi = 2π, in which
case (�y, �z) ∈ B(1).

We call f symmetric if it is symmetric on every loop. If f is symmetric,
then all Bi’s in (A.14) are zero. For symmetric eigenfunctions, the Neumann
vertex condition at v can be written as:

∀j ≤ m Aj cos (zj) = f (v) , (A.15)

∀i ≤ n Ci cos
(yi

2

)
= f (v) , and (A.16)

−k

(
m∑

j=1

Aj sin (zj) + 2
m∑

i=1

Ci sin
(yi

2

)
)

= 0. (A.17)

In particular, for (A.17) to hold there must be at least two nonzero amplitudes
among all Aj ’s and Ci’s. We may deduce from (A.15) and (A.16) that if f is
symmetric with f (v) = 0, then (�y, �z) ∈ B(2).

A symmetric eigenfunction f , with f (v) �= 0, implies that cos (zj) �= 0
for every tail and Aj = f(v)

cos(zj)
by (A.15). Similarly, for every loop, cos

(
yi

2

) �= 0

and Ci = f(v)

cos( yi
2 ) by (A.16). Dividing (A.17) by −kf (v) �= 0, gives

m∑

j=1

tan (xj) + 2
n∑

i=1

tan
(yi

2

)
= 0. (A.18)

In such case, the outgoing derivatives of f at v do not vanish if and only if,

∀j ≤ m sin (zj) �= 0 and ∀1 ≤ i ≤ n sin
(yi

2

)
�= 0. (A.19)
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We may now deduce that f is not generic if (�y, �z) ∈ B(1). Moreover, if (�y, �z) /∈
B(1) then Γ( �y,�z) has an eigenfunction f of eigenvalue k = 1 if and only if
(A.18) holds, and in such case the construction implies that f is unique (up
to a scalar multiplication), f (v) �= 0, and none of the outgoing derivatives of
f at v vanish. Namely, f is generic. This proves Lemma A.5 (1), that is:

Σgen =

⎧
⎨

⎩
(�z, �y) ∈ TE \ B(1) :

m∑

j=1

tan (xj) + 2
n∑

i=1

tan
(yi

2

)
= 0

⎫
⎬

⎭
. (A.20)

To prove Lemma A.5 (2), let (�y, �z) ∈ Σgen and let f be the corresponding
generic eigenfunction of eigenvalue k = 1. Since f must be symmetric, all Bi’s
in are zero, and we may derive the nodal and Neumann counts from (A.13)
and (A.14):

φ (f) =
∣
∣
∣
{

j ≤ m : zj >
π

2

}∣
∣
∣+
∣
∣
∣
∣

{

j ≤ m : zj >
3π

2

}∣
∣
∣
∣+ . . . (A.21)

. . . + 2 |{1 ≤ i ≤ n : yi > π}| , (A.22)

ξ (f) = |{j ≤ m : zj > π}| + n. (A.23)

The nodal and Neumann surpluses are given by subtracting the spectral posi-
tion N (�z, �y) from the above. The spectral position is defined by

N (�y, �z) :=
∣
∣
{
k ∈ (0, 1] : k is an eigenvalue of Γ( �y,�z)

}∣
∣ ,

= |{t ∈ (0, 1] : (t�y, t�z) ∈ Σ}| ,
both counts including multiplicity. In order to avoid multiplicities and to ease
the computations define the “good” set:

M =
{

(�y, �z) ∈ Σgen : ∀t ∈ (0, 1] (t�y, t�z) /∈ B(2) ∪ Σsing
}

. (A.24)

Let (�y, �z) ∈ M and let t ∈ (0, 1) such that (t�y, t�z) ∈ Σ, then (t�y, t�z) ∈ Σreg and
corresponds to an eigenfunction that satisfies f (v) �= 0 since (t�y, t�z) /∈ B(2)

and tyi < 2π for all i ≤ n. Therefore, N (�y, �z) for (�y, �z) ∈ M is given by

N (�y, �z) =

∣
∣
∣
∣
∣
∣

⎧
⎨

⎩
t ∈ (0, 1] :

m∑

j=1

tan (tzj) + 2
n∑

i=1

tan
(
t
yi

2

)
= 0

⎫
⎬

⎭

∣
∣
∣
∣
∣
∣
. (A.25)

Define F( �y,�z) : (0, 1] → R ∪ {∞} by

F( �y,�z) (t) =
m∑

j=1

tan (tzj) + 2
n∑

i=1

tan
(
t
yi

2

)
. (A.26)

If (�y, �z) ∈ M , then only one of the summands of F( �y,�z) (t) can diverge at
each time t ∈ (0, 1] since (t�y, t�z) /∈ B(2). Therefore, the poles of F( �y,�z) (t) are
simple. Since d

dtF( �y,�z) (t) > 0 whenever t is not a pole, then the zeros of F( �y,�z)

are simple and they interlace with the poles. Since the interlacing sequence
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of zeros and poles ends with a zero at F( �y,�z) (1) = 0, we can find N (�y, �z) by
counting poles:

N (�y, �z) =
∣
∣
∣
{

j ≤ m : zj >
π

2

}∣
∣
∣+
∣
∣
∣
∣

{

j ≤ m : zj >
3π

2

}∣
∣
∣
∣+ . . .

. . . + |{1 ≤ i ≤ n : yi > π}| .
Subtracting N (�y, �z) from (A.21) and (A.23) gives the nodal and Neumann
surplus for any (�y, �z) ∈ M :

ω (�y, �z) = n + |{j ≤ m : zj > π}| − N (�z, �y) ,

σ (�y, �z) = |{1 ≤ i ≤ n : yi > π}| ,
which can be rewritten, using itails and iloops (as defined in Lemma A.5 (2)),
by

ω (�y, �z) = n − (itails (�z) − iloops (�y)) . (A.27)

σ (�y, �z) = iloops (�y) . (A.28)

This proves the statement of Lemma A.5 (2) for points in M .
In order to extend this result from M to Σgen we recall that σ and ω are

constant on each connected component of Σgen (Lemma 5.2 and Theorem 5.1).
Observe that itails and iloops are constant on connected components of TE\B(1)

and are therefore constant on connected components of Σgen ⊂ TE \ B(1)

as well. It is thus enough to show that M intersects each of the connected
components of Σgen to conclude that Lemma A.5 (2) holds. To do so, we prove
that M is dense in Σgen.

Consider the open set O = Σgen \ M so that we need to prove that
O = ∅. Consider the cone PO := {(t�y, t�z) : t ∈ (0, 1] , (�y, �z) ∈ O}. By the
definition of PO, it is a union of lines of the form {(t�y, t�z) : t ∈ (0, 1]} for
some (�y, �z) ∈ O. Each such line intersect B(2) ∪ Σsing, by the definition of O,
and each two such lines are either disjoint or one is contained in the other. It
follows that the dimension of PO is bounded by

dim (PO) ≤ dim
(
B(2) ∪ Σsing

)
+ 1 = E − 1. (A.29)

In the last equality, we use Remark A.4 which states that dim
(
B(2)

)
= E −2

and the fact that dim
(
Σsing

) ≤ E −2. On the other hand, by Lemma A.5 (1),

Σgen =
{

(�y, �z) ∈ TE \ B(1) : F( �y,�z) (1) = 0
}

, (A.30)

and since d
dtF( �y,�z) (t) |t=1 > 0 on every (�y, �z) ∈ Σgen, then each of the lines in

PO intersect Σgen transversely. It follows that

dim (PO) = dim (O) + 1. (A.31)

It follows from (A.29) that dim (O) ≤ E −2. However, O is open in Σgen which
is of dim Σgen = E − 1 so O = ∅. Therefore, M is dense in Σgen. �
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A.2. Mandarins

A mandarin graph Γ is a graph with only two vertices and E ≥ 3 edges such
that every edge is connected to both vertices. See Fig. 6, for example. In such
case β = E − 1 and ∂Γ = ∅.

Proposition A.6. If Γ is a mandarin, then its Neumann surplus is bounded by

0 ≤ ω ≤ β, (A.32)

its nodal surplus is bounded by

1 ≤ σ ≤ β − 1, (A.33)

and the difference σ−ω is supported inside the set {1−β, 3−β, 5−β, . . . ,−1+β}.
Moreover, if Γ has rationally independent edge lengths, then its nodal

surplus and Neumann surplus distributions satisfy

∀j ∈ {0, 1, . . . β − 1} P (ω = j) + P (ω = j + 1) > 0,

∀j ∈ {1, . . . β − 2} P (σ = j) + P (σ = j + 1) > 0, and

∀j ∈ {1 − β, 3 − β, 5 − β, . . . , −1 + β} P (σ − ω = j) > 0.

This example supports Conjecture 2.4 and shows that the bounds in (3.1)
can be achieved. To prove Proposition A.6, let us first state the following.

Remark A.7. The bound 1 ≤ σ ≤ β − 1 for mandarin graphs was already
shown in [10].

Definition A.8. Let Γ be a mandarin graph with E edges. Call a coordinate
κj “bad” if either sin(κj

2 ) = 0 or cos(κj

2 ) = 0. Denote the set of points in TE

which have at least one “bad” coordinate by B(1), and the similarly denote
the set of points with at least two “bad” coordinates by B(2).

Lemma A.9. Let Γ be a mandarin with E edges. Define two functions on TE

by,

Fs (�κ) :=
E∑

j=1

tan
(κj

2

)
, and (A.34)

Fa (�κ) :=
E∑

j=1

cot
(κj

2

)
. (A.35)

Then, Σgen has a disjoint decomposition Σgen = Σgen
s � Σgen

a such that

(1) Σgen
s is given by

Σgen
s =

{
�κ ∈ TE \ B(1) : Fs (�κ) = 0, and Fa (�κ) �= 0

}
, (A.36)

and Σgen
a is given by

Σgen
s =

{
�κ ∈ TE \ B(1) : Fs (�κ) �= 0, and Fa (�κ) = 0

}
. (A.37)

In particular, the inversion T (�κ) := [�κ + (π, π, π . . . .)], is an isometry
between the two components, T (Σgen

s ) = Σgen
a .
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(2) Denote for �κ ∈ Σgen

i(�κ) :=
∣
∣
∣
{

1 ≤ j ≤ m : tan(
κj

2
) < 0

}∣
∣
∣ ,

C (�κ) :=

{
1 Fa (�κ) ≤ 0
0 Fa (�κ) > 0

.

The Neumann surplus and nodal surplus functions (introduced in Lemma
5.2 and Theorem 5.1) satisfy, for �κ ∈ Σgen

s ,

σ (�κ) = i (�κ) − C (�κ) , and

ω (�κ) = E − i (�κ) − C (�κ) .

For �κ ∈ Σgen
a , T (�κ) ∈ Σgen

s and

σ (�κ) = σ (T (�κ)) , and

ω (�κ) = ω (T (�κ)) .

Remark A.10. The s, a labeling of Σgen
s ,Σgen

a stands for symmetric and anti-
symmetric, as these parts are defined according to a certain symmetry of the
eigenfunctions. It will be introduced in the proof of the Lemma.

The proof of Lemma A.9 appears after the proof of the Proposition A.6:

Proof of Proposition A.6. Define tj := tan
(κj

2

)
so that �κ ∈ Σgen

s if and only if
tj ∈ R \ {0} for every j and the following conditions hold:

E∑

j=1

tj = 0, and (A.38)

E∑

j=1

1
tj

�= 0. (A.39)

In such case i (�κ) is the number of negative tj ’s, and it is not hard to show
that for any 1 ≤ i ≤ E − 1, one can construct a tuple of tj ’s that satisfy the
above conditions such that the number of negative tj ’s is equal to i. Namely,
there exist �κ ∈ Σgen

s with i (�κ) = i for any 1 ≤ i ≤ E − 1 = β. In such case, by
Lemma A.9 (2),

σ (�κ) = i − C (�κ) ∈ {i, i − 1} ,

ω (�κ) = E − i − C (�κ) ∈ {β + 1 − i, β − i} , and so

σ (�κ) − ω (�κ) = 2i − E.

It follows that the image of σ − ω is {2 − E, 4 − E . . . , E − 2}, and that the
Neumann surplus is bounded by

0 ≤ ω ≤ β. (A.40)

Moreover, it follows that for any j ∈ {0, 1, . . . β − 1}, Image (ω) contains at
least one of j, j+1. Same for Image (σ). Due to the T invariance the restriction
of each of the above functions to Σgen

a has the same image as the restriction
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to Σgen
s . This ends the proof of Proposition A.6 by the same arguments used

in the proof of Proposition A.2.
As already stated, the bound 1 ≤ σ ≤ β − 1 was shown in [10], but

for completeness we will prove that σ (�κ) �= 0 from which the above bounds
follows from symmetry arguments. Assume by contradiction that there is a
point �κ ∈ Σgen

s for which σ (�κ) = 0. It follows that i (�κ) = 1 and C (�κ) = 1.
Without loss of generality assume that the negative tj is t1 so that the tj ’s
satisfy

|t1| =
E∑

j=2

tj , (A.41)

and C (�κ) = 1 implies that
E∑

j=2

1
tj

≤ 1
|t1| =

1
∑E

j=2 tj
. (A.42)

As the tj ’s for j ≥ 2 are strictly positive, we get
∑E

j=2 tj

E − 1
≤ 1

E − 1
1

∑E
j=2

1
tj

<
E − 1
∑E

j=2
1
tj

, (A.43)

which contradicts the means inequality. �

The proof of Lemma A.9 is very similar to that of Lemma A.5, and we
will therefore provide less details.

Proof of Lemma A.9. Let Γ be a mandarin graph, and let v− and v+ denote
its two vertices. Consider Γ�κ for some �κ ∈ TE with arc-length parametrization
xj ∈ [−κj

2 ,
κj

2

]
for every edge ej , such that xj = ±κj

2 at v±. As discussed in
[10], the inversion xj �→ −xj for all edges simultaneously, is an isometry of
Γ�κ and we can choose all eigenfunctions to be symmetricn anti-symmetric. In
particular, define

Σgen
s := {�κ ∈ Σgen : f�κ is symmetric} , and

Σgen
a := {�κ ∈ Σgen : f�κ is anti-symmetric} .

A symmetric eigenfunction f (s) of eigenvalue k = 1 has the structure:

f (s)|ej
(xj) = Aj cos (xj) . (A.44)

As in the proof of Lemma A.5 if f (s) (v±) = 0 then �κ ∈ B(2), and if f (s) (v±) �=
0 then

∀j ≤ E cos (κj) �= 0, (A.45)

and the Neumann vertex condition (on each of the vertices) gives
E∑

j=1

tan (κj) = Fs (�κ) = 0. (A.46)
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In such case, the outgoing derivatives of f (s) does not vanish if and only if

∀j ≤ E sin (κj) �= 0. (A.47)

In particular, as in Lemma A.5, in the case of �κ /∈ B(2) there is a unique (up
to scalar multiplication) construction of a k = 1 symmetric eigenfunction with
f (s) (v±) �= 0 is and only if Fs (�κ) = 0. Moreover, if the eigenfunction is generic
then (A.45) and (A.47) implies that �κ /∈ B(1).

An anti-symmetric eigenfunction f (a) of eigenvalue k = 1 has the struc-
ture:

f (a)|ej
(xj) = Bj sin (xj) . (A.48)

A similar argument would show that in the case of �κ /∈ B(2) there is a unique
(up to scalar multiplication) construction of a k = 1 anti-symmetric eigenfunc-
tion with f (a) (v±) �= 0 is and only if Fa (�κ) = 0. Moreover, if the eigenfunction
is generic, then (A.45) and (A.47) implies that �κ /∈ B(1).

We may conclude that

Σgen
s =

{
�κ ∈ TE \ B(1) : Fs (�κ) = 0, and Fa (�κ) �= 0

}
, and

Σgen
a =

{
�κ ∈ TE \ B(1) : Fs (�κ) �= 0, and Fa (�κ) = 0

}
.

Observe that
(

cos
(

κ+π
2

)

sin
(

κ+π
2

)
)

=
(− sin

(
κ
2

)

cos
(

κ
2

)
)

, and therefore B(1) is invariant to

T and Fs ◦ T = −Fa. It follows that

T (Σgen
s ) = Σgen

a . (A.49)

This proves Lemma A.9 (1). To prove Lemma A.9 (2), consider i (�κ) :=∣
∣
{
j ≤ E : tan

(κj

2

)
< 0
}∣
∣ and let �κ ∈ Σgen

s so that f�κ is symmetric and
generic. Using (A.44), we derive the nodal and Neumann counts:

φ (f�κ) = 2
∣
∣
∣
{

j ≤ E :
κj

2
>

π

2

}∣
∣
∣ = 2i (�κ) , and (A.50)

ξ (f�κ) = E. (A.51)

Similarly, for �κ ∈ Σgen
a , using (A.48),

φ (f�κ) = E, and (A.52)

ξ (f�κ) = 2
∣
∣
∣
{

j ≤ E :
κj

2
>

π

2

}∣
∣
∣ = 2i (�κ) . (A.53)

As in the proof of Lemma A.5 (2), we define a “good” set:

M :=
{�κ ∈ Σgen : ∀t ∈ (0, 1] t�κ /∈ B ∪ Σsing

}
, (A.54)

such that the spectral position for �κ ∈ M is given by

N (�κ) = |{t ∈ (0, 1] : Fs (t�κ) = 0}| + |{t ∈ (0, 1] : Fa (t�κ) = 0}| .
For �κ ∈ M and t ∈ (0, 1) the function t �→ Fa (t�κ) is continuous, and decreasing
from infinity and so

|{t ∈ (0, 1] : Fa (t�κ) = 0}| =

{
1 Fa (�κ) ≤ 0
0 Fa (�κ) > 0

= C (�κ)
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For �κ ∈ M , the function t �→ Fs (t�κ) is increasing and has interlacing poles
and zeros as in the proof of Lemma A.2 and using the same argument we get:

|{t∈ (0, 1] : Fs (t�κ) =0}|=
∣
∣
∣
{

j ≤ E : tan
(κj

2

)
< 0
}∣
∣
∣− 1 +

{
1 Fs (�κ) ≥ 0
0 Fs (�κ) < 0

=i (�κ) − 1 + C (T (�κ)) , (A.55)

so that for any �κ ∈ M ,

N (�κ) = i (�κ) − 1 + C (�κ) + C (T (�κ)) (A.56)

Observe that C (�κ) ≡ 1 on Σgen
a and so C (T (�κ)) ≡ 1 on Σgen

s . Subtracting
N (�κ) from (A.50) and (A.51), for any �κ ∈ M ∩ Σgen

s , gives

σ (�κ) = i (�κ) − C (�κ) , and

ω (�κ) = E − i (�κ) − C (�κ) .

Similarly for �κ ∈ M ∩ Σgen
a ,

σ (�κ) = E − i (�κ) − C (T (�κ)) = i (T (�κ)) − C (T (�κ)) = σ (T (�κ)) ,

ω (�κ) = i (�κ) − C (T (�κ)) = E − i (T (�κ)) − C (T (�κ)) = ω (T (�κ)) .

The same argument as in the proof of Lemma A.2 shows that M is dense in
Σgen and so the above holds for all �κ ∈ Σgen. �

A.3. Trees

As a particular case of Proposition A.2, the Neumann surplus of a star graph
is bounded and gets all integer values between −1 to 1 − |∂Γ|. This result can
be generalized to tree graphs using the following lemma:

Lemma A.11. Let Γ(1) and Γ(2) be tree graphs with edge lengths �l(1) and �l(2),
and let Γ be the tree graph obtained by gluing the two graphs at two boundary
vertices v1 ∈ ∂Γ(1) and v2 ∈ ∂Γ(2). Let f (1) and f (2) be generic eigenfunctions
of Γ(1) and Γ(2) with the same eigenvalue k and define the function f on Γ by:

f |Γ(1) =
1

f (1) (v1)
f (1),

f |Γ(2) =
1

f (2) (v2)
f (2).

Then, f is a generic eigenfunction of Γ with Neumann surplus:

ω (f) = ω (f |Γ(1)) + ω (f |Γ(2)) + 1. (A.57)

Proof. First we show that f is an eigenfunction of Γ. Let x0 be the point in
Γ which is identified with both v1 and v2. As deg(x0) = 2 we will consider it
as an interior point x0 ∈ Γ \ ∂Γ and denote the edge containing x0 by e0. By
construction, the Neumann vertex conditions are satisfied on all vertices of Γ,
and the restrictions of f on every edge e �= e0 satisfies the ODE, f |′′e = −k2f |e.
It is also clear that the latter ODE holds for f restricted to e0 \ {x0}, and we
only need to show that both f and f ′ are continuous at x0 in order to conclude
that f |′′e0

= −k2f |e0 . The normalization of the two parts of f was chosen such
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that, f |Γ(1) (x0) = 1
f(1)(v1)

f (1) (v1) = 1, and in the same way, f |Γ(2) (x0) = 1.
The two directional derivatives at x0 are

f |′Γ(1) (x0) ∝ ∂e1f
(1) (v1) = 0,

f |′Γ(2) (x0) ∝ ∂e2f
(2) (v2) = 0.

This proves that f is an eigenfunction of Γ. By its construction, it satisfies both
conditions (2) and (3) of the genericity in Definition 1.3, and is therefore generic
(see Remark 1.4). Since f is generic, we may consider its nodal count φ (f) and
Neumann count ξ (f). By construction, φ (f) = φ

(
f (1)
)

+ φ
(
f (2)
)

and since
x0 is an interior point on which f ′ (x0) = 0 then ξ (f) = ξ

(
f (1)
)
+ ξ
(
f (2)
)
+1.

Since Γ, Γ(1) and Γ(2) are trees then σ (f) , σ
(
f (1)
)

and σ
(
f (2)
)

are zero (see
(3.2)). Therefore,

ω
(
f (1)
)

= ω
(
f (1)
)

− σ
(
f (1)
)

= ξ
(
f (1)
)

− φ
(
f (1)
)

,

and in the same way

ω
(
f (2)
)

= ξ
(
f (2)
)

− φ
(
f (2)
)

, and

ω (f) = ξ (f) − φ (f) .

Therefore,

ω (f) = ξ (f) − φ (f)

=
(
ξ
(
f (1)
)

− φ
(
f (1)
))

+
(
ξ
(
f (2)
)

− φ
(
f (2)
))

+ 1

= ω
(
f (1)
)

+ ω
(
f (2)
)

+ 1.

�

Proposition A.12. If Γ is a tree graph, then its Neumann surplus is bounded
by

− |∂Γ| + 1 ≤ ω ≤ −1. (A.58)

Moreover, if Γ has rationally independent edge lengths, then its Neumann sur-
plus distribution satisfies:

∀j ∈ {− |∂Γ| + 1,− |∂Γ| + 2 . . . ,−1} P (ω = j) > 0. (A.59)

Proof. Theorem 2.2 (1) ensures that the Neumann surplus of a tree is bounded
between − |∂Γ| + 1 and −1. According to Theorem 2.2 (2b), Theorem 4.8 and
Lemma 5.2, given a fixed value j, if there exist some �l ∈ RE

+ and some generic
eigenfunction f of Γ�l such that ω (f) = j, then for any rationally independent
�l the Neumann surplus distribution has P (ω = j) > 0.

We will prove that for any tree Γ and any j ∈ {− |∂Γ| + 1, . . . − 1},
there exist some �l ∈ RE

+ and some generic eigenfunction f of Γ�l for which
ω (f) = j. The proof is done by induction on the number of interior vertices
Vin := |V \ ∂Γ|, where the case Vin = 1 is a star graph, for which the statement
is true by Lemma A.2.
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Let m > 1 and assume that the statement holds for any tree with Vin <
m. Let Γ be a tree with Vin = m, then there is an edge e0 which is not a tail.
For x0 ∈ e0 which is an interior point, Γ\{x0} has two connected components,
Γ(1) and Γ(2), which are both trees. Clearly, both Γ(1) and Γ(2) have less than
m interior vertices. By the assumption, the statement holds for both Γ(1) and
Γ(2). That is, for each i ∈ {1, 2}, for any ji ∈ {− |∂Γi| + 1, . . . − 1}, there exist
�l(i) and a generic eigenfunction f (i) of Γ(i)

�l(i) with Neumann surplus ω
(
f (i)
)

= ji.

We may scale �l(i) such that f (i) has eigenvalue k = 1. Consider Γ with edge
lengths according to the gluing of Γ(1)

�l(1) and Γ(2)
�l(2) at x0. By Lemma A.11, Γ has

a generic eigenfunction f with

ω (f) = j1 + j2 + 1. (A.60)

By construction |∂Γ| = |∂Γ1| + |∂Γ2| − 2 and so j := j1 + j2 + 1 ranges over
all values between

− |∂Γ|+1=(− |∂Γ1|+1)+(− |∂Γ2|+1)+1≤j ≤−1 − 1+1=−1. (A.61)

By induction, the statement is true for any choice of Vin. This proves the
lemma. �

Appendix B. Proofs of Lemma 4.2 and Lemma 4.12

Proof of Lemma 4.2. We start by providing a basic tool in the spectral analysis
of metric graphs. Let Γ be a standard graph with E := |E| edges. For every
�κ ∈ TE we abuse notation and denote by ei�κ ∈ U(2E) the following unitary
diagonal matrix

ei�κ := diag
(
eiκ1 , eiκ1 , eiκ2 , eiκ2 , . . . , eiκE , eiκE

)
, (B.1)

such that every exponent eiκj appears twice. Given a choice of edge lengths
�l and an eigenvalue k, it is convenient to denote the matrix ei�κ for �κ =

[
k�l
]

by eik�l. There exists an orthogonal matrix S ∈ O(2E), uniquely determined
by the connectivity of Γ, which is independent of the edge lengths and has
the following property. A positive k > 0 is an eigenvalue of Γ if and only if
ker(I− eik�lS) is nontrivial [5, Section 3.2]. This relation is a consequence of an
isomorphism between ker(I− eik�lS) and the k-eigenspace of Γ. Explicitly, this
isomorphism sends a ∈ ker(I − eik�lS) to an eigenfunction f of the eigenvalue
k such that the restriction to every edge e ∈ E , is given by

f |e (x) = aeeikxe−ikle + aêe−ikx, (B.2)

where x ∈ [0, le] is an arc-length parametrization of the edge e ∈ E , and ae, aê

are the two entries of the vector a which correspond to edge e (according to
the indexing of ei�κ which was introduced above). As an implication we get for
each �l an isomorphism between the k-eigenspace of Γ�l and the 1-eigenspace of

Γ�κ, where �κ =
[
k�l
]
. This, together with (4.1) proves part (1) of the Lemma.
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The above argument also implies that �κ ∈ Σreg if and only if dim ker(1−
ei�κS) = 1. For any such �κ value, the adjugate matrix adj(I − ei�κS) is a rank
one matrix. Hence, there exists a non-trivial a ∈ ker(I−ei�κS) such that adj(I−
ei�κS) = aa∗. We use this a to introduce a function f�κ by (B.2). This provides
a family of canonical eigenfunctions {f�κ}�κ∈Σreg , as in the statement of the
lemma. We should note that these functions are not uniquely determined.
This is since the vectors a above are determined only up to a multiplication
by some unitary factor c ∈ U(1); indeed adj(I − ei�κS) = aa∗ is invariant with
respect to such a multiplication of a, and the factor might depend on �κ. Next,
we show that this family of canonical eigenfunctions {f�κ}�κ∈Σreg indeed satisfy
the requirements in the lemma.

First, note that the arguments above already prove parts (2a) and (3)
of the lemma (the c ∈ C factor appears in part (3) since the canonical eigen-
function, f�κ, is not necessarily real). We proceed to prove part (2b) of the
lemma.

Let v ∈ V and e ∈ Ev with arc-length parametrization x ∈ [0, le] such
that v is at x = 0. By (B.2) we get that for each �κ ∈ Σreg,

f�κ (v) = f�κ|e (0) = aee−iκe + aê (B.3)

∂ef�κ (v) = f�κ|′e (0) = i
(
aee−iκe − aê

)
. (B.4)

Observe that each term f�κ(v) or ∂ef�κ(v) is linear in the a entries with coef-
ficients which are taken from (e−iκ1 , . . . , e−iκE ). Therefore, each product of
the form f�κ (u) f�κ (v) or f�κ (u) ∂ef�κ (v) is linear in the aa∗ entries with coeffi-
cients which are trigonometric polynomials (in (κ1, . . . , κE)). But, the entries
of aa∗ = adj(I− ei�κS) are minors of I− ei�κS and so themselves trigonometric
polynomials in (κ1, . . . , κE). Hence, f�κ (u) f�κ (v) is a trigonometric polynomial
in (κ1, . . . , κE), which we denote by pu,v(�κ); and f�κ (u) ∂ef�κ (v) is a trigono-
metric polynomial in (κ1, . . . , κE), which we denote by qu,v,e(�κ). This proves
the relations (4.2) and (4.3) in the lemma, and it is left to show that pu,v

and qu,v,e are actually real trigonometric polynomials. To do this, we redefine
pu,v and qu,v,e to be equal to their real parts and argue that (4.2) and (4.3)
are still valid after such a modification. Indeed, all products f�κ (u) f�κ (v) and
f�κ (u) ∂ef�κ (v) are real since f�κ is an eigenfunction of Γ corresponding a simple
eigenvalue and as such it is real up to a global multiplicative factor. �

Proof of Lemma 4.12. We begin by referring to the proof of Lemma 4.2 above
where it was argued that

�κ ∈ Σ ⇔ dim ker
(
I − ei�κS

)
> 0 (B.5)

and

�κ ∈ Σreg ⇔ dim ker
(
I − ei�κS

)
= 1. (B.6)
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Combining this with the relation

∀�κ ∈ TE , I − eiI(�κ)S = (I − ei�κS), (B.7)

gives

�κ ∈ Σ ⇔ I(�κ) ∈ Σ and �κ ∈ Σreg ⇔ I(�κ) ∈ Σreg, (B.8)

and proves that Σ and Σreg are each invariant under I. We may further deduce
that adj

(
I − eiI(�κ)S

)
= adj (I − ei�κS) and so if a is a vector for which aa∗ =

adj
(
I − ei�κS

)
then a is such that aa∗ = adj

(
I − eiI(�κ)S

)
. These vectors define

f�κ and fI(�κ) by (B.3) and (B.4) and so we get

∀v ∈ V, fI(�κ) (v) = aee−i[I(�κ)]e + aê = aee−iκe + aê and
(B.9)

∀v ∈ V, ∀e ∈ Ev ∂efI(�κ) (v) = i
(
aee−i[I(�κ)]e − aê

)
= −i (aee−iκe − aê).

(B.10)

Comparing the RHS above with (B.3) and (B.4) shows

∀v ∈ V, ∀e ∈ Ev fI(�κ) (v) = cf�κ (v) and ∂efI(�κ) (v) = −c∂ef�κ (v),
(B.11)

where c ∈ U(1) is a multiplicative factor which expresses a degree of freedom in
determining a (alternatively f�κ) and c might depend on �κ; see also in proof of
Lemma 4.2. From (B.11) together with the definition of Σgen, (4.6) we get that
Σgenis invariant under I, which finishes the proof of part (1) of the Lemma.

To continue proving the second part of the lemma, we note that (B.11)
implies in particular that all products f�κ (u) f�κ (v) are I invariant and all
products f�κ (u) ∂ef�κ (v) are I anti-symmetric. As a conclusion, we get that
the real trigonometric polynomials pu,v and qu,v,e that are defined in the proof
of Lemma 4.2 satisfy

∀�κ ∈ Σreg pu,v (I (�κ)) = pu,v (�κ) , and

∀�κ ∈ Σreg qu,v,e (I (�κ)) = −qu,v,e (�κ) . (B.12)

Note that these are almost the required relations (1),(3). But (B.12) holds for
�κ ∈ Σreg, whereas (1),(3) are stated for all �κ ∈ TE . Let us abuse notation
once again and redefine pu,v as pu,v+pu,v◦I

2 and qu,v,e as qu,v,e−qu,v,e◦I
2 . This

ensures that pu,v and qu,v,e are I symmetric and anti-symmetric, respectively,
while being real trigonometric polynomials whose restrictions are equal to the
products f�κ (u) f�κ (v) and f�κ (u) ∂ef�κ (u) for any �κ ∈ Σreg. To show that Σgen

is I invariant, recall that Σgen is the set of �κ ∈ Σreg for which f�κ is generic.
Definition 1.3 for genericity has three conditions, where condition (1) holds if
and only if �κ ∈ Σreg. The other two conditions, (2) and (3), hold if and only if
pu,u (�κ) �= 0 and qv,v,e (�κ) �= 0 for all u ∈ V, v ∈ V \ ∂Γ and e ∈ Ev. As Σreg is
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I invariant and pu,u and qv,v,e are I symmetricn anti-symmetric, then fI(�κ)

is generic if and only if f�κ is and therefore Σgen is I invariant.
The third part of our lemma is stated and proved in [5, lem. 3.13]. �

Appendix C. An Analogue of Proposition 2.7 for Nodal Domains

This appendix provides bounds on the wavelength capacity and the Neumann
count of nodal domains.

Proposition C.1. Let Γ be a standard graph with minimal edge length Lmin. Let
k2 be an eigenvalue of Γ which satisfies k > π

Lmin
. Let ΩD be a nodal domain

of a generic eigenfunction f which corresponds to k. Denote the total length
of ΩD by |ΩD|, its wavelength capacity by ρ(ΩD) := |ΩD|k

π , and its Neumann
count by ξ(ΩD) := ξ(f |ΩD

). The following bounds hold

1 ≤ξ(ΩD) ≤ |∂ΩD| − 1 (C.1)

1 ≤ 1
2

(ξ(ΩD) + 1) ≤ρ(ΩD) ≤ 1
2

(ξ(ΩD) + |∂ΩD| − 1) ≤ |∂ΩD| − 1 (C.2)

Remark C.2. The spectral position of a Neumann domain is equal to its nodal
count. Hence, the bounds (2.7) in Proposition 2.7 may be perceived as the
bounds on the nodal count of a Neumann domain. Therefore, we consider the
bounds in (C.1) of the proposition above as the analogous bounds. Further-
more, there is no interest in bounds for the spectral position of a nodal domain,
as it trivially equals to 1 (see Sect. 1.5).

Proof. We start by noting that the condition k > π
Lmin

guarantees that ΩD is
either a star graph or an interval (see also Lemma 3.1). If ΩD is an interval, the
bounds follow trivially as ξ(ΩD) = 1 and ρ(ΩD) = 1. We proceed by assuming
that ΩD is a star graph. From here, the main argument in the proof is a map
from star graphs which are nodal domains (such as ΩD) to star graphs which
are Neumann domains, as described next. Denote the edge lengths of ΩD by
{lj}|∂ΩD|

j=1 . We may write f |ΩD
on every edge ej of ΩD as

f |ej
(x) = Aj sin (k(x − lj)) x ∈ [0, lj ] , (C.3)

where x = 0 at the central vertex and x = lj at the boundary vertex. The
absence of nodal points in the interior of ΩD together with the genericity of f
imply that klj ∈ (0, π

2

)∪(π
2 , π
)

for each j. We use this to construct an auxiliary
star graph, ΩN , which has the same number of edges, |∂ΩN | = |∂ΩD| and its
edge lengths are given by

∀1 ≤ j ≤ |∂ΩN | , l̃j =

{
lj − π

2k klj ∈ (π
2 , π
)

lj + π
2k klj ∈ (0, π

2

)
.

(C.4)

Define a function f̃ on ΩN by

f̃ |ẽj
(x) = Aj sin (k(x − lj)) x ∈

[
0, l̃j

]
, (C.5)
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for any edge ẽj of ΩN , where Aj and lj are the same as in (C.3). This con-

struction guarantees f̃ ′|ej

(
l̃j

)
= Aj sin

(±π
2

)
= 0 and so f̃ satisfies Neumann

conditions at the boundary vertices of ΩN . In addition, f̃ and f share the same
value and derivatives at the corresponding central vertex (of ΩN and of ΩD).
Hence, f̃ satisfies Neumann vertex conditions at the central vertex of ΩN . We
conclude that f̃ is an eigenfunction of ΩN with eigenvalue k.

Since f and f̃ share the same value and derivatives at the central vertex,
and f is generic, then f̃ satisfies both conditions (2) and (3) of the genericity
in Definition 1.3. In addition, k is a simple eigenvalue of ΩN by an argument
similar to the one which was given in the proof of Lemma 3.1 (this argument is
based on [20, Corollary 3.1.9] and on ΩN being a tree). Therefore, f̃ is generic.
By the construction, f̃ has no interior Neumann points, so that ΩN is a single
Neumann domain of the generic eigenfunction f̃ . In particular, the bounds
on N(ΩN ) and ρ(ΩN ) in Proposition 2.7 apply to it. To finish the proof we
just need to relate N(ΩN ) and ρ(ΩN ) to ξ(ΩD) and ρ(ΩD) and apply those
bounds. The needed relations follow from a simple calculations based on (C.3)
and (C.5):

φ

(

f̃
∣
∣
∣
ΩN

)

+ ξ(ΩD) = |∂ΩD| ,

and

ρ (ΩN ) =
1
π

|∂ΩN |∑

j=1

l̃j =
1
π

⎛

⎝
|∂ΩD|∑

j=1

(
lj +

π

2

)
− πξ (f |ΩD

)

⎞

⎠

= ρ (ΩD) +
|∂ΩD|

2
− ξ(ΩD).

Using the relations above with φ(f̃ |ΩN
) = N(ΩN ) [see (3.11)] and apply-

ing the bounds on N(ΩN ) and ρ(ΩN ) in Proposition 2.7 yield all the desired
bounds in (C.1) and (C.2). �
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mates for spectral minimal partitions of metric graphs. arXiv:2007.01412

[35] Juul, J.S., Joyner, C.H.: Isospectral discrete and quantum graphs with the same
flip counts and nodal counts. J. Phys. A Math. Theor. 51, 245101 (2018)
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