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Abstract. A Laplacian eigenfunction on a manifold or a metric graph imposes a natural
partition of the manifold or the graph. This partition is determined by the gradient vector
field of the eigenfunction (on a manifold) or by the extremal points of the eigenfunction
(on a graph). The submanifolds (or subgraphs) of this partition are called Neumann
domains. Their counterparts are the well-known nodal domains. This paper reviews the
subject of Neumann domains, as appears in [3, 9, 10, 58, 76] and points out some open
questions and conjectures. The paper concerns both manifolds and metric graphs and
the exposition allows for a comparison between the results obtained for each of them.

1. Introduction

Given a Laplacian eigenfunction on a manifold or a metric graph, there is a natural
partition of the manifold or the graph. The partition is dictated by the gradient vector
field of the eigenfunction (on a manifold) or by the extremal points of the eigenfunction
(on a graph). The submanifolds (or subgraphs) of such a partition are called Neumann
domains and the separating lines (or points in the case of a graph) are called Neumann
lines (or points). The counterpart of this partition is the nodal partition (with the same
terminology of nodal domains, nodal lines and nodal points). This latter partition is
extensively studied in the last two decades or so (though interesting results on nodal
domains appeared throughout all of the 20-th century and even earlier). When restricting
an eigenfunction to a single nodal domain one gets an eigenfunction of that domain with
Dirichlet boundary conditions. Similarly, when restricting an eigenfunction to a Neumann
domain, one gets a Neumann eigenfunction of that domain (Lemmata 3.1, 8.1), which
explains the name Neumann domain and shows the most basic linkage between nodal
domains and Neumann domains.

Neumann domains form a very new topic of study in spectral geometry. They were
first mentioned in a paragraph of a manuscript by Zelditch [76]. Shortly afterwards (and
independently) a paper by McDonald and Fulling was dedicated to Neumann domains
[58]. Since then two additional papers contributed to this topic; by one of the authors
with Fajman [10] and by two of the authors with Taylor [9]. The first part of the current
manuscript serves as an exposition of the known results for Neumann domains on two-
dimensional manifolds, adding a few supplementary new results and proofs. The second
part focuses on Neumann domains on metric graphs and reviews the results which will
appear in [3]1. We aim to point out similarities and differences between Neumann domains
on manifolds and those on graphs. For this purpose, each of the two parts of the papers is
divided to exactly the same subtopics: definitions, topology, geometry, spectral position
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1While writing this manuscript, we became aware that there is an ongoing research on the related topic of
Neumann partitions on graphs. These works in progress are done by Gregory Berkolaiko, James Kennedy,
Pavel Kurasov, Corentin Léna and Delio Mugnolo.
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and count. We also include an appendix which contains a short review of relevant results
in basic Morse theory, useful for the manifold part of the paper. The summary of the
paper provides guidelines for comparison between the manifold results and the graph
results. Such a comparison had taught us a great deal in what concerns to the field of
nodal domains and yielded a wealth of new results both on manifolds and graphs. As an
example we only mention the topic of nodal partitions and refer the interested reader to
[7, 17, 19, 21, 22, 25, 30, 43, 45] in order to learn on the evolution of this research direction.
In addition to that, we believe that it is beneficial to compare problems between the fields
of nodal domains and Neumann domains. We point out such similarities and differences
throughout the paper.

Although new in spectral theory, Neumann domains were used in computational ge-
ometry, where they are known as Morse-Smale complexes (see the book [78] or [23] for
an extensive review). They are used as a tool to analyze sets of measurements on certain
spaces and for getting a good qualitative and quantitative acquaintance with the measured
functions [29, 33, 34]. Another field of relevance is computer graphics, where Morse-Smale
complexes of Laplacian eigenfunctions are applied for surface segmentation [32, 42, 65].
Interestingly, recently the interaction between the fields of topological data analysis and
spectral geometry went the other way around; in [64] the notion of persistence barcodes
was used to study topological properties of the sublevel sets of Laplacian eigenfunctions.

Part 1. Neumann domains on two-dimensional manifolds

2. Definitions

Let (M, g) be a two-dimensional, connected, orientable and closed Riemannian manifold.
We denote by −∆ the (negative) self-adjoint Laplace-Beltrami operator. Its spectrum
is purely discrete since M is compact. We order the eigenvalues {λn}∞n=0 increasingly,
0 = λ0 < λ1 ≤ λ2 ≤ . . ., and denote a corresponding complete system of orthonormal
eigenfunctions by {fn}∞n=0, so that we have

(2.1) −∆fn = λnfn.

We assume in the following that the eigenfunctions f are Morse functions, i.e., have no
degenerate critical points2. We call such an f a Morse-eigenfunction. Eigenfunctions are
generically Morse, as shown in [1, 72]. At this point, we refer the interested reader to the
appendix, where some basic Morse theory which is relevant to the paper is presented.
In order to define Neumann domains and Neumann lines we introduce the following con-
struction based on the gradient vector field, ∇f . This vector field defines the flow:

(2.2)

ϕ : R× M →M,

∂tϕ(t, x) = −∇f
∣∣
ϕ(t,x)

,

ϕ(0, x) = x.

The following notations are used throughout the paper. The set of critical points of f
is denoted by C (f); the sets of saddle points and extrema of f are denoted by S (f)
and X (f); the sets of minima and maxima of f are denoted by M− (f) and M+ (f),
respectively.

2These are critical points where the determinant of the Hessian vanishes.
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For a critical point x ∈ C (f), we define its stable and unstable manifolds by

(2.3)
W s(x) = {y ∈M

∣∣ lim
t→∞

ϕ(t, y) = x} and

W u(x) = {y ∈M
∣∣ lim
t→−∞

ϕ(t, y) = x},

respectively. Intuitively, these notions may be visualized in terms of surface topography;
the stable manifold, W s(x), may be thought of as a dale (where falling rain droplets would
flow and reach x) and the unstable manifold, W u(x), as a hill (with opposite meaning
in terms of water flow). An interesting scientific account on those appeared by Maxwell
already in 1870 [56].

Definition 2.1. [10] Let f be a Morse function.

(1) Let p ∈ M− (f) , q ∈ M+ (f), such that W s (p) ∩ W u (q) 6= ∅. Each of the
connected components of W s (p) ∩W u (q) is called a Neumann domain of f .

(2) The Neumann line set of f is

(2.4) N (f) :=
⋃

r∈S (f)

W s(r) ∪W u(r).

Note that the definition above may be applied to any Morse function and not necessarily
to eigenfunctions. Indeed, some of the results to follow do not depend on f being an
eigenfunction. Yet, the spectral theoretic point of view is the one which motivates us to
consider the particular case of Laplacian eigenfunctions.
It is not hard to conclude from basic Morse theory that Neumann domains are two-
dimensional subsets of M , whereas the Neumann line set is a union of one dimensional
curves on M (see appendix). As an example, see Figure 2.1 which shows an eigenfunction
of the flat torus with its partition to Neumann domains. Further properties of Neumann
domains and Neumann lines are described in the next section.

Throughout the paper, we treat only manifolds without boundary, in order to avoid
technicalities and ease the reading. It is possible to define Neumann domains for manifolds
with boundary and to prove analogous results for those. The interested reader is referred
to [10] for such a treatment.

3. Topology of Ω and topography of f |Ω
Let f be an eigenfunction corresponding to an eigenvalue λ and let Ω be a Neumann

domain. The boundary, ∂Ω, consists of Neumann lines, which are particular gradient flow
lines (see appendix). As the gradient ∇f is tangential to the Neumann lines we get that
n̂ · ∇f |∂Ω = 0, where n̂ is normal to ∂Ω. As a consequence we have

Lemma 3.1. [8]f |Ω is a Neumann eigenfunction of Ω and corresponds to the eigenvalue
λ.

This lemma is the reason for the name Neumann domains.

Next, we describe the topological properties of a Neumann domain Ω, as well as the
topography of f |Ω. By topography of a function, we mean the information on its level
sets and critical points.

Theorem 3.2. [10, Theorem 1.4]
Let f be a Morse function with a non-empty set of saddle points, S (f) 6= ∅.
Let p ∈M− (f) , q ∈M+ (f) with W s (p) ∩W u (q) 6= ∅.
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Figure 2.1. Left: An eigenfunction corresponding to eigenvalue λ = 17 of
the flat torus whose fundamental domain is [0, 2π] × [0, 2π]. Circles mark
saddle points and and triangles mark extremal points (maxima by triangles
pointing upwards and vice versa for minima). The nodal set is drawn as
dashed lines and the Neumann line set is marked by solid lines. The Neu-
mann domains are the domains bounded by the Neumann line set.
Right: A magnification of the marked square from the left figure. Three
Neumann domains are marked by (s), (l) and (w) according to the three
distinguished Neumann domain types described in Section 4.1.

Let Ω be a connected component of W s (p) ∩W u (q), i.e., Ω is a Neumann domain.
The following properties hold.

(1) The Neumann domain Ω is a simply connected open set.
(2) All critical points of f belong to the Neumann line set, i.e., C (f) ⊂ N (f).
(3) The extremal points which belong to Ω are exactly p, q, i.e., X (f)∩ ∂Ω = {p, q}.
(4) If f is a Morse-Smale function3 then ∂Ω consists of Neumann lines connecting

saddle points with p or q. In particular, ∂Ω contains either one or two saddle
points (see also Proposition A.7).

(5) Let c ∈ R. such that f(p) < c < f(q). Ω∩f−1 (c) is a smooth, non-self intersecting
one-dimensional curve in Ω, with its two boundary points lying on ∂Ω.

This last theorem contains different properties of Neumann domains: claim (1) concerns
the topology, claims (2),(3),(4) the critical points, and claim (5) the level sets. A special
emphasize should be made for the case when f is a Morse function which is also an
eigenfunction. For Laplacian eigenfunctions we have that maxima are positive and minima
are negative, i.e., f(p) < 0, f(q) > 0, in the notation of the theorem. Hence we may
choose c = 0 in claim (5) above and obtain a characterization of the nodal set which is
contained within a Neumann domain.

Figure 3.1 shows the two possible schematic shapes of Neumann domains of a Morse-
Smale eigenfunction, as implied from the properties above. We complement the figure by

3See appendix for the definition of a Morse-Smale function.



NEUMANN DOMAINS ON GRAPHS AND MANIFOLDS 5

Figure 3.1. Two possible types of Neumann domains for a Morse-Smale
eigenfunction. Circles mark saddle points and triangles mark extremal
points (maxima by triangles pointing upwards and vice versa for minima).
The nodal set is drawn as a dashed line.

noting that there exist Morse functions with Neumann domains of type (ii) but numerical
explorations have not revealed any eigenfunction with a Neumann domain of this type.

Let us compare the results above with similar properties of nodal domains. Nodal
domains are not necessarily simply connected. On the contrary, it was recently found that
random eigenfunctions may have nodal domains of arbitrarily high genus [66]. In addition,
there in no upper bound on the number of critical points in a nodal domain. A particular
nodal domain may have either minima or maxima (but not both) in its interior and saddle
points both in its interior or at its boundary.

4. Geometry of Ω

4.1. Angles. The angles between Neumann lines meeting at critical points are discussed
in [58]. The first two parts of the next proposition summarize the content of Theorems 3.1
and 3.2 in [58] and further generalize their result from the Euclidean case to an arbitrary
smooth metric. The third part of the proposition is new and concern the angles between
Neumann lines and nodal lines. The proof of the first two parts is almost the same as the
one in [58] and we bring it here for completeness.

Proposition 4.1. Let f be a Morse function on a two dimensional manifold with a smooth
Riemannian metric g.

(1) Let c be a saddle point of f . Then there are exactly four Neumann lines meeting
at c with angles π/2.

(2) Let c be an extremal point of f whose Hessian is not proportional to g. Then any
two Neumann lines meet at c with either angle 0, π, or π/2.

(3) Further assume that f is a Morse eigenfunction.
Let c be an intersection point of a nodal line and a Neumann line of f .
If c is a saddle point then the angle between those lines is π/4.
Otherwise, this angle is π/2.

Proof. We start by some preliminaries that are relevant to proving all parts of the propo-
sition. Let c be an arbitrary critical point of f . We may find a local coordinate system
(x, y) around c, such that c = (0, 0) and ∂x, ∂y is an orthonormal basis for the tangent
space TcM with respect to the metric g at c. This means, in particular, that in those
coordinates, g at c is the identity. Thus, we get that the cosine of the angle between any
two vectors, u, v ∈ TcM , where u = ux

∂
∂x

+ uy
∂
∂y

, v = vx
∂
∂x

+ vy
∂
∂y

is given by the usual

Euclidean inner product, uxvx+uyvy, which we abbreviate and denote by 〈u, v〉R2 allowing
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an abuse of notation.
Next, we analyze the Neumann lines which start or end at c. To do that, we keep in
mind that Neumann lines are gradient flow lines which start or end at a saddle point (see
appendix), so we investigate such gradient flow lines. Using [14, Lemma 4.4] we deduce
that the first (matrix-valued) coefficient in the Taylor series expansion of ∇f around c is
Hessf |c, so that

∇f |(x,y) = Hessf |c ·
(
x
y

)
+O

(
‖(x, y)‖2

R2

)
.

Hence, if we parameterize in this local coordinate system a gradient flow line which starts

or ends at c by

(
x (t)
y (t)

)
(so that

(
x (t)
y (t)

)
−→
t→±∞

c), the gradient flow equations, (2.2), may

be written in the vicinity of c as

(4.1)

(
x′ (t)
y′ (t)

)
= −Hessf |c ·

(
x (t)
y (t)

)
+O

(
‖(x (t) , y (t))‖2

R2

)
.

Since the Hessian is symmetric, we may diagonalize it by an orthonormal change of the
coordinates and get

Hessf |c =

(
αx 0
0 αy

)
,

where αx, αy are both non-zero since f is a Morse function. In those new coordinates, g
at c is still the identity. Hence, the assumption in the second part of the proposition, that
the Hessian is not proportional to g, is equivalent to αx 6= αy. In the vicinity of c the
gradient flow equations, (4.1), may now be approximated by(

x′ (t)
y′ (t)

)
=

(
−αx x (t)
−αy y (t)

)
,

where we abuse notation by using (x, y) again to denote the new coordinates which diag-
onalize the Hessian. The solutions of the above are

(4.2)

(
x (t)
y (t)

)
=

(
Axe

−αxt

Aye
−αyt

)
, with Ax, Ay, t ∈ R.

Consider first the case of αx 6= αy both positive, i.e., c is a minimum point. In this
case, all the flow lines (4.2) asymptotically converge to c as t→∞. Recall that αx 6= αy
by assumption. This allows to assume without loss of generality that αy > αx > 0. If
Ax 6= 0, we get that asymptotically as t→∞(

x (t)
y (t)

)
= e−αxt

(
Ax

Aye
−(αy−αx)t

)
∼ e−αxt

(
Ax
0

)
.

Any such flow line is tangential to the ±x̂ direction at c. This gives a continuous family
of gradient flow lines, some of which are actually also Neumann lines (this depends on
whether or not there is a saddle point at their other end, t → −∞). Hence, the possible
angles between any of those Neumann lines at c are either 0 or π. In addition, if Ax = 0,
we get a gradient flow line which is tangential to the ±ŷ direction at c. This gradient flow
line (which is not necessarily a Neumann line) makes an angle of π/2 with all others. This
proves the second part of the proposition if c is a minimum point. The case of a maximum
is proven in exactly the same manner.

Next we prove the first part of the proposition. If c is a saddle point, then αx, αy are
of different signs. The only gradient flow lines, (4.2), which start or end at c are those for
which either Ax = 0 or Ay = 0. At c, these lines are either tangential to x̂ (if Ay = 0) or
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tangential to ŷ (if Ax = 0). These are indeed Neumann lines, as they are connected to a
saddle point (c). There are four such Neumann lines, corresponding to all possible sign
choices (Ax = 0 and Ay is positive\negative or Ay = 0 and Ax is positive\negative). The
angles between any neighbouring two lines out of the four is therefore π/2.

Finally, we prove the third part of the proposition. If c is a critical point, with∇f |c = 0,
and f (c) = 0 then it must be a saddle point, since maxima of a Laplacian eigenfunction
are positive and minima are negative. As f is a Laplace-Beltrami eigenfunction, we get

(4.3) 0 = −λf(c) = ∆f(c) = traceHessf |c.

The sum of Hessian eigenvalues is therefore zero and we may denote those by±α. Choosing
a coordinate system which diagonalizes the Hessian at c = (0, 0), we get

f (x, y) =
1

2

(
αx2 − αy2

)
+O

(
‖(x (t) , y (t))‖3

R2

)
.

This shows that the nodal lines of f at c may be approximated by y = ±x. We have
already seen in the previous part of the proof that the Neumann lines which are connected
to a saddle point, c, are tangential to either the x̂ or the ŷ axis and this gives an angle of
π/4 between neighbouring Neumann and nodal lines.

If c is not a critical point then ∇f |c 6= 0 and we may write df(v) = 〈∇f |c, v〉R2 for
every v ∈ TcM . By taking v in the direction of the nodal line, we get that the angle
between the Neumann line and the nodal line at c is given in terms of 〈∇f |c, v〉R2 , as g is
the identity at c. Now, since f is constant along the nodal line we have df(v) = 0, and
get that the angle between the nodal line and the Neumann line is π/2. �

Remark 4.2. It is also stated in [58, Theorem 3.1] that an angle of π/2 between Neumann
lines at an extremal point is non-generic (or “unstable special case”, citing [58]). The
proof of claim (2) of the proposition clarifies why it is so.

The angles between Neumann lines may be observed in Figures 2.1 and 3.1. The exact
angles in Figure 2.1 are better seen when zooming in (see right part of the figure).

Proposition 4.1 allows to classify Neumann domains to three distinguished types, as
was suggested in [9]. Each Neumann domain has one maxima and one minima on its
boundary. Assume that the Neumann domain is of type (i) as depicted in Figure 3.1, i.e.,
it does not have an extremal point which is connected only to a single Neumann line. We
call a Neumann domain

• star-like if both angles at its extremal points are 0,
• lens-like if both angles at its extremal points are π,
• wedge-like if one of those angles is 0 and the other is π.

Those three types of domains are indicated in Figure 2.1(Right) by (s), (l), (w), corre-
spondingly.

Note that this classification requires a couple of genericity assumptions: that the Hessian
at the extremal points is not proportional to the metric and that Neumann lines do
not meet perpendicularly at an extremal point (see Remark 4.2). Indeed, our numeric
explorations reveal that Neumann domains are categorized into those three types [9].

4.2. Area to perimeter ratio.

Definition 4.3. [35] Let f be a Morse eigenfunction corresponding to the eigenvalue λ
and let Ω be a Neumann domain of f . We define the normalized area to perimeter ratio
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of Ω by

ρ(Ω) :=
|Ω|
|∂Ω|
√
λ,

with |Ω| being the area of Ω and |∂Ω| the total length of its perimeter.

This parameter was introduced in [35] in order to study the geometry of nodal domains.

A related quantity,

√
|Ω|
|∂Ω| , is a classical one, and it is known to be bounded from above

by 1
2
√
π

(isoperimetric inequality [36]). The value |Ω|
|∂Ω| has also an interesting geometric

meaning [57] - it is 1
π

times the mean chord length of the two-dimensional shape Ω. The
mean chord length is defined as follows: consider all the parallel chords in a chosen direction
and take their average length. The mean chord length is then the uniform average over
all directions of that average length4.

There are some numerical explorations, performed to study the values of ρ for Neumann
domains. In [9] the numerics was done for random eigenfunctions on the flat torus, where
the eigenvalues are highly degenerate. More specifically, for a particular eigenvalue, many
random eigenfunctions were chosen out of the corresponding eigenspace and the ρ value
was numerically computed for all their Neumann domains. The obtained probability
distribution of ρ for three different eigenvalues is shown in Figure 4.1,(i). A few interesting
observations can be made from those plots. First, it seems that the probability distribution
does not depend on the eigenvalue - which raises the question of universality of the ρ
parameter. Furthermore, in Figure 4.1,(ii) the distribution was drawn separately for each
of the three types of Neumann domains mentioned in the previous subsection (star, lens
and wedge). The lens-like domains tend to get higher ρ values, star-like domains get lower
values and the wedge-like are intermediate. Another conclusion which may be drawn from
these plots is related to the spectral position of the Neumann domains, which is described
in detail in the next section.

We may compare those results with the ones obtained for the distribution of ρ for
nodal domains [35]. It is shown in [35] that for nodal domains of separable eigenfunctions
π
4
< ρ < π

2
. Furthermore, it is numerically observed there that these bounds are satisfied

with probability 1 for random eigenfunctions. Also, the calculated probability distribution
of ρ for nodal domains looks qualitatively different when comparing to Figure 4.1 (see for
example Figures 1,2,6 in [35]).

5. Spectral position of Ω

Consider a nodal domain Ξ of some eigenfunction f corresponding to an eigenvalue λ.
It is known that f |Ξ is the first eigenfunction (ground-state) of Ξ with Dirichlet boundary
conditions [31]. Equivalently, λ is the lowest eigenvalue in the Dirichlet spectrum of
Ξ. This observation is fundamental in many results concerning nodal domains and their
counting. In this section we consider the analogous statement for Neumann domains. Our
starting point is Lemma 3.1, according to which an eigenvalue λ appears in the Neumann
spectrum of each of its Neumann domains. This allows the following definition.

Definition 5.1. Let f be a Morse eigenfunction of an eigenvalue λ and let Ω be a Neumann
domain of f . We define the spectral position of Ω as the position of λ in the Neumann

4We thank John Hannay for pointing out this interesting geometrical meaning to us.
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Figure 4.1. (i): A probability distribution function of ρ-values of Neu-
mann domains for three different eigenvalues, (ii): A probability distribu-
tion function of ρ-values of Neumann domains for λ = 925 for lens-like,
wedge-like and star-like domains. The vertical black line marks the value
ρ ≈ 0.9206 (see Proposition 5.2,(2)). The numerical data was calculated
for approximately 9000 eigenfunctions for each eigenvalue. The right plot is
based on data of approximately 8.5 · 106 Neumann domains.

spectrum of Ω. It is explicitly given by

(5.1) NΩ(λ) := |{λn ∈ Spec(Ω) : λn < λ}| ,

where Spec(Ω) := {λn}∞n=0 is the Neumann spectrum of Ω, containing multiple appear-
ances of degenerate eigenvalues and including λ0 = 0.

Remark.

(1) It can be shown (see [8]) that if Ω is a Neumann domain, then its Neumann
spectrum is purely discrete and f |Ω is a Neumann eigenfunction of Ω. This makes
the above well-defined.

(2) If λ is a degenerate eigenvalue of Ω, then by this definition the spectral position is
the lowest position of λ in the spectrum.

(3) For any Neumann domain, NΩ(λ) > 0. Indeed, NΩ(λ) = 0 is possible only for
λ = 0, but the zero eigenvalue corresponds to the constant eigenfunction and this
does not have Neumann domains at all.

A qualitative feeling on the value of NΩ(λ) might be given by Theorem 3.2. This
theorem implies that the topography of f |Ω cannot be too complex; its domain, Ω, is a
simply connected domain; f |Ω has no critical points in the interior of Ω; and its zero set is
merely a single simple non-intersecting curve. These observations suggest that f |Ω might
not lie too high in the spectrum of Ω. Such a belief is also apparent in [76], where it is
written that possibly, the spectral position of Neumann domains ’often’ equals one, just
as in the case of nodal domains. Our task is to study the possible values of NΩ(λ) for
various eigenfunctions and their Neumann domains and to investigate to what extent λ
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is indeed the first non trivial eigenvalue of Ω (NΩ(λ) = 1). We proceed by relating the
spectral position and the area to perimeter ratio (Definition 4.3).

5.1. Connecting spectral position and area to perimeter ratio. The spectral po-
sition may be used to bound from above the area to perimeter ratio. This holds as the
area to perimeter ratio may be written as

ρ(Ω) =

√
|Ω|
|∂Ω|

√
|Ω|λ,

where the first factor is bounded from above by the classical geometric isoperimetric

inequality

√
|Ω|
|∂Ω| ≤

1
2
√
π

[36], and the second factor is bounded from above by the spectral

isoperimetric inequality, once the spectral position is known. We state below the exact
result, whose proof is given in [9].

Proposition 5.2. [9] Let f be a Morse eigenfunction corresponding to eigenvalue λ. Let
Ω be a Neumann domain of f . We have

(1) ρ(Ω) ≤
√

2NΩ(λ).

(2) if NΩ(λ) = 1 then ρ(Ω) ≤ j′

2
≈ 0.9206

(3) if NΩ(λ) = 2 then ρ(Ω) ≤ j′√
2
≈ 1.3019,

where j′ ≈ 1.8412 is the first zero of the derivative of J1, the first Bessel function.

The bounds above may be used to gather information on the spectral position. The
calculation of ρ(Ω) is easier (either numerically or sometimes even analytically) than this
of NΩ(λ). As an example, consider the probability distribution of ρ given in Figure 4.1,(i).
The distribution was calculated numerically for random eigenfunctions on the torus. It
is easy to observe that a substantial proportion of the Neumann domains have a ρ value
which is larger than 0.9206, the upper bound given in Proposition 5.2,(ii). Hence, all those
Neumann domains have spectral position which is larger than one, NΩ(λ) > 1. We note
that those results seem to be independent of the particular eigenvalue, as the ρ distribution
itself seems not to depend on the eigenvalue. Those results are somewhat counter-intuitive,
due to what is written above (see discussion after Definition 5.1). Furthermore, when
calculating the ρ distribution separately for each of the three different types of Neumann
domains (Figure 4.1,(ii)), the higher ρ values of lens-like domains suggest that the spectral
position of those domains is higher. These results call for some further investigation of
the spectral position dependence on the shape of the Neumann domains.

5.2. Separable eigenfunctions on the torus. The general problem of analytically de-
termining the spectral position is quite involved. Yet, there are some interesting results
obtained for separable eigenfunctions on the torus, which we review next. We consider
the flat torus with fundamental domain R2/Z2 equipped with the Laplace operator. The
eigenvalues are

λa,b : =
π2

4

(
1

a2
+

1

b2

)
,(5.2)

where

(5.3) a :=
1

4mx

, b :=
1

4my

, for mx,my ∈ N.
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Figure 5.1. (i): Dashed grey lines indicate the nodal set and solid lines in-
dicate the Neumann set of a torus eigenfunction f(x, y) = cos(2πx) cos(4πy).
(ii) and (iii): the star-like and lens-like Neumann domains of a separable
eigenfunction (5.4), with the typical lengths a, b marked as dashed lines.
Saddle points are marked by circles and extrema by triangles (maxima by
triangles pointing upwards and vice versa for minima)

We consider in the following only the separable eigenfunctions, which may be written
as

(5.4) fa,b(x, y) = cos
( π

2a
x
)

cos
( π

2b
y
)
.

Half of the Neumann domains of this eigenfunction are star-like and congruent to each
other and the other half are lens-like and also congruent (Figure 5.1). We denote those
domains by Ωstar

a,b (Figure 5.1,(ii)) and Ωlens
a,b (Figure 5.1,(iii)), respectively, and in the

following we investigate their spectral position. First, we may consider only the case b ≤ a
thanks to the symmetry of the problem. Second, the spectral position of either Ωstar

a,b or

Ωlens
a,b depends only on the ratio b

a
, as rescaling both a and b by the same factor amounts

to an appropriate rescaling of the Neumann domain together with the restriction of the
eigenfunction to it. The next theorem summarizes results on the spectral positions of Ωstar

a,b

and Ωlens
a,b from [9].

Theorem 5.3. [9]

(1) The set of spectral positions of the lens-like domains
{
NΩlens

a,b
(λa,b)

}
a,b

is un-

bounded. In particular, NΩlens
a,b

(λa,b)→∞ for a
b
→∞.

(2) There exists c > 0 such that if a
b
> c then the spectral position of the star-like

domains is one, i.e., NΩstar
a,b

(λa,b) = 1. In addition, λa,b is a simple eigenvalue of

Ωstar
a,b .

Remark. The condition a
b
> c in the second part of the theorem is equivalent to the

condition my
mx

> c (see (5.3)). As mx,my ∈ N, this means that the claim in the second part
of the theorem is valid for a particular proportion of the separable eigenfunctions on the
torus. In particular, combining both parts of the theorem, there is a range of a, b values
for which NΩstar

a,b
(λa,b) = 1, but NΩlens

a,b
(λa,b) is as large as we wish.

The proofs of the two parts of this theorem are of different nature. To prove (1) one
assumes by contradiction that the spectral positions {NΩlens

a,b
(λa,b)}a,b are bounded. This
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implies an upper bound on the product λa,b
∣∣Ωlens

a,b

∣∣. But an asymptotic estimate of this
product shows that it diverges for a

b
→∞. Hence the contradiction.

The proof of (2) is based on two main ingredients. The first is a spectral decomposition
of the eigenvalue problem on Ωstar

a,b , using symmetries [6, 12, 60]. The second ingredient is
the comparison of eigenvalue problems resulting from the symmetry reduction mentioned
above.

The motivation which stands behind Theorem 5.3 is the following. As already mentioned
above, it was very natural to believe that generically the spectral position equals one, just
as in the case of nodal domains. The first part of the theorem shows that this belief is
extremely violated in a particular case. The second part somewhat revives this belief, by
showing that this violation which occurs for half of the Neumann domains is compensated
by the other half. We wonder whether this compensation holds for all manifolds. For
example, can it be that for any manifold, there exists a constant 0 < p ≤ 1, such that each
eigenfunction would have at least a p proportion of its Neumann domains with spectral
position equals to one? (see Lemma 6.3, where a similar assumption is employed).

6. Neumann domain count

6.1. Bounds. A wealth of results exists on the number of nodal domains. We start this
section by bounding the number of Neumann domains from below in terms of the number
of nodal domains. Denote the number of Neumann domains of some eigenfunction f by
µ(f) and the number of its nodal domains by ν(f). Observe that Theorem 3.2,(5) implies
that each Neumann domain intersects with exactly two nodal domains (see discussion
following Theorem 3.2). This allows to conclude.

Corollary 6.1. [10]

(6.1) µ(f) ≥ 1

2
ν(f).

Next, we equip the Neumann lines with a graph structure which we call the Neumann set
graph. This allows to provide further estimates on the number of the Neumann domains.
Let f be a Morse function on a closed two-dimensional manifold and consider its Neumann
set graph obtained by taking the vertices (V ) to be all critical points, the edges (E) are
the Neumann lines connecting critical points and the faces (F ) are the Neumann domains.
Define the valency of a critical point, val (x), as the number of Neumann lines which are
connected to x.

Proposition 6.2. [10] We have

(6.2) |E| ≤ 4 |S (f)| ,

(6.3) µ(f) ≤ 2 |S (f)| ,
where S (f) is the set of saddle points of f . If we further assume that f is a Morse-Smale
function we get equalities in both (6.2) and (6.3). In addition, we have

µ(f) =
1

2

∑
x∈X (f)

val (x) ≥ 1

2
|X (f)| = 1

2
(χ (M) + |S (f)|),(6.4)

where X (f) is the set of extremal points of f and χ(M) is the Euler characteristic of the
manifold.
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The proof of this proposition is done by combining Euler’s formula and Morse inequalities
for the Neumann set graph.

6.2. The ratio µn
n

- asymptotics and statistics. The most fundamental result for the

nodal domain count is Courant’s bound νn
n
≤ 1, where νn is the nodal count of the nth

eigenfunction [31]. Following this, Pleijel had shown that lim supn→∞
νn
n
≤ (2/j0,1)

2, where
j0,1 ≈ 2.4048 is the first zero of J0, the zeroth Bessel function, [61]. Many modern works
concern the generalizations or improvements of Pleijel’s result, as well as the distribution
of the ratio νn

n
[15, 24, 26, 28, 40, 44, 54, 63, 68]. The study of the distribution of νn

n
was

initiated in [24]. This distribution was presented there for separable eigenfunctions on the
rectangle and the disc. Later, in [40], a more general calculation of the distribution of νn

n
was performed, for the Schrödinger operator on separable systems of any dimension.

In the following, we consider the analogous quantity, µn
n

, the number of Neumann do-

mains of the nth eigenfunction divided by n. We start by pointing out the connection
between µn

n
, and the spectral position.

Lemma 6.3. Let (M, g) be a two-dimensional, connected, orientable and closed Riemann-
ian manifold. Assume that there exist N and ε such that

(6.5)
∑
Ω s.t.

NΩ(λn)≤N

|Ω| > ε,

for all λn in the spectrum of M , where the sum above is over all Neumann domains (of
an eigenfunction) of λn whose spectral position is at most N . Then

(6.6) lim inf
n→∞

µn
n
≥ ε

2N
.

In addition, for the special case of N = 1 we get

(6.7) lim inf
n→∞

µn
n
≥ (2/j′)2 ε,

where j′ ≈ 1.8412 is the first zero of the derivative of J1, the first Bessel function.

Proof. We start by proving the special case (6.7). The Szegö-Weinberger inequality [69, 74]
is λ1 (Ω) |Ω| ≤ π(j′)2. Consider an eigenfunction fn of M corresponding to an eigenvalue
λn. For each Neumann domain Ω of fn, for which NΩ(λn) = 1, we have λn = λ1(Ω).
Combining the Szegö-Weinberger inequality with the assumption in the lemma gives

µnπ(j′)2 ≥
∑
Ω s.t.

NΩ(λn)=1

π(j′)2 ≥
∑
Ω s.t.

NΩ(λn)=1

λn |Ω| > ελn.

Applying Weyl asymptotics, limn→∞
λn
n

= 4π [75] we get (6.7).
For the case of a general value for N , instead of the Szegö-Weinberger inequality, we

employ the bound λN (Ω) |Ω| ≤ 8πN , [53], to get (6.6). �

The implication of this Lemma is interesting since it shows that the Neumann count
tends to infinity. Similar problems are investigated for the nodal count. It was asked a
few years ago by Hoffmann-Ostenhof whether lim supn→∞ νn =∞ holds for any manifold
[73]. Following this, it was shown that for various two-dimensional surfaces, the number
of nodal domains tends to infinity with the eigenvalue along almost the entire sequence
of eigenvalues [38, 50, 51, 77, 39, 48, 49, 55]. On the other extreme, Jung and Zelditch



14 LIOR ALON, RAM BAND, MICHAEL BERSUDSKY, SEBASTIAN EGGER

recently demonstrated the possibility of a bounded number of nodal domains on some
three-dimensional manifolds [52].

The validity of the inequality (6.6) (and hence the validity of the assumption (6.5)) may
be examined by studying the distribution of µn

n
, which is our next task. We consider the

separable eigenfunctions of the flat torus T with fundamental domain R2/Z2. For those
eigenfunctions we calculate the limiting probability distribution of µn

n
.

Given a couple of natural numbers mx,my ∈ N, we have that

(6.8) fmx,my(x, y) = cos (2πmxx) cos (2πmyy) ,

is a separable eigenfunction of the following eigenvalue

(6.9) λmx,my := 4π2
(
m2
x +m2

y

)
,

(as in (5.2),(5.4)). Note that the functions sin (2πmxx) cos (2πmyy), cos (2πmxx) sin (2πmyy),
sin (2πmxx) sin (2πmyy) together with (6.8) are linearly independent eigenfunctions which
belong to the eigenvalue (6.9). The set of all those separable eigenfunctions for all possible
values of mx,my ∈ N form an orthogonal complete set of eigenfunctions on T. We fur-
ther note that the four eigenfunctions above which correspond to a particular eigenvalue
λmx,my are equal on the torus up to a translation. Hence, all four have the same number
of Neumann domains as fmx,my and we denote this number by µmx,my . With this we may
define the following cumulative distribution function

(6.10) Fλ(c) :=
4

NT(λ)

∣∣∣∣{(mx,my) ∈ N2 : λmx,my < λ ,
µmx,my

NT(λmx,my)
< c

}∣∣∣∣ ,
where NT(λ) is the spectral position of λ in the torus T, as in (5.1), and the factor 4 stands
for the four eigenfunctions which correspond to λmx,my . In words, Fλ(c) is the proportion
of the separable eigenfunctions with eigenvalue less than λ, whose normalized Neumann
count is smaller than c. Its limiting distribution is given by the following.

Proposition 6.4.

(6.11) lim
λ→∞

Fλ(c) =

{
1
2

∫ c
0

1√
1−(π

4
x)2
dx, 0 ≤ c < 4

π
,

1, 4
π
≤ c.

Proof. The proof consists of a reduction to a lattice counting problem, which allows to
derive the limiting distribution. First, observe that the number of Neumann domains of
fmx,my is µmx,my = 8mxmy. This holds since fmx,my is Morse-Smale, so that there is an
equality in (6.3), and the number of saddle points of fmx,my is the number nodal crossings
which is easily shown to be 4mxmy. The symmetry between mx and my in the expression
for µmx,my motivate us to define the set

W :=
{

(mx,my) ∈ N2 : mx < my

}
,

and observe

∀λ
∣∣{(mx,my) ∈ N2 : λmx,my < λ

}∣∣ = 2
∣∣{(mx,my) ∈ W : λmx,my < λ

}∣∣
+
∣∣{(mx,my) ∈ N2 : mx = my and λmx,my < λ

}∣∣(6.12)

Plugging (6.12) in (6.10) and taking the limit λ→∞ gives

(6.13) lim
λ→∞

Fλ(c) = lim
λ→∞

8

NT(λ)

∣∣∣∣{(mx,my) ∈ W : λmx,my < λ ,
µmx,my

NT(λmx,my)
< c

}∣∣∣∣ ,
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where we use the Weyl asymptotics, limλ→∞NT(λ) = λ
4π

, [75], and that the second term

in the right hand side of (6.12) grows like
√
λ and hence drops when taking the limit.

We analyze (6.13) geometrically. First, NT(λ) counts the number of Z2 points with

non-zero coordinates, that lie inside a disc of radius
√
λ around the origin. Hence, it may

be written as

(6.14) NT(λmx,my) = π(m2
x +m2

y) + Err(m2
x +m2

y),

where Err(m2
x + m2

y) = o(m2
x + m2

y), [46]. In addition, the point (mx,my) ∈ W may be
characterized by the angle it makes with the x-axis, i.e., my

mx
= tan θmx,,my , so that

(6.15)
2mxmy

m2
x +m2

y

= 2 cos θmx,,my · sin θmx,,my = sin 2θmx,,my .

With (6.14) and (6.15) we may write

µmx,my
NT(λmx,my)

=
8mxmy

π(m2
x +m2

y)
(
1 + Err(m2

x +m2
y)/π(m2

x +m2
y)
)

=
1(

1 + Err(m2
x +m2

y)/π(m2
x +m2

y)
) 4

π
· sin 2θmx,,my .

Let ε > 0. Since Err(m2
x + m2

y) = o(m2
x + m2

y), there exists Λ > 0 such that for all

(mx,my) ∈ W satisfying 4π2
(
m2
x +m2

y

)
> Λ, the following holds

(6.16)
1

1 + ε

4

π
sin 2θmx,,my <

µmx,my
NT(λmx,my)

<
1

1− ε
4

π
sin 2θmx,,my .

The limiting cumulative distribution (6.13) may be slightly rewritten as

lim
λ→∞

Fλ(c) = lim
λ→∞

8

NT(λ)

∣∣∣∣{(mx,my) ∈ W : Λ < λmx,my < λ ,
µmx,my

NT(λmx,my)
< c

}∣∣∣∣ ,
where the additional condition Λ < λmx,my removes only a finite number of points from the
set and does not affect the limit. We may now use (6.16) to get the following inequalities
by set inclusion

lim
λ→∞

Fλ(c) ≤

(6.17)

lim
λ→∞

8

NT(λ)

∣∣∣∣{(mx,my) ∈ W : Λ < λmx,my < λ and θmx,,my <
1

2
arcsin

(
πc(1 + ε)

4

)}∣∣∣∣ ,
and

lim
λ→∞

Fλ(c) ≥

(6.18)

lim
λ→∞

8

NT(λ)

∣∣∣∣{(mx,my) ∈ W : Λ < λmx,my < λ and θmx,,my <
1

2
arcsin

(
πc(1− ε)

4

)}∣∣∣∣ ,
where in the above we assume that 0 ≤ c < 4

π
and ε is small enough so that πc(1+ε)/4 ≤ 1,

and in particular arcsin(πc(1 + ε)/4) is well defined.
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We notice that the right hand sides of (6.17) and (6.18) correspond to counting integer
lattice points which are contained within a certain sector. This number of points grows
like the area of the corresponding sector [46], i.e.,∣∣∣∣{(mx,my) ∈ W : Λ < λmx,my < λ , θmx,ny <

1

2
arcsin

(
πc(1± ε)

4

)}∣∣∣∣ =

=
1

4
arcsin

(
πc(1± ε)

4

)
λ− Λ

4π2︸ ︷︷ ︸
area of a sector

+o(λ).(6.19)

Plugging (6.19) in the bounds (6.17),(6.18) and using (6.14) gives

2

π
arcsin

(
πc(1− ε)

4

)
≤ lim

λ→∞
Fλ(c) ≤

2

π
arcsin

(
πc(1 + ε)

4

)
.

As ε > 0 is arbitrary we get

∀c < 4

π
lim
λ→∞

Fλ(c) =
2

π
arcsin

(πc
4

)
,

=
1

2

∫ c

0

1√
1− (π

4
x)2

dx,

which proves (6.11). Finally, note that we have limc→ 4
π

limλ→∞ Fλ(c) = 1, and since

for every value of λ, the function Fλ(c) is a cumulative distribution function we get
limλ→∞ Fλ(c) = 1 for c ≥ 4

π
. �

Remark. The calculation in the proof above may be considered as a particular case of
those done in [40]. The proof here is explicitly tailored for the purpose of the current
paper.

The next figure shows the probability distribution given in (6.11) and compares it to a
numerical examination of the probability distribution of µn

n
for the separable eigenfunctions

on the torus.
Examining the µn

n
distribution leads to the following. First, we note that µn

n
may get

arbitrarily low values for a positive proportion of the eigenfunctions. This is in contra-
diction with (6.6) and therefore we conclude that the separable eigenfunctions on the flat
torus do not satisfy assumption (6.5) in Lemma 6.3. Indeed, this can be verified directly.
The separable eigenfunctions have two types of Neumann domains, star-like and lens-like.
Only the spectral position of the star-like domains is bounded (Theorem 5.3), but it can
be checked that their total area (of all star-like domains of the eigenfunction) goes to zero
as the eigenvalue λa,b tends to infinity. Therefore, the assumption (6.5) is not satisfied.

In this context it is interesting to note that in [47] Jakobson and Nadirashvili show
the existence of a sequence of eigenfunctions with a bounded number of critical points.
A bounded number of critical points implies a bounded number of Neumann domains
(see Proposition 6.2). Their result holds for particularly constructed metrics on the two-
dimensional torus. Relating this to Lemma 6.3, we obtain that (6.6) does not hold for
those metrics and hence (6.5) is not satisfied there. As an implication we get that for those
manifolds the spectral positions of the Neumann domains are unbounded. Furthermore,
the total area of the Neumann domains with bounded spectral positions converges to zero
(at least in the lim inf sense).

Returning to Proposition 6.4 we observe that µn
n
> 1 for a positive proportion of the

eigenfunctions. This means that an analogue of the strict Courant bound does not apply
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Figure 6.1. Dashed grey curve: the probability distribution of µn
n

as given
in (6.11). Solid black curve: a numerical calculation of this distribution as
calculated for the first 3 · 108 torus eigenfunctions.

to the Neumann domain count. An even more extreme result is found in [27]. Buhovsky,
Logunov and Sodin show that the number of critical points may grow arbitrarily fast
with the eigenvalue5. This implies an arbitrary growth in the Neumann domain count and
hence, there is no hope to get any general form of an upper bound for the Neumann count.
Yet, the metric constructed in [27] is not real analytic. It is therefore still interesting to
examine the real analytic case or to restrict to particular manifolds and to determine the
exact growth rate of µn with n and its dependence on the manifold and the metric.

5They actually show that there might even be infinitely many isolated critical points, but in that case the
eigenfunctions are not Morse.
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Part 2. Neumann domains on metric graphs

7. Definitions

7.1. Discrete graphs and graph topologies. We denote by Γ = (V , E) a connected
undirected graph with finite sets of vertices V and edges E . We allow the graph edges to
connect either two distinct vertices or a vertex to itself. In the latter case, such an edge
is called a loop.

For a vertex v ∈ V , its degree, dv, equals the number of edges connected to it (a loop
is counted twice, if exits). The set of graph vertices of degree one turns out to be useful
and we denote it by

∂Γ := {v ∈ V : dv = 1} .
We call the vertices in ∂Γ, boundary vertices and the rest of the vertices, V\∂Γ, are called
interior vertices.

An important topological quantity of graphs is the first Betti number (dimension of the
first homology group) given, for a connected graph, by

(7.1) β := |E| − |V|+ 1.

The value of β is the number cycles needed to span the space of cycles on the graph. By
definition, a graph is simply connected when β = 0, and such a graph is called a tree
graph. Two particular examples of trees are star graphs and path graphs. A star graph is
a graph with one interior vertex which is connected by edges to the other |V|−1 boundary
vertices. A path graph is a connected graph with two boundary vertices and |V|−2 interior
vertices which are all of degree two. The path graph which shows up later in this paper is
the simplest graph of only two vertices connected by a single edge.

7.2. Spectral theory of metric graphs. A metric graph is a discrete graph for which
each edge, e ∈ E , is identified with a one-dimensional interval [0, Le] of a positive finite
length Le. We assign to each edge e ∈ E a coordinate, xe, which measures the distance
along the edge from one of the two boundary vertices of e.

A function on the graph is described by its restrictions to the edges, {f |e}e∈E , where
f |e : [0, Le]→ C. We equip the metric graphs with the differential operator,

(7.2) −∆ : f |e (xe) 7→ −
d2

dx2
e

f |e (xe) ,

which is the Laplacian6. It is most common to call this setting of a metric graph and an
operator by the name quantum graph.

To complete the definition of the operator we need to specify its domain. We consider
functions which belong to the following direct sum of Sobolev spaces

(7.3) H2(Γ) :=
⊕
e∈E

H2([0, Le]) .

In addition we require some matching conditions on the graph vertices. A function f ∈
H2(Γ) is said to satisfy the Neumann vertex conditions at a vertex v if

6More general operators appear in the literature. See for example [18, 41].
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(1) f is continuous at v ∈ V , i.e.,

(7.4) ∀e1, e2 ∈ Ev f |e1 (0) = f |e2 (0),

where Ev is the set of edges connected to v, and for all e ∈ Ev, xe = 0 at v.
(2) The outgoing derivatives of f at v satisfy

(7.5)
∑
e∈Ev

df

dxe

∣∣∣∣
e

(0) = 0.

Requiring these conditions at each vertex leads to the operator (7.2) being self-adjoint and
its spectrum being real and bounded from below [18]. In addition, since we only consider
compact graphs, the spectrum is discrete. We number the eigenvalues in the ascending
order and denote them by {λn}∞n=0 and their corresponding eigenfunctions by {fn}∞n=0. As
the operator is both real and self-adjoint, we may choose the eigenfunctions to be real,
which we will always do.

In this paper, we only consider graphs whose vertex conditions are Neumann at all
vertices, and call those standard graphs. A special attention should be given to vertices of
degree two. Introducing such a vertex at the interior of an existing edge (thus splitting
this edge into two) and requiring Neumann conditions at this vertex does not change the
eigenvalues and eigenfunctions of the graph. The same holds when removing a degree two
vertex and uniting two existing edges into one (see e.g., [18, Remark 1.4.2]). This spectral
invariance allows us to assume in the following that standard graphs do not have any
vertices of degree two. Furthermore, the only graph all of whose vertices are of degree two
(or equivalently has no vertices at all) is the single loop graph. We assume throughout the
paper that our graphs are different than the single loop graph and call those nontrivial
graphs.

The spectrum of a standard graph is non-negative, which means that we may represent
the spectrum by the non-negative square roots of the eigenvalues, kn =

√
λn. For conve-

nience, we abuse terminology and call also {kn}∞n=0 the eigenvalues of the graph. Most of
the results and proofs in this part are expressed in terms of those eigenvalues. A Neumann
graph has k0 = 0 with multiplicity which equals the number of graph components. The
common convention is that if an eigenvalue is degenerate (i.e. non simple) it appears more
than once in the sequence {kn}∞n=0. In addition, we choose a corresponding set of eigen-
functions, denoted by {fn}∞n=0. The choice of eigenfunctions is unique if all eigenvalues
are simple. Otherwise, for any degenerate eigenvalue, we pick a basis for its eigenspace
and all members of this basis appear in the sequence {fn}∞n=0. Obviously, this makes the
choice of the sequence {fn}∞n=0 non unique. Nevertheless, it is important to note that all
the statements to follow hold for any choice of {fn}∞n=0.

7.3. Neumann points and Neumann domains. For metric graphs, the nodal point
set of a function is the set of points at which the function vanishes. Removing the nodal
point set from the graph, splits it into connected components and those are called nodal
domains. The Neumann set and Neumann domains are similarly defined, but before doing
so we need to restrict to particular classes of functions.

Definition 7.1. Let Γ be a nontrivial standard graph and f be an eigenfunction of Γ.

(1) We call f a Morse eigenfunction if for each edge e, f |e is a Morse function. Namely,
at no point in the interior of e both the first and the second derivatives of f vanish.

(2) We call an eigenfunction f generic if it is a Morse eigenfunction and in addition it
satisfies all of the following:
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(a) f corresponds to a simple eigenvalue.
(b) f does not vanish at any vertex.
(c) For any interior vertex v ∈ V \ ∂Γ, none of the outgoing derivatives of f at v

vanish.

An equivalent characterization of a Morse eigenfunction is

Lemma 7.2. Let f be a non-constant eigenfunction. f is Morse if and only if there exists
no edge e such that f |e ≡ 0.

Proof. First, observe that a non-constant eigenfunction of the Laplacian vanishes at an
interior point of an edge if and only if the second derivative vanishes at that point. There-
fore, if f is a Morse eigenfunction then there is no interior point at which both the function
and its derivative vanish. This means that a Morse eigenfunction cannot vanish entirely
at a graph edge. As for the converse, if f is a non-Morse eigenfunction then there exists
x, an interior point of an edge e, such that f |′e(x) = f |′′e(x) = 0. By the same argument
as above, this means that either f |e(x) = 0 or f |e is the constant eigenfunction. The van-
ishing of f |e and its first derivative at the same point, together with f |e being a solution
of an ordinary differential equation of second order implies f |e ≡ 0. �

We complement this lemma and note that the constant eigenfunction, corresponding
to k0 = 0 is not a Morse function. This, together with the lemma, implies that a Morse
eigenfunction may vanish only at isolated points of the graph; the same holds for its
derivative. This quality allows the following.

Definition 7.3. Let f be a Morse eigenfunction of Γ.

(1) A Neumann point of f is an extremal point (maximum or minimum) not located
at a boundary vertex of Γ. We denote the set of Neumann points by N (f) (reusing
the notation (2.4) for the Neumann lines of manifold eigenfunctions).

(2) A Neumann domain of f is a closure of a connected component of Γ\N (f). The
closure is done by adding vertices of degree one at the open endpoints of the
connected component.

Figure 7.1 shows the Neumann point and Neumann domains of a particular eigenfunction.

(i) (ii) (iii)

Figure 7.1. (i) A graph Γ (ii) An eigenfunction f of Γ, with its single Neu-
mann point marked (iii) A decomposition of Γ into the Neumann domains
of f .

Remark 7.4. From the proof of Lemma 7.2 we learn that no point can be both a nodal
point and a Neumann point.

The definition above implies that a Neumann point is either a point x ∈ Γ\V at some
interior of an edge such that f ′(x) = 0, or it is a vertex v ∈ V such that all outgoing
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derivatives of f at that vertex vanish. The latter possibility does not occur if f is generic.
Hence, for a generic f we have

(7.6) N (f) = {x ∈ Γ\V : f ′(x) = 0} .
In other words, restricting to generic eigenfunctions allows to describe the Neumann points
of an eigenfunction as the nodal points of its derivative. These points are isolated, as
mentioned just before Definition 7.3.

All the results to follow concern generic eigenfunctions. The name generic is justified
since almost every Morse eigenfunction is generic as is implied by the next proposition7.
Furthermore, this proposition gives a quantitative estimate to the proportion of generic
eigenfunctions out of a complete set of eigenfunctions. In order to do so, we need to assume
that the set of edge lengths is linearly independent over the field Q of rational numbers.
We call such lengths rationally independent and we will employ this assumption in some
of the propositions to follow.

Proposition 7.5. [2] Let Γ be a nontrivial standard graph, with rationally independent
edge lengths of total length |Γ|, and denote the total length of all loops in Γ by Lloops (if
there are no loops then Lloops = 0). Let {fn}∞n=0 be a complete set of eigenfunctions of Γ.

(1) The density of the eigenfunctions which are not supported on a single loop among
the set of all eigenfunctions is given by

(7.7) lim
N→∞

|{n ≤ N : fn is not supported on a loop}|
N

= 1− 1

2

Lloops
|Γ|

≥ 1

2
.

(2) The density of the generic eigenfunctions among the eigenfunctions which are not
supported on a single loop is

(7.8) lim
N→∞

|{n ≤ N : fn is generic}|
|{n ≤ N : fn is not supported on a loop}|

= 1.

Namely, almost every eigenfunction which is not supported on a loop is generic.
Furthermore, since Morse eigenfunctions are a subset of eigenfunctions which are
not supported on a loop and generic eigenfunctions are a subset of Morse eigen-
functions we have that almost every Morse eigenfunction is generic.

Remark.

(1) The limits in (7.7) and (7.8) exist even without assuming that the edge lengths are
rationally independent. This assumption is needed to obtain the exact values of
those limits.

(2) The proposition above extends Proposition A.1 of [4]. Both propositions are based
on Theorem 3.6 of [20].

8. Topology of Ω and topography of f |Ω
Let Γ be a nontrivial standard graph and f an eigenfunction of Γ corresponding to the

eigenvalue k. Formally, every Neumann domain Ω of f may be considered as a subgraph
of Γ, if we add degree two vertices to Γ at all the Neumann points of f (see discussion
on those vertices in Section 7.2). In particular, a Neumann domain is a closed set (by
Definition 7.3). This difference from the manifold case (where Neumann domains are open
sets) is technical and serves our need to consider Ω as a metric graph on its own. Being a

7Actually, by the proposition, almost every eigenfunction which is not supported on a single loop is generic.
In particular, if the graph has no loops then almost every eigenfunction is generic. See also discussion in
[2, 3].
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metric graph, we take the usual Laplacian on Ω and impose Neumann vertex conditions
at all of its vertices, so that Ω is considered as a standard graph. Note that the restriction
of f |Ω to the edges of Ω trivially satisfies f ′′ = −k2f . It also obeys Neumann vertex
conditions at all vertices of Ω, as each vertex is either a vertex of Γ or a point x ∈ Γ in
an interior of an edge for which f ′(x) = 0. This gives the following, which is analogous to
Lemma 3.1.

Lemma 8.1. f |Ω is an eigenfunction of the standard graph Ω and corresponds to the
eigenvalue k.

Remark. Furthermore, it can be proved that if f is a generic eigenfunction and Ω is a tree
graph then f |Ω is also generic [3]. Indeed, if f is generic and k is a simple eigenvalue of Ω
then we get that f |Ω is also generic. But, if Ω is a tree graph and f |Ω does not vanish at
vertices then it must belong to a simple eigenvalue [18, Corollary 3.1.9].

8.1. Possible topologies for Neumann domains. In this subsection we discuss which
graphs may be obtained as a Neumann domain. The next lemma shows that if we consider
an eigenfunction, f , whose eigenvalue is high enough, each of its Neumann domains is
either a path graph or a star graph. A star Neumann domain contains an interior vertex
of the graph, and a path Neumann domain is contained in a single edge of the graph (see
Figure 8.1).

(i) (ii)

Figure 8.1. (i) A graph Γ with Neumann points of a given eigenfunction
(ii) The decomposition of the graph to the corresponding Neumann domains.

Lemma 8.2. Let Γ be a nontrivial standard graph. Let f be an eigenfunction correspond-
ing to an eigenvalue k > π

Lmin
, where Lmin is the minimal edge length of Γ. Let Ω be a

Neumann domain of f .

(1) If Ω contains a vertex v ∈ V of degree dv > 2 then Ω is a star graph with deg (v)
edges.

(2) If Ω does not contain a vertex v ∈ V of degree dv > 2 then Ω is a path graph, of
length π

k
.

Proof. For any edge e ∈ E we have that f |e (x) = Be cos (kx+ ϕe), where Be, ϕe are some
edge dependent real parameters. This together with k > π

Lmin
implies that the derivative

of f vanishes at least once at the interior of each edge. Hence, the set of Neumann points,
N (f) contains at least one point on each edge. It follows that each Neumann domain
contains at most one vertex of Γ. Thus, there are two types of Neumann domains: if a
Neumann domain, Ω, contains a vertex with deg(v) > 2 then Ω is a star graph, whose
number of edges is dv; otherwise Ω is a path graph. A Neumann domain which is a path
graph can be parameterized as Ω = [0, l]. Since f ′(0) = 0 we get that f |Ω (x) = cos (kx)
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up to a multiplicative constant . Using f ′(l) = 0 and that f ′ does not vanish in the interior
of Ω we conclude l = π

k
. �

Remark. Only finitely many eigenvalues do not satisfy the condition k > π
Lmin

in the
lemma. The number of those eigenvalues is bounded by∣∣∣∣{n ∈ N : 0 ≤ kn ≤

π

Lmin

}∣∣∣∣ ≤ 2
|Γ|
Lmin

,

where |Γ| =
∑

e∈E Le is the total sum of all edge lengths of Γ. This can be shown using

(8.1) ∀n ∈ N, kn ≥
π

2 |Γ|
(n+ 1) ,

which is the statement of Theorem 1 in [37].

To complement the lemma above, we note that there are also Neumann domains which are
not simply connected. Indeed, consider the graph Γ depicted in Figure 8.2,(i). It has an
eigenfunction with no Neumann points, so that the eigenfunction has a single Neumann
domain which is the whole of Γ and in particular, it is not simply connected (Figure
8.2,(ii)).

(i)

l1

l3

l2
l4 (ii)

l
1

l
4

l
2

l
3

Figure 8.2. (i) A graph Γ with (ii) An eigenfunction whose single Neu-
mann domain is not simply connected.

8.2. Critical points and nodal points - number and position. In the following we
consider the critical points and nodal points of f |Ω. Note that, by definition, a Morse
function on a one dimensional interval cannot have a saddle point. Hence, all critical
points of a Morse eigenfunction of a graph are extremal points. We reuse the notations
from the manifold part: X (f) for extremal points of f and M+ (f) (M− (f)) for maxima
(minima). Denote by φ(f |Ω) the number of nodal points of f |Ω, by EΩ the number of
edges of Ω, by VΩ the number of its vertices, and by ∂Ω the vertices of Ω which are of
degree one.

Proposition 8.3. Let f be a generic eigenfunction and Ω a Neumann domain of f . Then

(1) The extremal points of f , which are located on Ω are exactly the boundary of Ω,
i.e., X (f) ∩ Ω = ∂Ω

(2) 1 ≤ |M+ (f) ∩ ∂Ω| ≤ |∂Ω| − 1 (and the same bounds for |M− (f) ∩ ∂Ω|).
(3) 1 ≤ φ(f |Ω) ≤ EΩ − VΩ + |∂Ω|.



24 LIOR ALON, RAM BAND, MICHAEL BERSUDSKY, SEBASTIAN EGGER

Proof. The third part of the proposition is proven in [3]. The first two parts of the
proposition are proven below and they actually require only the assumption that f is
Morse.

Part (1) of the proposition follows from the following two observations:

(a) The extremal points of a Morse eigenfunction f are X (f) = ∂Γ ∪N (f).
(b) The definition of a Neumann domain (Definition 7.3) implies Ω∩(∂Γ∪N (f)) = ∂Ω.

From part (1) of the proposition we get that minima and maxima of f |Ω are attained
exactly at boundary points of Ω. As Ω is compact and f |Ω is continuous and non-constant
it must attain at least one maximum and at least one minimum, which proves part (2) of
the proposition. �

Remark. Note that when Ω is a path graph the proposition implies that it has exactly one
maximum, one minimum and one nodal point. Also, when Ω is a tree graph, the last part
of the proposition gives 1 ≤ φ(f |Ω) ≤ |∂Ω| − 1.

9. Geometry of Ω

Similarly to the manifold case we use the normalized area to perimeter ratio to quantify
the geometry of a Neumann domain. The following is to be compared with Definition 4.3.

Definition 9.1. Let f be a Morse eigenfunction corresponding to the eigenvalue k. Let
Ω be a Neumann domain of f , whose edge lengths are {lj}EΩ

j=1. We define the normalized
area to perimeter ratio of Ω to be

ρ (Ω) :=
|Ω|
|∂Ω|

k,

where |Ω| =
∑EΩ

j=1 lj and |∂Ω| is the number of boundary vertices of Ω.

For graphs we are able to obtain global bounds on ρ(Ω).

Proposition 9.2. [3] Let Ω be a Neumann domain. We have

(9.1)
1

|∂Ω|
≤ ρ (Ω)

π
≤ EΩ

|∂Ω|
.

If Ω is a star graph then we have a better upper bound ρ(Ω)
π
≤ 1− 1

|∂Ω| .

If Ω is a path graph then ρ (Ω) = π
2
.

Next, we study the probability distribution of ρ. We find that for this purpose, it is
useful to separately consider only the Neumann domains containing a particular vertex.
Let Γ be a nontrivial standard graph and let fn be its nth eigenfunction. Assume that fn
is generic. Then, for any vertex v ∈ V there is a unique Neumann domain of fn which

contains v and we denote it by Ω
(v)
n .

Proposition 9.3. [3] Let Γ be a nontrivial standard graph, with rationally independent

edge lengths and let v ∈ V of degree dv > 2. The value of 1
π
ρ on {Ω(v)

n }∞n=1 is distributed
according to

(9.2) lim
N→∞

∣∣∣{n ≤ N : fn is generic and 1
π
ρ
(

Ω
(v)
n

)
∈ (a, b)

}∣∣∣
|{n ≤ N : fn is generic}|

=

∫ b

a

ζ(v)(x) dx,

where ζ(v) is a probability distribution supported on [ 1
dv
, 1− 1

dv
].

Furthermore, it is symmetric around 1
2
, i.e. ζ(v)(x) = ζ(v)(1− x).
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Remark. If dv = 1 then Ω
(v)
n is a path graph for all n, so that by Proposition 9.2 we get

that ζ(v) is a Dirac measure ζ(v) (x) = δ
(
x− 1

2

)
.

As is implied by choice of notation, the distribution ζ(v) indeed depends on the particular
vertex v ∈ V . We demonstrate this in Figure 9.1,(iii) where we compare between the prob-
ability distributions of two vertices of different degrees from the same graph. In addition,
Figure 9.1,(iv) shows a comparison between the probability distributions of two vertices
of the same degree from different graphs. The numerics suggest that the distributions are
different, which implies that ζ(v) may depend on the graph connectivity and not only on
the degree of the vertex. It is of interest to further investigate this distribution, ζ(v), and
in particular its dependence on the graph’s properties.

10. Spectral position of Ω

By Lemma 8.1, a graph eigenvalue k appears in the spectrum of each of its Neumann
domains. Exactly as in Definition 5.1 for manifolds, we define the spectral position of a
Neumann domain Ω, as the position of k in the spectrum of Ω and denote it by NΩ(k).
Also, for exactly the same reason as in the manifold case, we have that NΩ(k) ≥ 1 for
graphs (see discussion after Definition 5.1).

A useful tool in estimating the spectral position is the following lemma, connecting the
spectral position of Ω to the nodal count of f |Ω.

Lemma 10.1. [3] Let Γ be a nontrivial standard graph, f be a generic eigenfunction of
Γ corresponding to an eigenvalue k and let Ω be a Neumann domain of f , which is a tree
graph. Then

(1) NΩ(k) = φ(f |Ω).
(2) NΩ(k) ≤ |∂Ω| − 1.

In particular, if Ω is a path graph then NΩ(k) = 1.

The statement in (1) was proven in [16, 62, 67] under the assumption that f |Ω is generic.
This is indeed the case since f itself is generic and Ω is a tree graph (see remark after
Lemma 8.1). The statement in (2) follows as a combination of (1) with Proposition 8.3,(3).

We further remark on the applicability of the lemma above; it applies for almost all
Neumann domains. Indeed, for any given graph, all Neumann domains except finitely
many are star graphs or path graphs (by Lemma 8.2), and those are particular cases of
tree graphs.

Next, we show that the value of the spectral position implies bounds on the value of ρ,
just as we had for manifolds (Proposition 5.2). For manifolds we got upper bounds on ρ,
whereas for graphs we get bounds from both sides.

Proposition 10.2. [3] Let Γ be a nontrivial standard graph, f be an eigenfunction of Γ
corresponding to an eigenvalue k and let Ω be a Neumann domain of f . Then

(10.1)
ρ (Ω)

π
≥ 1

|∂Ω|

(
NΩ(k) + 1

2

)
.

If Ω is a star graph then we further have the upper bound

(10.2)
ρ(Ω)

π
≤ 1

2
+

1

|∂Ω|

(
NΩ(k)− 1

2

)
.
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(i) Γ1

v
u

(ii) Γ2

w

(iii)

(iv)

Figure 9.1. (i) Γ1, with vertices v, u of degrees 5, 3, correspondingly. (ii)
Γ2, with vertex w of degree 5. (iii) A probability distribution function of
ρ
π
-values for the Γ1 Neumann domains which contain v (i.e., ζ(v) in (9.2))

compared with ζ(u). (iv) Similarly, ζ(v) compared with ζ(w).
All the numerical data was calculated for the first 106 eigenfunctions and
for a choice of rationally independent lengths.

Remark. Note that if NΩ(λ) > 1 then the bound in (10.1) improves the lower bound given
in Proposition 9.2. Similarly, if Ω is a star graph and NΩ(λ) < |∂Ω| − 1, then the bound
(10.2) improves the upper bound given in Proposition 9.2 for star graphs.

Next, we show that the spectral position has a well-defined probability distribution. As
in the previous section (Proposition 9.2), we find that this distribution is best described
when one focuses on Neumann domains containing a particular graph vertex.
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Proposition 10.3. [3] Let Γ be a nontrivial standard graph, with rationally independent
edge lengths and let v ∈ V of degree dv. Then the following limit exists,

(10.3) P (NΩ(v) = j) := lim
N→∞

∣∣∣{n ≤ N : fn is generic and N
Ω

(v)
n

(kn) = j
}∣∣∣

|{n ≤ N : fn is generic}|
,

and defines a probability distribution for NΩ(v).
In addition, for dv > 2

(1) P (NΩ(v) = j) is supported in the set j ∈ {1, ..., dv − 1}.
(2) P (NΩ(v) = j) is symmetric around dv

2
, i.e., P (NΩ(v) = j) = P (NΩ(v) = dv − j).

If dv = 1 then P (NΩ(v) = j) = δj,1.

By the proposition, the support of the spectral position probability depends on the
degree of the vertex. Yet, vertices of the same degree, but from different graphs may have
different probability distributions as is demonstrated in Figure 10.1,(iii). In addition, we
show in Figure 10.1,(iv) how the conditional probability distribution of ρ (Ω) depends on
the value of the spectral position NΩ (compare with the bounds (10.1),(10.2)).

11. Neumann count

In this section we present bounds on the number of Neumann points and provide some
properties of the probability distribution of this number.

Definition 11.1. Let Γ be a nontrivial standard graph and {fn}∞n=0 a complete set of its
eigenfunctions. Denote by µn := µ(fn) and φn := φ(fn) the numbers of Neumann points
and nodal points, respectively. We call the sequences {µn}, {φn} the Neumann count and
nodal count, and the normalized quantities ωn := µn − n, σn := φn − n are called the
Neumann surplus and nodal surplus.

Proposition 11.2. [3] Let Γ be a nontrivial standard graph. Let fn be the nth eigenfunction
of Γ and assume it is generic. We have the following bounds:

(11.1) 1− β ≤ σn − ωn ≤ β − 1 + |∂Γ| ,
and

(11.2) 1− β − |∂Γ| ≤ ωn ≤ 2β − 1,

where β = |E| − |V|+ 1 is the first Betti number of Γ.

Moreover, both quantities σn − ωn and ωn have well defined probability distributions,
as stated in what follows.

Proposition 11.3. [3] Let Γ be a nontrivial standard graph, with rationally independent
edge lengths. Then

(1) The following limit exists

(11.3) P (σ − ω = j) := lim
N→∞

|{n ≤ N : fn is generic and σn − ωn = j}|
|{n ≤ N : fn is generic}|

.

and defines a probability distribution for the difference between the Neumann and
nodal surplus.
Furthermore, this probability distribution is symmetric around 1

2
|∂Γ|,

i.e., P (σ − ω = j) = P (σ − ω = |∂Γ| − j) .
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(i) Γ1

v
u

(ii) Γ2

w

(iii)

(iv)

Figure 10.1. (i) Γ1, with vertex v of degree 5. (ii) Γ2, with vertex w of
degree 5. (iii) The spectral position probability P (NΩ(v) = j) for v of Γ1

compared with P (NΩ(w) = j) for w of Γ2. (iv) A probability distribution
function of ρ

π
-values for the Γ1 Neumann domains which contain v, condi-

tioned on the value of the spectral position N
Ω

(v)
n

.

All the numerical data was calculated for the first 106 eigenfunctions for a
choice of rationally independent lengths.

(2) Similarly, the Neumann surplus has a well-defined probability distribution which is
symmetric around 1

2
(β − |∂Γ|) .

This proposition is in the spirit of the recently obtained result for the distribution of
the nodal surplus [4]. It was shown in [4] that the nodal surplus, σ, has a well defined
probability distribution which is symmetric around 1

2
β. The proof of Proposition 11.3 uses

similar techniques to the proof of this latter result and appears in [3].
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The proposition above also has an interesting meaning in terms of inverse problems. It
is common to ask what one can deduce on a graph out of its nodal count sequence, {φn}
[11, 13, 59]. It was found in [5] that the nodal count distinguishes tree graphs from others.
More progress was made in [4] where it was shown that the nodal surplus distribution
reveals the graph’s first Betti number, as twice the expected value of the nodal surplus.
However, it should be noted that all tree graphs have the same nodal count, so that
one cannot distinguish between different trees in terms of the nodal count. Proposition
11.3 shows that the Neumann count, {µn} contains information on the size of the graph’s
boundary, |∂Γ|. In particular, this enables the distinction between some tree graphs, which
was not possible before. We summarize the discussion above in the following.

Corollary 11.4. [3] Let Γ is a non-trivial standard graph with rationally independent edge
lengths, and let GN := {n ≤ N : fn is generic}. Then

β = 2 lim
N→∞

∑
n∈GN σn

|GN |

|∂Γ| = 2 lim
N→∞

∑
n∈GN (σn − ωn)

|GN |
= 2 lim

N→∞

∑
n∈GN (φn − µn)

|GN |
.

We emphasize that different tree graphs with the same boundary size, |∂Γ|, have the
same expected value for both their nodal surplus and their Neumann surplus and are not
distinguishable in this sense. Furthermore, we may wonder whether the boundary size of
a tree graph fully determines the probability distribution of its Neumann surplus. We do
not have an answer to this question yet and carry on this exploration.

We end this section by noting that numerics lead us to believe that the bounds obtained
in (11.2) on the Neumann surplus ωn are not strict for graphs with high β values. Fur-
thermore, we conjecture the following bounds on ωn (which, for β > 2, are sharper than
the bounds in (11.2)).

Conjecture 11.5. The Neumann surplus is bounded by

−1− |∂Γ| ≤ ωn ≤ β + 1.

Proving the bounds (11.2) on ωn is done by combining the bounds on σn − ωn (11.1)
with the bounds 0 ≤ σn ≤ β, [22]. The bounds on both σn − ωn and σn are known to be
strict. Hence, if indeed the bounds on ωn are not strict, it implies that the nodal surplus,
σn, and the Neumann surplus, ωn, are correlated when considered as random variables,
which is an interesting result on its own.

Part 3. Summary

In this part we summarize the paper’s main results and focus on the comparison between
analogous statements on graphs and manifolds. This is emphasized by using common
terminology and notations for both graphs and manifolds.

Let f be an eigenfunction corresponding to the eigenvalue λ and Ω be a Neumann
domain of f . On manifolds, we have that Ω and f |Ω are of a rather simple form; Ω is
simply connected; f |Ω has only two nodal domains and its critical points are all located
on ∂Ω (Theorem 3.2). On graphs, the situation is similar, as almost all Neumann domains
are either star graphs or path graphs. It is possible to have other Neumann domains, and
even non simply connected ones, only if λ is small enough (Lemma 8.2). For graphs, f |Ω
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has two nodal domains if Ω is a path graph, but otherwise may have more, with a global
bound on this number (Proposition 8.3,(3)).

The most basic property of Neumann domains is that f |Ω is a Neumann eigenfunction
of Ω (Manifolds - Lemma 3.1; Graphs - Lemma 8.1). The eigenvalue of f |Ω is also λ
and the interesting question is to find out what is the position of λ in the spectrum of
Ω - a quantity which we denote by NΩ(λ) (Definition 5.1). The intuitive feeling at the
beginning of the Neumann domain study was that generically, NΩ(λ) = 1 or that at least
the spectral position gets low values.

The general problem of determining the spectral position is quite hard for manifolds.
The most general result we are able to provide for manifolds (Proposition 5.2) is a lower
bound given in terms of the geometric quantity ρ, which is a normalized area to perimeter
ratio (Definition 4.3). Interestingly, this result allows to estimate the spectral position
numerically; a numerical calculation of ρ is rather easy compared to the involved calcu-
lation of the spectrum of an arbitrary domain, which is needed to determine a spectral
position. This numerical method allows to refute the belief that for manifolds, generically,
NΩ(λ) = 1. For graphs, the quantity ρ (Definition 9.1)) allows to bound the spectral
position from both sides, for almost all Neumann domains (Proposition 10.2). Two addi-
tional results we have for the spectral position on graphs (but not for manifolds) are as
follows. First, the spectral position of Ω is given explicitly by the nodal count of f |Ω, and
this yields an upper bound on the spectral position (Lemma 10.1). Second, the spectral
position has a limiting distribution which is symmetric (Proposition 10.3). Another point
of comparison is that an upper bound on the spectral position, which we have for graphs,
does not exist for manifolds. We show by means of an example that the spectral position
is unbounded in the manifold case. This example is given in terms of separable eigenfunc-
tions on the torus. For this example, we show that although the spectral position of half
of the Neumann domains is unbounded, it equals one for the other half (Theorem 5.3).
This finding might imply that even though NΩ(λ) = 1 does not hold generically, there
might be a substantial proportion of Neumann domains for which it does hold (see e.g.,
(6.5) for such an assumption). This is indeed the case for graphs where the spectral posi-
tion equals one for each path graph Neumann domain, and all of those form a substantial
proportion of all Neumann domains (their number as well as their total length increase
with the eigenvalue).

Finally, we discuss the Neumann domain count. On manifolds we count the number of
Neumann domains, while on graphs we count the number of Neumann points. There is
also a connection between the Neumann count and the nodal count. On manifolds, we
have that the difference between the Neumann count and half the nodal count is non-
negative (Corollary 6.1). On graphs, the difference between the Neumann count and the
nodal count is bounded from both sides (Proposition 11.2). As for the Neumann count

itself, it makes sense to consider it with a normalization: µ(fn)
n

on manifolds and µ(fn)−n
on graphs. For graphs we provide general bounds on ωn = µ(fn) − n (Proposition 11.2),
but believe that those are not sharp and conjecture sharper bounds (Conjecture 11.5).
The validity of the conjecture would also imply a correlation between the nodal and the
Neumann counts. In addition, ωn possesses a limiting probability distribution which is
symmetric (Proposition 11.3). The expected value of this distribution stores information
on the size of the graph’s boundary, |∂Γ|; an information that is absent from the nodal
count. Which other graph properties may be revealed by this distribution is still to be
found. Turning back to manifolds, we treat separable eigenfunctions on the torus and for
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those derive the probability distribution of µ(fn)
n

(Proposition 6.4). This is to be viewed
as the beginning of the analysis of Neumann count on manifolds. Some further progress
can be made in studying the asymptotic growth of the Neumann count and for example
showing that lim supn→∞ µ(fn) = ∞. This direction is related to the recent series of
works on asymptotic growth of the nodal count [38, 50, 51, 77, 39, 48, 49, 55, 52] (see full
description in Section 6.2) as well as to works on the number of critical points [47, 27].
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Appendix A. Basic Morse Theory

This section brings some basic statements in Morse theory which are useful for under-
standing the first part of the paper. For a more thorough exposition, we refer the reader
to [14]. Throughout the appendix we consider (M, g) to be a compact smooth Riemann-
ian manifold of a finite dimension. At some points of the appendix we specialize for the
two-dimensional case and mention explicitly when we do so.

Definition A.1. Let f : M → R be a smooth function.

(1) f is a Morse function if at every critical point, p ∈ C (f), the Hessian matrix,
Hessf |p, is non-degenerate, i.e., it does not have any zero eigenvalues.

(2) The Morse index λp of a critical point p ∈ C (f) is the number of negative eigen-
values of the Hessian matrix, Hessf |p.

The following three propositions may be found in [14].

Proposition A.2. [14, Lemma 3.2 and Corollary 3.3]
If f is a Morse function then the critical points of f are isolated and f has only finitely
many critical points.

Next, we consider the gradient flow ϕ : R× M →M defined by (2.2). For a particular
x ∈ M we call the image of ϕ : R × x → M , a gradient flow line. Note that a gradient
flow line, {ϕ(t; x)}∞t=−∞ has a natural direction dictated by the order of the t values.

Proposition A.3. [14, Propositions 3.18, 3.19]

(1) Any smooth real-valued function f decreases along its gradient flow lines. The
decrease is strict at noncritical points.

(2) Every gradient flow line of a Morse function f begins and ends at a critical point.
Namely, for all x ∈M both limits limt→±∞ ϕ(t, x) exist and they are both critical
points of f .

Proposition A.4 (Stable/Unstable Manifold Theorem for a Morse Function). [14, The-
orem 4.2]
Let f be a Morse function and p ∈ C (f). Then the tangent space at p splits as

TpM = T spM ⊕ T upM,

where the Hessian is positive definite on T spM and negative definite on T upM .
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Moreover, the stable and unstable manifolds, (2.3), are surjective images of smooth
embeddings

T spM → W s(p) ⊆ M

T upM → W u(p) ⊆ M.

Therefore, W u(p) is a smoothly embedded open disk of dimension λp and W s(p) is a
smoothly embedded open disk of dimension m− λp, where m is the dimension of M .

Let us examine the implications of the results above in the particular case of Morse
functions on a two-dimensional manifold.

• If q is a maximum then λq = 2 and so W u(q) is a two-dimensional open and simply
connected set and W s(q) = {q}.
• If p is a minimum then λp = 0 and so W s(p) is a two-dimensional open and simply

connected set and W u(p) = {p}.
• If r is a saddle point then λr = 1 and so both W s(r) and W u(r) are one-

dimensional curves. Note that W s(r)∩W u(r) = {r} and so we get that W s(r) is
a union of two gradient flow lines (actually even Neumann lines) which end at r.
Similarly, W u(r) is a union of two gradient flow lines (Neumann lines) which start
at r.

By Definition 2.1 we get that Neumann domains are open two-dimensional sets and that
the Neumann line set is a union of one dimensional curves. Moreover, those sets are com-
plementary. Namely, the union of all Neumann domains together with the Neumann line
set gives the whole manifold [10, Proposition 1.3].

Next, we focus on a subset of the Morse functions, known as Morse-Smale functions,
described by the following two definitions.

Definition A.5. We say that two sub-manifolds M1,M2 ⊂M intersect transversally and
write M1 t M2 if for every x ∈ M1 ∩M2 the tangent space of M at x equals the sum of
tangent spaces of M1 and M2 at x, i.e.

(A.1) TxM = TxM1 + TxM2.

This is also called the transversality condition.

Definition A.6. A Morse function such that for all of its critical points p, q ∈ C (f) the
stable and unstable sub-manifolds intersect transversely, i.e., W s(q) t W u(p) is called a
Morse-Smale function.

Let us assume now that M is a two-dimensional manifold and provide a necessary and
sufficient condition for a Morse function to be a Morse-Smale function. First, for two
critical points p, q ∈ C (f), the intersection W s(p) ∩W u(q) may be non-empty only for
the following cases:

(1) if p = q,
(2) if p is a minimum and q is a maximum,
(3) if p is a minimum and q is a saddle point,
(4) if p is a saddle point and q is a maximum, or
(5) if both p and q are saddle points.

In the first four cases, it is straightforward to check that the transversality condition is
satisfied. In the last case we have that if W s(p)∩W u(q) 6= ∅ then W s(p)∩W u(q) equals
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to the gradient flow line (also Neumann line in this case) which asymptotically starts at q
and ends at p. In such a case we get that for all x ∈ W s(p) ∩W u(q), the tangent spaces
obey TxW

s(p) = TxW
u(q) and those are one-dimensional, so their sum cannot be equal

to the two-dimensional TxM . Therefore, in this case the transversality condition, (A.1) is
not satisfied and as a conclusion we get

Proposition A.7. On a two-dimensional manifold, a Morse function is Morse-Smale if
and only if there is no Neumann line connecting two saddle points.

By the Kupka-Smale theorem (see [14]) Morse-Smale gradient vector fields are generic
among the set of all vector fields. Currently, there is no similar genericity result regarding
eigenfunctions of elliptic operators which are Morse-Smale (in the spirit of [71, 72]). Our
preliminary numerics suggest that Morse-Smale eigenfunctions are indeed generic.
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