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Nonlinear Sturm oscillation: From the interval to a star

Ram Band and August J. Krueger

Abstract. The Sturm oscillation property, i.e. that the n-th eigenfunction of
a Sturm-Liouville operator on an interval has n − 1 zeros (nodes), has been
well studied. This result is known to hold when the interval is replaced by a
metric (quantum) tree graph. We prove that the solutions of the real station-
ary nonlinear Schrödinger equation on an interval satisfy a nonlinear version
of the Sturm oscillation property. However, we show that unlike for the linear

theory, the nonlinear version of Sturm oscillation breaks down already for a
star graph. We point out conditions under which this violation can be assured.

1. Introduction

The linear theory of Sturm-Liouville operators, and the associated oscillation
theorems, that began in [19,20] has lead to an extensive and robust field of ideas
and results. See, for example, [4] for a broad review of the classical and modern
theory. Put simply, Sturm oscillation theorem states that if the eigenvalues of an
operator are indexed increasingly by N, then the n-th eigenfunction has n−1 interior
zeros. The theory of Sturm oscillation may be extended in many different directions,
one of which is to consider differential operators on collections of line segments
joined at their endpoints with suitable matching conditions. Theses networks, or
graphs, are called tree graphs if they admit no closed cycles. For the cases where the
differential operator is the Laplacian with Robin matching conditions, the Sturm
oscillation property for a tree graph has been established, see e.g. recent results in
[6,17,18] and review in [5].

We consider the generalization of oscillation theory to nonlinear differential
equations on line segments and star graphs. This extension immediately prohibits
a direct appeal to linear spectral theory and therefore new definitions must be given
not only for the operators encountered but also of a suitable notion of nonlinear
Sturm oscillation.

In the linear theory, one may rescale eigenfunctions with impunity. The non-
linear theory, however, lacks such a trivial scale factor. Therefore in order to char-
acterize all stationary solutions of the nonlinear Schrödinger equation one needs to
introduce an additional parameter. Such a parameter is usually taken to be some
norm of the solution and we take it here to be the L∞ norm. In the two-dimensional
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130 RAM BAND AND AUGUST J. KRUEGER

space that is parametrized by the spectral parameter and the norm, one may repre-
sent families of stationary solutions as simple curves, which we call spectral curves.
We prove a kind of nonlinear Sturm oscillation property for the interval, where the
spectral curves may be indexed and each solution lying on the n-th curve has n− 1
interior zeros (Theorem 2.4). Following this, the nonlinear Schrödinger equation on
a star graph is considered. The full nonlinear spectrum for the star graph is beyond
the scope of this paper, however local properties of spectral curves are explored.
We prove that the nodal count is not constant in general along each spectral curve
(Theorem 2.9) and show how to construct star graphs and solutions for which such
a nodal count change occurs. Therefore, in distinction to the linear theory, the
analogous form of nonlinear Sturm oscillation property does not generically hold
already for the simplest tree graphs.

We refer the interested reader to the book [7] and review [8] on the linear theory
of metric (quantum) graphs. The nonlinear Schrödinger equation on metric graphs
is addressed in many recent works. We mention here only those works which deal
with stationary solutions and are closer in spirit to those discussed in the current
paper. With regard to stationary solutions of the nonlinear Schrödinger equation
we note the study of general scattering in [9,10], of general solutions on star graphs
in [1–3], and of bifurcation and stability properties of solutions on various graphs
in [13,15,16]. Finally, a framework to aid in the solving of the stationary nonlinear
Schrödinger equation on metric graphs was presented recently in [11,12].

2. Main results

2.1. Nonlinear Schrödinger equation on an interval.

Definition 2.1. Let the real, stationary, nonlinear Schrödinger equation on
an interval of length 0 < l ∈ R be given by

μφ = −∂2
xφ− (σ + 1)νφ2σ+1, μ ∈ R, 0 �= ν ∈ R, σ ∈ N,(1)

where φ ∈ C2([0, l],R) and subject to boundary conditions that can be either of
Dirichlet type, φ(xj) = 0, or of Neumann type, ∂xφ(xj) = 0, where j = 1, 2,
x1 = 0, x2 = l.

One may analogously define (1) on a ray, e.g. φ ∈ C2([0,∞),R), by eliminating
the second boundary condition, and alternatively on a line, e.g. φ ∈ C2(R,R), by
eliminating both boundary conditions.

It is easiest to classify the solutions of (1) on an interval and ray by first
considering those on a line. Furthermore integrating (1) yields

h = (∂xφ)
2 + μφ2 + νφ2(σ+1), h ∈ R,(2)

which can be interpreted as a Hamiltonian energy conservation constraint (see the
derivation leading to (27)). Here the constant h takes the role of the energy of a
particle moving on a line in the time coordinate x, whose trajectory is represented
by φ(x). One may therefore visualize the solutions by considering the effective
potential energy hp(φ) = μφ2 + νφ2(σ+1). We will distinguish between four special
cases:

• Case I, (ν > 0, μ ≥ 0). Shown in Figure 1 (a). hp(φ) has a global mini-
mum at φ = 0 and limφ→±∞ hp(φ) = ∞.
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Figure 1. ν > 0.
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(b) Case IV, (ν < 0, μ ≤ 0).

Figure 2. ν < 0.

• Case II, (ν > 0, μ < 0). Shown in Figure 1 (b). hp(φ) has a lo-

cal maximum at φ = 0, global minima at φ = ±|μ/(σ + 1)ν|1/2σ, and
limφ→±∞ hp(φ) = ∞.

• Case III, (ν < 0, μ > 0). Shown in Figure 2 (a). hp(φ) has a lo-

cal minimum at φ = 0, global maxima at φ = ±|μ/(σ + 1)ν|1/2σ, and
limφ→±∞ hp(φ) = −∞.

• Case IV, (ν < 0, μ ≤ 0). Shown in Figure 2 (b). hp(φ) has a global
maximum at φ = 0 and limφ→±∞ hp(φ) = −∞.

Definition 2.2. We associate with each bounded solution of (1) on a line a
parameter α = ||φ||∞. We define the following distinguished subsets of R2. For
ν > 0:

P+
+ := {(μ, α) ∈ R

2 : μ > 0, α > 0}, P+
− := {(μ, α) ∈ R

2 : μ ≤ 0, α > α0},(3)

and for ν < 0:

P− := {(μ, α) ∈ R
2 : μ > 0, 0 < α < αc},(4)
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132 RAM BAND AND AUGUST J. KRUEGER

(a) ν > 0 (b) ν < 0

Figure 3. A sketch of nonlinear spectral curves on an interval.
The inset figures illustrate that the curves are level sets of the
wavelength λ(μ,α).

where α0 := |μ/ν|1/2σ and αc := |μ/(σ + 1)ν|1/2σ. Furthermore we take

P+ := P+
+ ∪ P+

− , P := P+ ∪ P−.(5)

We would like to study the properties of solutions that oscillate symmetrically
through zero, as these are most similar to the solutions of the analogous linear
system, i.e. ν = 0. Let ν �= 0 and fix a Dirichlet or Neumann boundary condition
at each endpoint of an interval. We denote

Φint := {φ �= 0 solves (1) on an interval,(6)

with the prescribed boundary conditions,(7)

such that φ attains at least one zero on [0, �]}.(8)

The next lemma parametrizes Φint by P .

Lemma 2.3. Fix ν �= 0. Fix an interval of length l > 0 with Dirichlet or
Neumann boundary conditions at each of its endpoints. The following holds.

(1) Given φ ∈ Φint, there is a unique value of μ ∈ R such that φ is a solution
of (1) on this interval with the given values μ, ν. This allows one to define
the map

Λint : Φint → P, Λint : φ 	→ (μ, ||φ||∞).(9)

(2) Λint is two to one since Λint(φ1) = Λint(φ2) if and only if φ1 = ζφ2, where
ζ = ±1.

The above lemma allows one to parametrize solutions of (1) with points (μ, α) ∈
P , which we write as φ = φ(μ,α). Those solutions lie on curves in the (μ, α) half
plane, as is demonstrated in Figure 3. This is stated in an exact manner in the next
theorem, which also establishes a nonlinear form of the Sturm oscillation property
for the interval.
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NONLINEAR STURM OSCILLATION: FROM THE INTERVAL TO A STAR 133

Theorem 2.4. Fix an interval of length l > 0 and ν �= 0. The following hold

(1) Λint (Φint) =
⊔

n∈N γn, where
⊔

represents a disjoint union, each γn is a
connected, non self intersecting curve, and N = N if at least one boundary
condition is Dirichlet and N = N \ {1} if both are Neumann.

(2) If Λint(φ) ∈ γn, then φ has n− 1 interior zeros.
(3) Let 0 < α ∈ R be fixed. Each γn intersects the line {(μ, α)}μ∈R only once.

Furthermore these intersection points occur for μ = μn, where the μn are
monotonically strictly increasing in n.

(4) limα→0 γn = (μlin
n , 0), where μlin

n is the n-th eigenvalue of the linear prob-
lem on an interval.

The first two parts of the theorem above show that the solutions of the nonlinear
Schrödinger equation on an interval are naturally arranged in a sequential order and
that all the solutions corresponding to the n-th set (curve) possess n − 1 internal
nodal points. We treat this as the nonlinear analogue of the Sturm oscillation
property. The third part shows that once the solution norm, α, is fixed one obtains
a discrete spectrum of solutions which obeys Sturm oscillation. The fourth part
connects this with the linear spectrum, which is obtained as α → 0.

2.2. Nonlinear Schrödinger equation on a star graph.

Definition 2.5. Consider a set of d > 2 intervals with edge lengths 0 < lj ∈ R,
j = 1, . . . , d. Join one endpoint of each of these intervals, hereafter termed edges,
at a single point, hereafter termed the central vertex, and denote the resulting set a
star graph, Γ, of degree d, whose endpoints are hereafter termed boundary vertices.
We endow Γ with a fixed coordinate system where xj ∈ [0, lj ] is a coordinate on
edge j such that xj = 0 at the central vertex along each edge and xj = lj at each
boundary vertex. For any function φ : Γ → R, we take φj be its restriction to edge
j.

Let the real stationary nonlinear Schrödinger equation on a degree d > 2 star
graph Γ be given by

μφj = −∂2
xφj − (σ + 1)νφ2σ+1

j ,(10)

μ ∈ R, 0 �= ν ∈ R, σ ∈ N, φj ∈ C2([0, lj ],R),(11)

for j = 1, . . . , d, with a Neumann condition at the central vertex

φ1(0) = φj(0), j = 2, . . . , d,(12)

d∑
j=1

∂xφj(0) = 0,(13)

and a Dirichlet or Neumann condition at each boundary vertex, xj = lj.

Let ν �= 0 and fix a Dirichlet or Neumann boundary condition at each endpoint
of a graph. We denote

Φstar := {φ �= 0 solves (10), with the prescribed boundary conditions,(14)

such that φ attains at least one zero},(15)

and parametrize Φstar, in a similar manner as was done for the solutions on the
interval.
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134 RAM BAND AND AUGUST J. KRUEGER

Definition 2.6. Let Q ⊂ Rd+1 be the space of points q = (μ, α1, . . . , αd) such
that (μ, αj) ∈ P , for all j = 1, . . . , d and fixed ν �= 0.

Lemma 2.7. Fix ν �= 0. Fix a star graph with edges of length lj > 0, j =
1, . . . , d, with boundary conditions as described in Definition 2.5. Given φ ∈ Φstar,
there is a unique value of μ ∈ R such that φ is a solution of (10) on this graph with
the given values μ, ν. This allows us to define the map

Λstar : Φstar → Q, Λstar : φ 	→ (μ, ||φ1||∞, . . . , ||φd||∞),(16)

for which Λstar(φ
(1)) = Λstar(φ

(2)) implies φ
(1)
j = ζjφ

(2)
j , where ζj = ±1 for all j.

The above lemma allows one to parametrize solutions of (10) with points q ∈ Q,
which we write as φ = φ(q).

Definition 2.8. If there exists a continuous map γ : R → Q such that φ(γ(τ)) ∈
Φstar for all τ then we term γ a local spectral curve.

For the interval, we managed to decompose Φint as a union of spectral curves,
such that the nodal count of the solution is fixed along each curve. For the star
we do not address the global structure of spectral curves but rather show that
locally the nodal count may change along the spectral curves, thereby preventing
a nonlinear Sturm oscillation property from being satisfied on the star.

Theorem 2.9. Let φ(q∗) ∈ Φstar for some q∗ ∈ Q. If φ(q∗) vanishes at the
central vertex then:

(1) There exists a local spectral curve γ : R → Q which passes through q∗ ∈ Q.
(2) For all q ∈ γ sufficiently close to q∗ ∈ γ, we have that the change in nodal

count between the solutions at q and q∗ is given by

Z(φ(q))−Z(φ(q∗))(17)

= sgn2(φ(q))

⎡
⎣−1 + 2−1d− 2−1sgn(φ(q))

d∑
j=1

sgn(∂xφ(q∗),j)

⎤
⎦ �x=0,(18)

where Z(φ) ∈ N is the number of zeros (nodes) of φ in the interior of Γ.
(3) If there are only Dirichlet conditions on exterior vertices, ν > 0, and the

edge lengths �1, . . . , �d satisfy
∑d

j=1 ζj(nj/lj)
1+1/σ = 0 for some set of

ζj ∈ {−1, 1} and nj ∈ N for all j, then there exists a φ(q∗) ∈ Φstar with
μ∗ = 0, φ(q∗)(0) = 0, ζj = sgn(∂xφ(q∗),j(0)), and interior nodal count

Z(φ(q∗)) = 1− d+
∑d

j=1 nj.

(4) In addition to assumptions in (3), we further have that if

d∑
j=1

ζj(nj/lj)
−1+1/σ �= 0,

then through this q∗ passes a local spectral curve γ such that for all q+, q− ∈
γ sufficiently close to q∗, where μ+ > 0 > μ−, one has the interior nodal

count change |Z(φ(q+))− Z(φ(q−))| = |
∑d

j=1 ζj |.

Remark 2.10. Parts (3) and (4) of Theorem 2.9 can be made slightly more
general and also apply to a star with either a Dirichlet or Neumann condition on
each exterior vertex. The statements would be modified as follows. In (3), we change
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NONLINEAR STURM OSCILLATION: FROM THE INTERVAL TO A STAR 135

(a) 4 interior zeros (b) 3 interior zeros (c) 5 interior zeros

Figure 4. Sketch of nodal count change along a local spectral curve

the condition
∑d

j=1 ζj(nj/lj)
1+1/σ = 0 in a way such that each term corresponding

to an edge with a Neumann condition becomes ζj [(nj − 1/2)/lj ]
1+1/σ. A similar

change is done for the condition of (4).

The theorem above demonstrates that for a star graph we cannot obtain a
Sturm oscillation property similar to the one we got for the interval. In order for
such a property to hold, we need to have that the nodal count is constant along
spectral curves. Part (1) of the theorem shows the existence of a local curve. Then
Part (2) of the theorem shows what is the nodal count change between a solution
vanishing at the central vertex and a neighboring solution. Finally, the last two
parts of the theorem show how to construct neighboring solutions which exhibit a
nodal count change. We note that in such a construction, the nodal count change
differs from zero for all star graphs with odd number of edges, an example of which
is illustrated in Figure 4.

The paper is structured as follows. Sections 3 and 4 provide some work that
is required for the proof of Theorems 2.4 and 2.9. Section 5 presents the proof of
Theorem 2.4. Section 6 presents the proof of Theorem 2.9.

3. Preliminaries

Due to the importance, for general theory as well as applications, of the fact
that solutions of the standard stationary nonlinear Scrödinger equation are complex
valued, we choose to first couch the real stationary solutions in the context of the
larger theory of complex stationary solutions. To this end we introduce a convenient
means of coordinate decomposition.

We denote by extended polar coordinates the pair (φ, θ) where φ ∈ R and
0 ≤ θ < 2π such that for each z ∈ C there exists at least one pair (φ, θ) such
that z = φeiθ. To z = 0 one may associate any pair of the form (0, θ) and to
z �= 0 one always has the two equivalent associated pairs (φ, θ) and (−φ, θ + π).
These coordinates are useful for representing motion of point particles in a plane as
influenced by central forces. There are no problems with the algebra represented
by such coordinates so long as one is consistent about representation and it will be
seen that we need consider no possible subtleties nor issues.

Consider the stationary nonlinear Schrödinger equation on a line

μψ = −∂2
xψ − (σ + 1)ν|ψ|2σψ, μ ∈ R, 0 �= ν ∈ R, σ ∈ N, ψ ∈ C2(R,C).(19)
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136 RAM BAND AND AUGUST J. KRUEGER

By using extended polar coordinates ψ = (φ, θ), one may find

0 = ∂2
xψ + μψ + (σ + 1)ν|ψ|2σψ = eiθ[∂2

xφ+ 2i∂xφ∂xθ − φ(∂xθ)
2 + iφ∂2

xθ](20)

+ eiθμφ+ 2eiθνφ2σ,(21)

0 = [∂2
xφ+ 2i∂xφ∂xθ − φ(∂xθ)

2 + iφ∂2
xθ] + μφ+ (σ + 1)νφ2σ+1.(22)

By taking the imaginary and real parts of this equation one arrives at equations
which are respectively equivalent to the angular and radial equations of motion of
a Newtonian point particle moving in a planar, anharmonic, central force

(Im.): 0 = 2∂xφ∂xθ + φ∂2
xθ,(23)

(Re.): 0 = ∂2
xφ− φ(∂xθ)

2 + μφ+ (σ + 1)νφ2σ+1.(24)

Integrating these respectively gives analogues of conservation of angular momentum
and energy:

(Im.) : const. = ω = φ2∂xθ, ω ∈ R(25)

(Re.) : const. = h = (∂xφ)
2 + ωφ−2 + μφ2 + νφ2(σ+1), h ∈ R.(26)

The system is equivalent to that of a particle moving in the plane, with the
exception that the particle might transition from one plane to the adjoined one,
i.e. φ 	→ −φ, if it passes through the origin. If ω �= 0 then the centrifugal potential
energy becomes arbitrarily large as the particle moves closer to φ = 0. If |h| < ∞,
then the centrifugal potential energy cannot be overcome. Solutions with ω = 0 are
different from those with ω �= 0 in that the former are not differentiable in standard
polar coordinates, hence our introduction of the extended polar coordinates. These
observations can be summarized as follows.

Remark 3.1. If ψ = (φ, θ) is a solution of (19) on a line, then ψ(x) can vanish
for some x only if [φ(x)]2∂xθ(x) = ω = 0 for all x ∈ R.

We henceforth take ω = 0 and θ = 0 everywhere and consider only the real
solutions and then (19) becomes (1) on a line. This restricts our focus to all solutions
that can attain zeros, and possibly a few more, at the cost of a wide class of solutions
that feature nontrivial complex oscillation without attaining zeros. With respect
to the effective particle total energy, one then has

h = (∂xφ)
2 + μφ2 + νφ2(σ+1), h, μ ∈ R, 0 �= ν ∈ R, σ ∈ N, φ ∈ C2(R,R).(27)

One may partition the effective particle total energy h into kinetic and potential
parts, respectively hk and hp, via

h = hk + hp, hk(φ) := (∂xφ)
2, hp(φ) := μφ2 + νφ2(σ+1).(28)

We have now reduced the system to that of a classical point particle constrained
to move along a potential energy surface with constant total energy. This allows
us to classify all solutions of (1) on a line. Fix ν �= 0, we denote

Φline := {φ �= 0 solves (1) on a line,(29)

such that φ is periodic and attains zeros}.(30)

Proposition 3.2. Let ν �= 0. Given φ ∈ Φline, there is a unique value of μ ∈ R

such that φ is a solution of (1) on the line with the given values μ, ν. This allows
us to define the surjective map

Λline : Φline → P, Λline : φ 	→ (μ, ||φ||∞).(31)
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NONLINEAR STURM OSCILLATION: FROM THE INTERVAL TO A STAR 137

Furthermore Λline(φ1) = Λline(φ2) if and only if φ1(x) = ζφ2(x+x0) for some fixed
ζ = ±1, some fixed x0 ∈ R, and all x.

Proof. Solution theory via energy conservation
First we prove that Λline is onto and study the degree of freedom in its preimage.

At the end of the proof we show the uniqueness of μ. Solutions of (1) follow from
conservation of effective particle total energy and qualitative analysis of dynamics
through determination of critical points of the effective particle motion as follows.
From (27) we get

x̂(φ̂0, φ̂) = x0 + ζ

∫
̂φ

̂φ0

dw [h− μw2 − νw2(σ+1)]−1/2,(32)

where ζ = ±1, x0 ∈ R is an initial value of x along a trajectory and

x̂(φ̂0, φ̂0) = x0, x̂(φ̂0, φ̂) = x, φ(x0) = φ̂0, φ(x) = φ̂.(33)

The map x̂(φ̂0, φ̂) presents an inverse function for the solution, φ : x 	→ φ(x),

that is defined piecewise between the obstructions ∂xφ = 0. Since x̂(φ̂0, φ̂) is

necessarily monotone in φ̂ between the obstructions, the function may be inverted
on these intervals to recover φ(x) piecewise. The solutions can be continued past
the obstructions by adjoining the piecewise solutions in a manner that satisfies (1)
and effective particle energy conservation appropriately.

The turning values are specified by the values of φ, which we denote by φ(x) =
β, and satisfy

h = μβ2 + νβ2(σ+1).(34)

These are illustrated in Figures 5-2. For σ = 1, one may find

β2
n = −2−1ν−1[μ+ (−1)n(μ2 + 4hν)1/2], n = 1, 2.(35)

For other values of σ, calculation of the βn might not be so straightforward but they
can be assured to exist due to the simple local monotonicity properties of hp(·) and
thereby are also qualitatively similar to the values for σ = 1 in that they appear in
pairs that are both real, both imaginary, or otherwise accordingly.

To prove that Λline is onto and study its preimage, it is helpful to first exhaus-
tively classify the solutions of (1) on a line up to translation x 	→ x + x0, which
may also be seen in [11], and relate the results to the auxiliary parameter α where
possible. We do so by considering the distinguished parameter regions for the ef-
fective particle potential energy while recalling that the effective particle kinetic
energy hk(φ) is necessarily nonnegative.

Case I: (ν>0, μ≥0). hp(φ) has a global minimum at φ = 0 and limφ→±∞ hp(φ)
= ∞. There are three notable ranges of h:

(1) h < 0. There are no solutions.
(2) h = 0. There is only the constant solution φ(x) = 0.
(3) h > 0. Shown in Figure 5. There is only the solution, which oscillates as

−β1 ≤ φ(x) ≤ β1. This solution is bounded, periodic, attains zeros, and
satisfies α = β1 > 0.

Then for Case I, elements of Φline may belong only to the sub-case (3) above, for
which h > 0, and (μ, α) ∈ P+

+ .
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Figure 5. Case I: (ν > 0, μ ≥ 0): h > 0
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(a) hc < h < 0
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(b) h > 0

Figure 6. Case II: (ν > 0, μ < 0)

Case II: (ν > 0, μ < 0). hp(φ) has a local maximum at φ = 0, global minima

at φ = ±αc, and limφ→±∞ hp(φ) = ∞. There are five notable ranges of h:

(1) h < hc. There are no solutions.
(2) h = hc. There are only the two constant solutions φ = ±αc.
(3) hc < h < 0. Shown in Figure 6 (a). There are two solutions. Each

has definite sign and are negatives of one another. The positive solution
oscillates as β2 ≤ φ(x) ≤ β1. These solutions are bounded, periodic, and
attain no zeros.

(4) h = 0. There are two solutions. They are “soliton solutions” and are
negatives of one another. They have the maximum absolute value ||φ||∞ =
α0. One is strictly positive and for φ(0) = α0 it satisfies φ(x) → 0
monotonically as 0 < x → ∞ and φ(−x) = −φ(x) since by (32) one has[

lim
ε↘0

x̂(ε, φ̂)− x0

]
/ζ = lim

ε↘0

∫
̂φ

ε

dw (|μ|w2 − |ν|w2(σ+1))−1/2(36)

= lim
ε↘0

∫ ̂φ

ε

dw w−1(|μ| − |ν|w2σ)−1/2 = ∞.(37)

These solutions are bounded, not periodic, and attain no zeros.
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− 1 1− 2 2

hc

h

hp

(a) Case III: (ν < 0, μ ≥ 0): 0 < h < hc

− 2 2

h

hp

(b) Case IV: (ν < 0, μ < 0): h < 0

Figure 7. Some subcases of Cases III and IV

(5) h > 0. Shown in Figure 6 (b). There is only the solution, which oscillates
as −β1 ≤ φ(x) ≤ β1. This solution is bounded, periodic, attains zeros,
and satisfies α = β1 > α0.

Then for Case II, elements of Φline may belong only to the sub-case (5) above, for
which h > 0, and (μ, α) ∈ P+

− .
Case III: (ν < 0, μ ≥ 0). hp(φ) has a local minimum at φ = 0, global maxima

at φ = ±αc, and limφ→±∞ hp(φ) = −∞. There are five notable ranges of h:

(1) h < 0. There are two solutions. Each have definite sign and are negatives
of one another. The positive solution has a minimum value φ = β2.
For φ(0) = β2, one has that φ(x) → ∞ monotonically as 0 ≤ x → ∞ and
φ(−x) = −φ(x).

(2) h = 0. There are three solutions. Two are analogous to those for h < 0
and the remaining one is the constant solution φ = 0.

(3) 0 < h < hc. Shown in Figure 7 (a). There are three solutions. Two
are analogous to those for h < 0. The remaining one oscillates as −β1 ≤
φ(x) ≤ β1. The oscillating solution is bounded, periodic, attains zeros,
and satisfies α = β1 < αc.

(4) h = hc. There is are two solutions. They are “kink solutions” and are
negatives of one another. One is strictly increasing in x, φ(x) → αc

monotonically as x → ∞, and satisfies φ(−x) = −φ(x) for φ(0) = 0,
which can be shown by a calculation similar to that of (36) and (37).
These solutions are bounded, not periodic, and attain only one zero.

(5) hc < h. There are two solutions. They are negatives of one another.
One is strictly increasing in x, φ(x) → ∞ monotonically as x → ∞, and
satisfies φ(−x) = −φ(x) for φ(0) = 0.

Then for Case III, elements of Φline may belong only to the sub-case (3) above, for
which 0 < h < hc, and (μ, α) ∈ P−.

Case IV: (ν < 0, μ < 0). hp(φ) has a global maximum at φ = 0 and

limφ→±∞ hp(φ) = −∞. There are three notable ranges of h:

(1) h < 0. Shown in Figure 7 (b). There are two solutions. Each have
definite sign and are negatives of one another. The positive solution has a
minimum value φ(x) = β2. Without loss of generality take φ(0) = β2. One
has that φ(x) → ∞ monotonically as 0 ≤ x → ∞ and φ(−x) = −φ(x).
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140 RAM BAND AND AUGUST J. KRUEGER

(2) h = 0. There is only the constant solution φ = 0.
(3) 0 < h. There are two solutions. They are negatives of one another. One is

strictly increasing in x, φ(x) → ∞ monotonically as x → ∞, and satisfies
φ(−x) = −φ(x) for φ(0) = 0.

Then consideration of Case IV shows that none of its solutions belong to Φline.
Conclusion to the exhaustive classification
By the exhaustive classification of solutions, the map Λline must be onto and

Λline(φ1) = Λline(φ2) if and only if φ1(x) = ζφ2(x + x0) for some fixed ζ = ±1,
some fixed x0 ∈ R and all x.

Different solutions if and only if different values of μ
Assume that φ ∈ Φ and take x ∈ R to satisfy at least one of φ(x), ∂xφ(x) differs

from zero. Such an x exists by the classification done above. By observing the RHS
of (1) one can see that a given φ uniquely specifies the μ with which it is associated.
This proves that Λline is well defined.

�

The classification made above for solutions in Φline allows us to study the map
Λint. We may now prove Lemma 2.3.

Proof of Lemma 2.3. Part (1). Proving that Λint is well defined follows by
the same argument as that which was used for Λline, as was implemented above in
the proof of Proposition 3.2.

Part (2). Let φ1, φ2 ∈ Φint such that Λint(φ1) = Λint(φ2). By Part (1) of the
Lemma, φ1, φ2 share the same values of μ, α. Hence both of them correspond to
trajectories of a classical particle moving in the same potential, which belongs to one
of the four cases in the proof of Proposition 3.2. Having the same value of α means
that both trajectories have the same energy h as seen in (27). Pick one boundary
point of the interval. If the boundary condition at this point is Dirichlet, then
both trajectories start at φ(x) = 0 and since they have equal energies their initial
velocities are the same up to a sign, from which we conclude that the trajectories
are equal up to a sign, i.e. φ1 = ζφ2 where ζ = ±1. Alternatively, if the boundary
condition is Neumann, then both trajectories start at φ(x) = ±α with zero velocity
and once again this implies that they are equal up sign, i.e. φ1 = ζφ2 where ζ = ±1.
The proof is finished once we note that Λint(φ) = Λint(−φ). �

Next is an easy but important Lemma that establishes a connection between
solutions of (1) on an interval and on a line.

Lemma 3.3. Every solution φ ∈ Φint is a restriction of a solution φ̂ = Λ−1
line ◦

Λint(φ) from the line to an appropriate interval, where ||φ̂||∞ = ||φ||∞. Note that
Λline is not injective and hence Λ−1

line is not uniquely defined however, for the sake

of the statement, any preimage of Λline can be chosen as the image of Λ−1
line.

Proof. Given a solution φ ∈ Φint we apply Λint to get the corresponding (μ, α).
By the classification of solutions done in the proof of Proposition 3.2, this (μ, α)

corresponds to a particle trajectory on the line, i.e. φ̂ ∈ Φline. Our solution φ serves

as a sub-trajectory and hence can be obtained as a restriction of φ̂. The equality

||φ̂||∞ = ||φ||∞ follows as the trajectory φ always attains the maximal absolute

value of the trajectory φ̂ either at an endpoint if there is a Neumann condition
there or somewhere in between if both boundary conditions are Dirichlet. �
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NONLINEAR STURM OSCILLATION: FROM THE INTERVAL TO A STAR 141

4. The wavelength λ

The elements of Φline are periodic on the line. We call this period the wavelength
and denote it by λ. In this section we study the dependence of λ on the parameters
μ, α, which would allow the classification of elements of Φint.

Definition 4.1. Fix ν �= 0, for (μ, α) ∈ P denote:

κ(μ,α)(w) := [μ(1− w2) + να2σ(1− w2(σ+1))]−1/2, w ∈ [0, 1].(38)

Proposition 4.2. For each (μ, α) ∈ P , the solution φ = φ(μ,α) ∈ Φline is
periodic with wavelength (period) λ ≡ λ(μ,α) of the form

λ(μ,α) = 4

∫ 1

0

dw κ(μ,α)(w)(39)

and that satisfies the following properties.
(μ, α) ∈ P+

+ :

lim
μ→∞

λ(μ,α) = 0, lim
α→0

λ(μ,α) = 2πμ−1/2, ∂μλ(μ,α) < 0, ∂αλ(μ,α) < 0,(40)

(μ, α) ∈ P+
− :

lim
μ↘μ0

λ(μ,α) = ∞, ∂μλ(μ,α) < 0, ∂αλ(μ,α) < 0,(41)

(μ, α) ∈ P−:

lim
μ→∞

λ(μ,α) = 0, lim
α→0

λ(μ,α) = 2πμ−1/2, lim
μ↘μc

λ(μ,α) = ∞,(42)

∂μλ(μ,α) < 0, ∂αλ(μ,α) > 0,(43)

where μ0 = −|ν|α2σ, μc = (σ + 1)|ν|α2σ.

Proof. Proof of representation of λ in (39). For solutions of the form φ =

φ(μ,α) ∈ Φline for, (μ, α) ∈ P , one may calculate the quarter wavelength through

λ(μ,α)/4 =

∫ α

0

dw [h− μw2 − νw2(σ+1)]−1/2(44)

=

∫ 1

0

dw α[h− μα2w2 − να2(σ+1)w2(σ+1)]−1/2(45)

=

∫ 1

0

dw [α−2h− μw2 − να2σw2(σ+1)]−1/2.(46)

By following the analogy to particle dynamics, one may consider λ to be the particle
period of oscillation in time.

Since the effective particle total energy satisfies

h = (∂xφ)
2 + μφ2 + νφ2(σ+1)(47)

one has

h = μα2 + να2(σ+1)(48)

and therefore

λ(μ,α)/4 =

∫ 1

0

dw [μ(1− w2) + να2σ(1− w2(σ+1))]−1/2 =

∫ 1

0

dw κ(μ,α)(w),(49)

which proves the representation of λ in (39).
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142 RAM BAND AND AUGUST J. KRUEGER

Proof of regular limits in (40), (41), (42). Consider that ν > 0. By inspection
we have that limμ→∞ κ(μ,α) = 0 uniformly, and therefore limμ→∞ λ(μ,α) = 0, which
proves the first relations of (40) and (42).

One may write

κ(μ,α)(w) =

⎛
⎝μ+ να2σ

σ∑
j=0

w2j

⎞
⎠

−1/2

(1− w2)−1/2,(50)

which is a form that is very useful for analysis of the integral. For ν > 0 one has

κ(μ,α)(w)(51)

=

⎛
⎝μ+ να2σ

σ∑
j=0

w2j

⎞
⎠

−1/2

(1− w2)−1/2 ≤ (μ+ να2σ)−1/2(1− w2)−1/2(52)

for all w ∈ (0, 1) and for ν < 0 one has

κ(μ,α)(w) ≤ [μ+ (σ + 1)να2σ]−1/2(1− w2)−1/2(53)

for all w ∈ (0, 1), both bounds of κ(μ,α)(w) are positive and integrable. These
bounds justify the application of dominated convergence theorem to evaluate

μ > 0 : lim
α→0

λ(μ,α) =

∫ 1

0

lim
α→0

κ(μ,α) = 4μ−1/2

∫ 1

0

(1− w2)−1/2 = 2πμ−1/2,(54)

which proves the second relations in (40) and (42).
Proof of singular limits in (41), (42). Take ν > 0 and μ < 0. We recall that

μ0 = −|ν|α2σ and observe that for μ = μ0 + ε, ε > 0, one has

κ(μ,α)(w) = [μ(1− w2) + να2σ(1− w2(σ+1))]−1/2(55)

= (μ− μw2 + να2σ − να2σw2(σ+1))−1/2(56)

= (ε− μ0w
2 − εw2 − να2σw2(σ+1))−1/2(57)

≥ (ε+ |μ0|w2)−1/2 = |μ0|−1/2(ε/|μ0|+ w2)−1/2(58)

and then by direct calculation

lim
ε→0

λ(μ,α)/4 ≥ lim
ε→0

∫ 1

0

dw |μ0|−1/2(ε/|μ0|+ w2)−1/2 = ∞,(59)

which proves the first relation in (41).
Take ν < 0 and μ > 0. We recall that μc = (σ + 1)|ν|α2σ and observe that for

μ = μc(1− ε)−2σ, ε > 0, one has

κ(μ,α)(w) =

⎛
⎝μ+ να2σ

σ∑
j=0

w2j

⎞
⎠

−1/2

(1− w2)−1/2(60)

=

⎡
⎣μc(1− ε)−2σ − |ν|α2σ

σ∑
j=0

w2j

⎤
⎦
−1/2

(1− w2)−1/2(61)

≥
[
μc(1− ε)−2σ − (σ + 1)|ν|α2σw2σ

]−1/2
(1− w2)−1/2(62)

= [(1− ε)2σ/μc]
1/2[1− (1− ε)2σw2σ]−1/2(1− w2)−1/2(63)
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≥ μ−1/2
c (1− ε)σ[1− (1− ε)2σw2σ]−1/2[1− (1− ε)2σw2σ]−1/2(64)

= μ−1/2
c (1− ε)σ[1− (1− ε)2σw2σ]−1(65)

= μ−1/2
c (1− ε)σ

⎧⎨
⎩

2σ−1∑
j=0

[(1− ε)w]j

⎫⎬
⎭

−1

[1− (1− ε)w]−1(66)

≥ (2σ)−1μ−1/2
c (1− ε)σ[1− (1− ε)w]−1,(67)

and then by direct calculation

lim
ε→0

λ(μ,α)/4 ≥ lim
ε→0

∫ 1

0

dw (2σ)−1μ−1/2
c (1− ε)σ[1− (1− ε)w]−1(68)

= (2σ)−1μ−1/2
c lim

ε→0

∫ 1

0

dw [1− (1− ε)w]−1(69)

= (2σ)−1μ−1/2
c lim

ε→0
[−(1− ε)−1 log(1− {1− ε}w)]10 = ∞,(70)

which proves the third relation in (42).
Proof of monotonicity in (40), (41), (43). By inspection one can see that

κ(μ,α)(w), ∂μκ(μ,α)(w), ∂ακ(μ,α)(w) are continuous in μ, α, w, and therefore by Leib-
niz integral rule:

∂μ

∫ 1

0

dw κ(μ,α)(w) =

∫ 1

0

dw ∂μκ(μ,α)(w),(71)

∂α

∫ 1

0

dw κ(μ,α)(w) =

∫ 1

0

dw ∂ακ(μ,α)(w).(72)

One may thereby determine the signs of ∂μλ(μ,α) and ∂αλ(μ,α) from

∂μκ(μ,α)(w) = −2−1

⎛
⎝μ+ να2σ

σ∑
j=0

w2j

⎞
⎠

−3/2

(1− w2)−1/2(73)

∂ακ(μ,α)(w) = −σνα2σ−1
σ∑

j=0

w2j

⎛
⎝μ+ να2σ

σ∑
j=0

w2j

⎞
⎠

−3/2

(1− w2)−1/2,(74)

which proves the last two relations in (40), (41), (43). �

5. Proof of Theorem 2.4

We are now prepared to directly prove our results on an interval.

Proof of Theorem 2.4. Proof of Parts (1), (2). By Lemma 3.3, elements of
Φint may be formed by restricting elements of Φline to functions on an interval.
Such restrictions must be made so that the endpoints are zeros or local extrema as
needed to satisfy the Dirichlet or Neumann boundary points. All elements of Φline

are periodic with wavelength (period) λ. Therefore φ = φ(μ,α) ∈ Φint and φ has a
given number of n− 1 internal zeros if one can ensure that λ(μ,α) = λn, n ∈ N , is
chosen appropriately:

• For one matching condition of Dirichlet type and one of Neumann type
one requires λn = 4l/(2n− 1) where n ∈ N.
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144 RAM BAND AND AUGUST J. KRUEGER

• For both boundary conditions of Dirichlet type one requires λn = 2l/n
where n ∈ N.

• For both boundary conditions of Neumann type one requires λn = 2l/n
where n ∈ N \ {1}.

We note that if both boundary conditions are Neumann, then by our construction
there are no stationary solutions without zeros, hence N = N \ {1} for this case.

In each case, we must ensure that the wavelength takes on the appropriate
value, λ(μ,α) = λn, which guarantees that φ(μ,α) has n− 1 internal zeros. Now we
will show that this can be done for each α > 0. Take to be any fixed values α > 0 and
ν �= 0. By the monotonicity properties of Proposition 4.2, fα : μ 	→ fα(μ) = λ(μ,α)

is a monotone strictly decreasing function and, due to the limiting properties seen
in Proposition 4.2, that is surjective on (0,∞). Therefore there must exist only one
μ = f−1

α (λn) for which λ(μ,α) = λn and one may write

γn =
⋃

α∈(0,∞)

{(f−1
α (λn), α)},(75)

which must be a connected curve because of continuity of f−1
α (λn) in α ∈ (0,∞).

We also observe that, due to the above representation, each γn is a level curve of
λ(μ,α) along λ = λn. This implies that the γn are mutually disjoint. The gradient
of λ(μ,α) on the (μ, α) half plane is nonvanishing by the monotonicity properties of
Proposition 4.2 and this implies that the level curves γn are non self intersecting.

Proof of Part (3). From above, one may construct each spectral curve γn by

taking the union of points obtained from (f−1
α (λn), α) by allowing α to vary on

(0,∞). Therefore, through this construction, fixing α furnishes exaclty one point
(f−1

α (λn), α) ∈ γn. Since λn and f−1
α (λ) are monotonically strictly decreasing

respectively in n and λ, it follows that μn = f−1
α (λn) is monotonically strictly

increasing in n.
Proof of Part (4). By the small α limit properties of Proposition 4.2 in (40)

and (42) and the fact that α > α0 for (μ, α) ∈ P+
− , one has that limα→0 λ(μ,α)

exists only for μ > 0 and for this case one has limα→0 λ(μ,α) = 2πμ−1/2, which is
the wavelength of the linear system. Matching the wavelength in this limit gives
the eigenvalue μlin

1 = 0 of the linear problem. We note that μlin
1 is an eigenvalue of

the linear problem with Neumann conditions at both ends of an interval. Yet it is
not obtained as a limit of any spectral curve as γ1 is missing from Φint and in this
case we actually do not have any solutions without zeros at all.

�

6. Proof of Theorem 2.9

We prove Theorem 2.9 by considering a set of d semi-infinite rays, each of which
corresponds to one of the star edges. We equip each ray with the same boundary
condition as its corresponding edge. Next we identify d points, one on each ray,
and require matching conditions on them such that combining the solutions of (1)
on the rays yields a solution of (10). Hence we start by describing a set of solutions
of (1) on the ray.

Let ν �= 0 and fix a Dirichlet or Neumann boundary condition on the endpoint
of a ray, we denote

Φray :={φ �=0 solves (1) on a ray, such that φ is periodic and attains zeros}.(76)
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NONLINEAR STURM OSCILLATION: FROM THE INTERVAL TO A STAR 145

We next follow the same path as for the line and the interval and parametrize
solutions of (1) on a ray with points (μ, α) ∈ P , which we write as φ = φ(μ,α)

Lemma 6.1. The following holds.

(1) Let ν �= 0. Given φ ∈ Φray, there is a unique value of μ ∈ R such that φ
is a solution of (1) on a ray with the given values μ, ν. This allows us to
define the map

Λray : Φray → P, Λray : φ 	→ (μ, ||φ||∞),(77)

which is onto and two to one since Λray(φ1) = Λray(φ2) if and only if
φ1 = ζφ2 for some fixed ζ = ±1.

(2) Every solution φ ∈ Φray is a restriction of the solution φ̂ = Λ−1
line ◦Λray(φ)

from the line to a ray, where ||φ̂||∞ = ||φ||∞. Note that Λline is not
injective and hence Λ−1

line is not uniquely defined however, for the sake of

the statement, any preimage of Λline can be chosen as the image of Λ−1
line.

Proof. Part (1). The proofs of uniqueness of μ for a ray and that Λray is onto
are the same as that for the line, seen in the proof of Proposition 3.2. The proof
that Λray is two to one is the same as that of the proof of Lemma 2.3 Part (1).

Part (2). The proof follows from the same argument as that of the proof of

Lemma 2.3 Part (2). �

We have just established the existence and properties of Λray. The same was
done for Λstar in Lemma 2.7, whose proof follows the same lines as Lemma 2.3.

Proof of Theorem 2.9 Part (1). Take a set of d > 2 rays of the form Lj =
(−∞, lj ] and take Φray,j to be the space of solutions of (1) on each such ray with
the same boundary condition as the j-th edge of the star. Furthermore, define
Λray,j : Φray,j → P to act as Λray,j : φj 	→ (μ, αj = ||φj ||∞). Take φ(q∗) ∈ Φstar as

in the statement of the theorem. Now for each j we choose Φ̃ray,j ⊂ Φray,j such
that Λray,j �

˜Φray,j
is one to one. Explicitly, this choice is made as follows. If the

j-th ray has a Neumann condition, then

Φ̃ray,j = {φj ∈ Φray,j : sgn(φj(lj)) = sgn(φ(q∗),j(lj))}(78)

and alternatively if the j-th ray has a Dirichlet condition, then

Φ̃ray,j = {φj ∈ Φray,j : sgn(∂xφj(lj)) = sgn(∂xφ(q∗),j(lj))}.(79)

We further define the vector of constraints N : Q → Rd to act as

N1(q) :=

d∑
j=1

∂xφj(0),(80)

Nj(q) := φj(0)− φ1(0), j = 2, . . . , d,(81)

where φj ∈ Φ̃ray,j is uniquely obtained from q = (μ, α1, . . . , d) by requiring (μ, αj) =
Λray,j(φj) for all j. We introduce the following useful notation. For each φ(q) ∈
Φstar, denote by λ(q) ∈ Rd the vector whose j-th component is the wavelength of the

φj ∈ Φ̃ray,j corresponding to the j-th edge component of φ(q), i.e. λ(q),j = λ(μ,αj).
We observe that zeros of N correspond to solutions of (10) in the following

sense. For each q = (μ, α1, . . . , αd) that satisfies N(q) = 0, take φj ∈ Φ̃ray,j such
that (μ, αj) = Λray,j(φj) for all j. Then there exists a solution of (10), ψ ∈ Φstar,
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146 RAM BAND AND AUGUST J. KRUEGER

such that ψj = φj �[0,lj ] for all j. The validity of this solution indeed holds since the
central vertex condition is satisfied as N(q) = 0. This motivates the application of
Implicit Function Theorem to show the existence of a local spectral curve through
q∗ ∈ Q. In order to do so we need to assure the continuous differentiability of N(q)
in q ∈ Q, which is guaranteed by the following lemma, whose proof is postponed.

Lemma 6.2. For φ(μ,α) ∈ Φray, φ(μ,α) and ∂xφ(μ,α) are continuously differen-
tiable in μ and α.

Now we aim to show that the Jacobian matrix ∂αk
Nj(q∗) has a nonzero deter-

minant. Let the linear operator J : Rd → Rd be defined by Jj,k = ∂αk
Nj(q∗). We

utilize the block decomposition

J =

[
A B
C D

]
,(82)

where

J1,1 = A := ∂α1
∂xφ(q∗),1(0), J1,j = Bj := ∂αj

∂xφ(q∗),j(0),(83)

Jj,1 = Cj := −∂α1
φ(q∗),1(0), Jj,j = Dj,j := ∂αj

φ(q∗),j(0),(84)

and where j = 2, . . . , d and Jj,k = 0 otherwise.
We note that the diagonal components of D are nonvanishing by the following

argument. We now make use of Lemma 6.5, which appears at the end of this
section, and this is where the assumption that φ vanishes at the central vertex is
being used. By (127) there, one has that

Dj,j = ∂αφ(q∗),j(0) = ζξαj(μ+ να2σ
j )1/2∂αλ(q),j �q=q∗ .(85)

The above RHS vanishes only if one of αj , (μ+ να2σ
j )1/2, or ∂αλ(q),j vanishes. By

the definition of P , neither αj nor (μ + να2σ
j )1/2 can vanish. By Proposition 4.2

one has that ∂αλ(q),j �= 0 for all α > 0, and therefore cannot vanish. Thus, the
tentative assumption cannot hold and Dj,j �= 0 for j = 2, . . . , d.

Since detD =
∏d

j=2Dj,j �= 0 one may find

J =

[
A B
C D

]
=

[
I 0
0 D

] [
A B

D−1C I

]
.(86)

then

det(A−BD−1C) = det J/ detD = A−
d∑

j=2

BjCj/Dj,j(87)

= {∂α1
∂xφ(q),1 −

d∑
j=2

∂αj
∂xφ(q),j [−∂α1

φ(q),1]/∂αj
φ(q),j} �x=0,q=q∗(88)

= ∂α1
φ(q),1

d∑
j=1

∂αj
∂xφ(q),j/∂αj

φ(q),j �x=0,q=q∗ .(89)

Since ∂α1
φ(q),1 �x=0,q=q∗ �= 0 by the same argument that gives Dj,j �= 0, if we denote

S :=

d∑
j=1

∂αj
∂xφ(q),j/∂αj

φ(q),j �x=0,q=q∗(90)
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then detJ = 0 if and only if S = 0. We will now show that S �= 0. We define

tj := [μ+ (σ + 1)να2σ
j ]/(μ+ να2σ

j )(91)

and note that due to (127) and (128) of Lemma 6.5 one may write

S =

d∑
j=1

tj/(ξjαj∂αλ(q),j) �q=q∗ .(92)

We recall from Proposition 4.2 that one has ∂αλ(q),j < 0 for ν > 0 and ∂αλ(q),j > 0
for ν < 0. Therefore S �= 0 if sgn(tj) is nonvanishing and constant for all j.

First consider (μ, αj) ∈ P+
+ for all j; clearly since ν, μ, α > 0 it must be true

that tj > 0. Now consider (μ, αj) ∈ P+
− for all j; one has

tj = [μ+ (σ + 1)να2σ
j ]/(μ+ να2σ

j ) = [(σ + 1)|ν/μ|α2σ
j − 1]/(|ν/μ|α2σ

j − 1),(93)

and since αj ∈ (α0,∞) and α0 = |μ/ν|1/2σ we get that tj > 2 > 0. Lastly consider
(μ, αj) ∈ P− for all j; one has

tj = [μ+ (σ + 1)να2σ
j ]/(μ+ να2σ

j ) = [1− (σ + 1)|ν/μ|α2σ
j ]/(1− |ν/μ|α2σ

j ),(94)

and since αj ∈ (0, αc) and αc = |μ/(σ + 1)ν|1/2σ we get that tj > 0. Therefore it
must be true that tj > 0 for all j. Thus detS �= 0 and in turn detJ �= 0.

We have ensured that requirements for Implicit Function Theorem are assured.
Therefore its application, as stated in the beginning of the proof, guarantees the
existence of a local spectral curve through q∗. �

Proof of Theorem 2.9 Part (2). Along a local spectral curve the solution
always satisfies the matching conditions and is continuous. Although the shape of
the oscillations can change slightly, the most dramatic change occurs at the central
vertex. If φ(q∗)(0) = 0, then μ 	→ μ + δμ can yield only three results: φ(q)(0) = 0,
φ(q)(0) > 0, or φ(q)(0) < 0. One can always find a δμ small enough so that the
variation does not move through more than one of these cases and in this sense one
must take q to be appropriately close to q∗. If the central value remains zero, then
no change in nodal count can occur, hence the need for the factor of sgn2(φ(q)) in
the RHS of (17). If the central value increases from zero, then the zero at the center
vanishes and a zero forms on each edge for which ∂xφ(q∗),j(0) < 0. The contribution
to the nodal count change is then a sum of a term −1 for the vanishing of the zero at
the center and a term 2−1[1− sgn(φ(q)∂xφ(q∗),j)] �x=0 for each edge. If the central
value decreases from zero, then the zero at the center vanishes and a zero forms on
each edge for which ∂xφ(q∗),j(0) > 0. The contribution to the nodal count change
is the same as before, i.e. a sum of a term −1 for the vanishing of the zero at the
center and a term 2−1[1− sgn(φ(q)∂xφ(q∗),j)] �x=0 for each edge. Combining these
contributions and considerations for each case, one has

Z(φ(q))−Z(φ(q∗)) = sgn2(φ(q))

⎧⎨
⎩−1+2−1

d∑
j=1

[
1−sgn(φ(q)∂xφ(q∗),j)

]⎫⎬⎭ �x=0(95)

= sgn2(φ(q))

⎡
⎣−1 + 2−1d− 2−1sgn(φ(q))

d∑
j=1

sgn(∂xφ(q∗),j)

⎤
⎦ �x=0 .(96)

�
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148 RAM BAND AND AUGUST J. KRUEGER

Proof of Theorem 2.9 Part (3). We are at liberty to construct an appro-
priate φ(q∗) ∈ Φstar so that it automatically satisfies the desired properties. For only
Dirichlet conditions on exterior vertices and φ(0) = 0 we must have lj = njλ(q),j/2
for some nj ∈ N and all j. Since for μ = 0 one has from equation (144) of Lemma
6.6, which appears at the end of this section, that

λ(0,αj) = 4c1ν
−1/2α−σ

j ,(97)

where c1 is given in (147) of Lemma 6.6, it must then be the case that

αj = (2c1ν
−1/2nj/lj)

1/σ.(98)

Since φ(q∗),j(0) = 0 for all j, it is the case that 0 = Nj(q∗), as required by (80) and
(81), is automatically satisfied for j = 2, . . . , d. We now check what is required for
the matching condition at the central vertex. We take

ζj = sgn(∂xφ(q∗),j(0))(99)

for all j. We recall from the definition of N1 in (80), the expression of ∂xφ in (27),
and μ∗ = 0 in turn

0 = N1(q∗) =
d∑

j=1

∂xφ(q∗),j(0) =
d∑

j=1

ζj [μα
2
j + να

2(σ+1)
j ]1/2 �q=q∗(100)

=

d∑
j=1

ζjν
1/2ασ+1

j �q=q∗=

d∑
j=1

ζjν
1/2(2c1ν

−1/2nj/lj)
1+1/σ(101)

⇔ 0 =

d∑
j=1

ζj(nj/lj)
1+1/σ,(102)

which is automatically satisfied by assumption for appropriately chosen ζj , nj . Since
we have specified αj and sgn(∂xφ(q∗),j(0)), for all j, the solution φ(q∗) has been

uniquely determined. The nodal count Z(φ(q∗)) = 1 − d +
∑d

j=1 nj follows by
inspection of the hereto constructed solution φ(q∗), which completes the proof. �

Remark 6.3. As mentioned after the statement of the theorem, the proof above
generalizes to the case where some (or all) of the Dirichlet boundary conditions are
replaced by Neumann ones. This may be obtained by replacing, in the assumed con-
dition and proof, nj with nj−1/2 for each edge that possesses a Neumann boundary
condition at its end. Nevertheless, the nodal count expression is unchanged.

Proof of Theorem 2.9 Part (4). We first combine the conclusions of Parts
(1) and (3) of the Theorem and get the existence of a local spectral curve γ(μ) =
(μ, γ1(μ), . . . , γd(μ)) through q∗ given in (3). We now tentatively assume for the
sake of contradiction that

d

dμ
φ(γ(μ∗)),j(0) = 0,(103)

where the complete derivative is taken along the spectral curve γ mentioned above.
From dφ(γ(μ∗)),j/dμ = 0 we also conclude that dλ(γ(μ∗)),j/dμ = 0, for which one
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must have

0 =
d

dμ
λ(q∗),j = ∂μλ(q∗),j + ∂αj

λ(q∗),j
d

dμ
γj(μ∗)(104)

⇒ d

dμ
γj(μ∗) = −∂μλ(q∗),j/∂αj

λ(q∗),j ,(105)

for all j = 1, . . . , d and then for μ∗ = 0 one has by Lemma 6.6 that

d

dμ
γj(μ∗) = −(−2c2ν

−3/2α−3σ
j )/[−4σc1ν

−1/2α
−(σ+1)
j ] �q=q∗(106)

= −2−1σ−1c3ν
−1α

−(2σ−1)
j �q=q∗ ,(107)

where c1, c2, c3 are given respectively by (147), (148), (149), of Lemma 6.6.
We recall from (126) and (128) of Lemma 6.5 that for μ∗ = 0 one has

∂μ∂xφ(q∗),j(0) = 2−1ζjν
−1/2α1−σ

j �q=q∗(108)

∂α∂xφ(q∗),j(0) = (σ + 1)ζjν
1/2ασ

j �q=q∗ ,(109)

and since N1(q) =
∑d

j=1 ∂xφ(q),j(0), as defined by (80), one has for μ∗ = 0 that

d

dμ
N1(γ(μ∗)) =

⎡
⎣∂μN1(q∗) +

d∑
j=1

∂αj
N1(q∗)

d

dμ
γj(μ∗)

⎤
⎦(110)

=

d∑
j=1

[
∂μ∂xφ(q∗),j(0) + ∂αj

∂xφ(q∗),j(0)
d

dμ
γj(μ∗)

]
(111)

=
d∑

j=1

{2−1ζjν
−1/2α1−σ

j +[(σ+1)ζjν
1/2ασ

j ][−2−1σ−1c3ν
−1α

−(2σ−1)
j ]} �q=q∗(112)

=

d∑
j=1

ζj [2
−1ν−1/2α1−σ

j − 2−1σ−1(σ + 1)c3ν
−1/2α1−σ

j ] �q=q∗ .(113)

Then by (98) of the previous part of the proof

d

dμ
N1(γ(μ∗)) = 2−1ν−1/2[1− (1 + 1/σ)c3]

d∑
j=1

ζj(2c1ν
−1/2nj/lj)

−1+1/σ(114)

= 2−1ν−1/2[1− (1 + 1/σ)c3](2c1ν
−1/2)1/σ−1

d∑
j=1

ζj(nj/lj)
−1+1/σ �= 0,(115)

which contradicts γ being a local spectral curve passing through q∗. By this con-
tradiction, it must be the case that our tentative assumption is false and therefore
dφ(γ1(μ∗)),j(0)/dμ �= 0, for all j. As a consequence hereof, taken with the fact that
φ(q)(0) is continuous in q thanks to Lemma 6.2, it must be the case that through
this q∗ passes a local spectral curve γ such that for all q+, q− ∈ γ sufficiently close
to q∗, where μ+ > 0 > μ−, one has sgn(φ(q+)) = −sgn(φ(q−)). Then using (17) and
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(99), we find

Z(φ(q+))− Z(φ(q−)) = [Z(φ(q+))− Z(φ(q∗))]− [Z(φ(q−))− Z(φ(q∗))](116)

=

⎧⎨
⎩sgn2(φ(q+))

⎡
⎣−1 + 2−1d− 2−1sgn(φ(q+))

d∑
j=1

sgn(∂xφ(q∗),j)

⎤
⎦ �x=0

⎫⎬
⎭(117)

−

⎧⎨
⎩sgn2(φ(q−))

⎡
⎣−1 + 2−1d− 2−1sgn(φ(q−))

d∑
j=1

sgn(∂xφ(q∗),j)

⎤
⎦ �x=0

⎫⎬
⎭(118)

= sgn(φ(q−))

d∑
j=1

ζj ,(119)

which gives |Z(φ(q+))− Z(φ(q−))| = |
∑d

j=1 ζj | and completes the proof.
�

We end this section by proving Lemma 6.2, which was stated earlier in the
proof of part (1) of Theorem 2.9, and stating and proving Lemmata 6.5 and 6.6,
which were referenced above.

Proof of Lemma 6.2. We recall from (32) of the proof Proposition 3.2 that
the solutions of (1) may be formed as the inverse functions of

x̂(φ̂0, φ̂) = x0 + ζ

∫ ̂φ

̂φ0

dw [h− μw2 − νw2(σ+1)]−1/2(120)

= x0 + ζ

∫ ̂φ

̂φ0

dw {μ(α2 − w2) + ν[α2(σ+1) − w2(σ+1)]}−1/2.(121)

For φ = φ(p) ∈ Φray one may write part of the inverse solution on each quarter
wavelength, starting at a zero of φ, as

x̂(φ̂) = ζ

∫
̂φ

0

dw {μ(α2 − w2) + ν[α2(σ+1) − w2(σ+1)]}−1/2.(122)

Since the full solution can be composed of appropriately gluing together partial
solutions, it is sufficient to confirm that each partial solution is continuously differ-
entiable in μ and α. Let

F (x, μ, α, φ̂) := x− ζ

∫ ̂φ

0

dw {μ(α2 − w2) + ν[α2(σ+1) − w2(σ+1)]}−1/2(123)

so that the formula for the inverse function of the partial solution may be expressed

as F (x, μ, α, φ̂) = 0.

It is easy to see that F is continuously differentiable in x and φ̂. F can be shown
to be continuously differentiable in in μ and α by arguments similar to those used to
study ∂μλ and ∂αλ in the proof of the monotonicity properties of Proposition 4.2.

Furthermore, since ∂
̂φF (x, μ, α, φ̂) �= 0 for all x, μ, α, Implicit Function Theorem

gives that there must exist a φ(μ,α)(x) that is continuously differentiable in μ, α,
and x in an open neighborhood of any point (μ, α, x) ∈ P × R. This continuous
differentiability also holds in the same manner for ∂xφ(μ,α)(x) since by (27) one has

∂xφ(μ,α)(x) = ζ{μ[α2 − φ2
(μ,α)(x)] + ν[α2(σ+1) − φ

2(σ+1)
(μ,α) (x)]}1/2,(124)
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which completes the proof. �

Remark 6.4. The lemma above could also be proven, for the case of σ = 1, by
referring to Jacobi elliptic functions, which are the explicit solutions of (1) in this
case.

Lemma 6.5. Let φ(μ∗,α∗) ∈ Φray where the ray has the form (−∞, l]. If
φ(μ∗,α∗)(0) = 0 then

∂μφ(μ∗,α∗)(0) = ζξα(μ+ να2σ)1/2∂μλ(μ,α) �(μ,α)=(μ∗,α∗),(125)

∂μ∂xφ(μ∗,α∗)(0) = 2−1ζ(μ+ να2σ)−1/2α �(μ,α)=(μ∗,α∗),(126)

∂αφ(μ∗,α∗)(0) = ζξα(μ+ να2σ)1/2∂αλ(μ,α) �(μ,α)=(μ∗,α∗),(127)

∂α∂xφ(μ∗,α∗)(0) = ζ(μ+ να2σ)−1/2[μ+ (σ + 1)να2σ] �(μ,α)=(μ∗,α∗),(128)

where ζ = ±1 and l = ξλ(μ∗,α∗) for some fixed ξ ∈ N/4.

Proof. Let x̂(μ,α) satisfy x̂(μ∗,α∗) = 0 and φ(μ,α)(x̂(μ,α)) = 0 for all (μ, α).
Namely x̂(μ,α) denotes the position of some nodal point of the solution φ(μ,α).
Therefore the variation of x̂(μ,α) with respect to μ must take the form ∂μx̂(μ,α) =
−ξ∂μλ(μ,α) for all (μ, α) and for some fixed ξ ∈ N/4. Therefore

0 = φ(μ,α)(x̂(μ,α))(129)

⇒ 0 =
d

dμ
φ(μ,α)(x̂(μ,α)) = ∂μφ(μ,α)(x̂(μ,α)) + ∂xφ(μ,α)(x̂(μ,α))∂μx̂(μ,α),(130)

⇒ ∂μφ(μ∗,α∗)(0) = ξ∂xφ(μ∗,α∗)(0)∂μλ(μ∗,α∗)(131)

= ζξα(μ+ να2σ)1/2∂μλ(μ,α) �(μ,α)=(μ∗,α∗),

where we have used

∂xφ(μ∗,α∗)(0) = ζα(μ+ να2σ)1/2 �(μ,α)=(μ∗,α∗),(132)

which holds thanks to (124) and φ(μ∗,α∗)(x̂(μ∗,α∗)) = 0. Furthermore, by differenti-
ating the expression of ∂xφ in (124) with respect to μ, one has

[∂μ∂xφ(μ,α)(x̂(μ,α))] �(μ,α)=(μ∗,α∗)(133)

= 2−1ζ{μ[α2 − φ2
(μ,α)(x̂(μ,α))] + ν[α2(σ+1) − φ

2(σ+1)
(μ,α) (x̂(μ,α))]}−1/2(134)

× {[α2 − φ2
(μ,α)(x̂(μ,α))]− 2φ(μ,α)(x̂(μ,α))∂μ[φ(μ,α)(x̂(μ,α))](135)

− 2(σ + 1)νφ2σ+1
(μ,α)(x̂(μ,α))∂μ[φ(μ,α)(x̂(μ,α))]} �(μ,α)=(μ∗,α∗)(136)

= 2−1ζ[μα2 + να2(σ+1)]−1/2α2 �(μ,α)=(μ∗,α∗)(137)

= 2−1ζ(μ+ να2σ)−1/2α �(μ,α)=(μ∗,α∗) .(138)

The variation of x̂(μ,α) with respect to α must take the form ∂αx̂(μ,α) =
−ξ∂αλ(μ,α) for all (μ, α). Therefore we find similarly to (132) above that

∂αφ(μ∗,α∗)(0)(139)

= ξ∂xφ(μ∗,α∗)(0)∂αλ(μ∗,α∗) = ζξα(μ+ να2σ)1/2∂αλ(μ,α) �(μ,α)=(μ∗,α∗) .(140)
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Furthermore, by differentiating the expression of ∂xφ in (124) with respect to α,
one has, by a similar calculation to that of (138) above, that

∂α∂xφ(μ∗,α∗)(0)(141)

= 2−1ζ[μα2 + να2(σ+1)]−1/2[2μα+ 2(σ + 1)να2σ+1] �(μ,α)=(μ∗,α∗)(142)

= ζ(μ+ να2σ)−1/2[μ+ (σ + 1)να2σ] �(μ,α)=(μ∗,α∗) .(143)

�

Lemma 6.6. For μ = 0 one has

λ(0,α) = 4c1ν
−1/2α−σ,(144)

∂αλ(0,α) = −4σc1ν
−1/2α−(σ+1),(145)

∂μλ(0,α) = −2c2ν
−3/2α−3σ,(146)

where

c1 :=

∫ 1

0

dw (1− w2(σ+1))−1/2 > 0,(147)

c2 :=

∫ 1

0

dw (1− w2(σ+1))−3/2(1− w2) > 0,(148)

c3 := c2/c1 > 0.(149)

Proof. Due to (39) of Proposition 4.2, one has

λ(0,α) = 4

∫ 1

0

dw [να2σ(1− w2(σ+1))]−1/2(150)

= 4ν−1/2α−σ

∫ 1

0

dw (1− w2(σ+1))−1/2(151)

= 4c1ν
−1/2α−σ.(152)

Differentiating λ(μ,α), as given in (39), one has

∂αλ(μ,α)/4(153)

=−2−1

∫ 1

0

dw [μ(1− w2)+να2σ(1−w2(σ+1))]−3/22σνα2σ−1(1−w2(σ+1))(154)

∂αλ(0,α) = −4σν−1/2α−(σ+1)

∫ 1

0

dw (1− w2(σ+1))−3/2(1− w2(σ+1))(155)

= −4σν−1/2α−(σ+1)

∫ 1

0

dw (1− w2(σ+1))−1/2 = −4σc1ν
−1/2α−(σ+1),(156)

and

∂μλ(μ,α)/4 = −2−1

∫ 1

0

dw [μ(1− w2) + να2σ(1− w2(σ+1))]−3/2(1− w2)(157)

∂μλ(0,α)=−2ν−3/2α−3σ

∫ 1

0

dw (1−w2(σ+1))−3/2(1−w2)=−2c2ν
−3/2α−3σ.(158)

�
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