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A foundational result in the theory of Lyndon words (words that are strictly earlier 
in lexicographic order than their cyclic permutations) is the Chen–Fox–Lyndon 
theorem which states that every word has a unique non-increasing decomposition 
into Lyndon words. This article extends this factorization theorem, obtaining the 
proportion of these decompositions that are strictly decreasing. This result is then 
used to count primitive pseudo orbits (sets of primitive periodic orbits) on q-nary 
graphs. As an application we obtain a diagonal approximation to the variance of 
the characteristic polynomial coefficients of q-nary quantum graphs.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

A fundamental tool used to understand the combinatorics of words is the Lyndon factorization [5] (see 
also Ref. [11]); every word has a unique standard decomposition into a non-increasing sequence of Lyndon 
words. Lyndon words being those words that occur strictly earlier in lexicographic order than any of their 
rotations.

So, for example, the Lyndon words on the binary alphabet with length ≤ 3 arranged in lexicographic 
order are

0 <lex 001 <lex 01 <lex 011 <lex 1 . (1)

And the unique standard decompositions of the binary words of length 3 into non increasing sequences of 
Lyndon words are,

(0)(0)(0), (001), (01)(0), (011), (1)(0)(0), (1)(01), (1)(1)(0), (1)(1)(1). (2)
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The Lyndon factorization finds applications in diverse problems from the theory of free Lie algebras 
[11], to quasi-symmetric functions [8] and data compression techniques [12]. In this article we extend this 
foundational result to obtain the proportion of the standard decompositions that are strictly decreasing, so 
the standard decomposition has no repetitions. For words of a fixed length on an alphabet of q letters the 
proportion that have strictly decreasing Lyndon factorizations is shown to be (q− 1)/q, independent of the 
word length. Returning to the example above, the strictly decreasing standard decompositions of binary 
words length of 3 in (2) are indicated in bold, we see half, (2 − 1)/2, of the standard decompositions are 
strictly decreasing.

The remainder of the article applies this new combinatorial result to a problem in the field of quantum 
chaos. We focus on quantum graphs, which are a widely studied model of quantum chaos introduced by 
Kottos and Smilansky [9,10]. Quantum graphs are also used in other diverse areas of mathematical physics 
including Anderson localization, microelectronics, nanotechnology, photonic crystals and superconductivity, 
see Ref. [2,6] for an introduction. In Ref. [1] the authors showed that spectral properties of quantum graphs 
are precisely encoded in finite sums over collections of primitive periodic orbits called primitive pseudo 
orbits. Here, we introduce graph families which we call q-nary graphs, where there is a bijection between 
primitive pseudo orbits on those graphs and strictly decreasing standard decompositions.

The spectrum of the graph is encoded in the characteristic polynomial of the quantum evolution operator, 
defined in terms of the scattering matrices at the vertices, see section 5. It was shown in Ref. [1] that the 
coefficients of the characteristic polynomial an can be expressed as a sum over primitive pseudo orbits of 
the graph. It is the variance of these coefficients, averaged over the spectral parameter, which we treat 
for families of q-nary graphs. A q-nary graph has vertices labeled by words of length m on an alphabet 
of q letters. By counting the number of strictly decreasing standard decompositions we obtain a diagonal 
approximation for the variance,

〈|an|2〉diag = q − 1
q

. (3)

This can be compared to the corresponding random matrix result [7],

〈|an|2〉CUE = 1 . (4)

The grounds for such a comparison is the Bohigas–Giannoni–Schmidt conjecture [4] which asserts that 
typically the spectrum of a classically chaotic quantum system corresponds, in the semiclassical limit, 
to that of an ensemble of random matrices determined by the symmetries of the quantum system. In 
quantum mechanics the semiclassical limit is the limit of large energies or equivalently the limit � → 0. 
The appropriate semiclassical limit for graphs is a limit of a sequence of graphs with increasing number of 
edges, which corresponds to increasing the length of the words labeling the vertices m. The deviation we see 
from random matrix theory is consistent with previous investigations of the variance [10,15,16]. From our 
result it is clear that the deviation does not vanish for a given family of q-nary graphs in the semiclassical 
limit. However, the discrepancy would disappear for a sequence of graphs where the degree of the vertices 
increases, which is equivalent to increasing q. This suggests that random matrix results for the variance may 
be recovered under stronger conditions than those typically required for other spectral properties.

The article is laid out as follows. In Section 2 we introduce the terminology associated with Lyndon 
factorizations. In Section 3 we count the number of strictly decreasing standard decompositions (Theorem 2) 
which is a main result of this article. In Section 4 we introduce q-nary graphs which are families of directed 
graphs and use Theorem 2 to count the primitive pseudo orbits on these graphs. Section 5 describes how 
coefficients of the graph’s characteristic polynomial can be expressed as finite sums over primitive pseudo 
orbits. In Section 6 we apply the primitive pseudo orbit count to obtain a diagonal approximation for 
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the variance of coefficients of the characteristic polynomial of q-nary quantum graphs and compare it to 
predictions from random matrix theory.

2. Introduction to Lyndon words

In this article we consider factorizations of words over a totally ordered alphabet A of q letters. The 
lexicographic order of words is defined in the following natural way. Let,

w = a1a2 . . . al (5)

w′ = b1b2 . . . bk (6)

with ai, bj ∈ A. Then w >lex w′ iff there exists i ≤ min{l, k} such that a1 = b1, . . . , ai−1 = bi−1 and ai > bi
or l > k and a1 = b1, . . . , ak = bk.

Two words, w and w′ are said to be conjugate if w = uv and w′ = vu for some words u and v. Hence, 
two words are conjugate if and only if one may be obtained as a rotation (or cyclic shift) of the other and 
conjugacy is clearly an equivalence relation. A word is a Lyndon word if it is strictly less than all other words 
in its conjugacy class. So, going back to the binary example, the Lyndon words on the binary alphabet with 
length ≤ 4 are

0 <lex 0001 <lex 001 <lex 0011 <lex 01 <lex 011 <lex 0111 <lex 1 . (7)

For a fixed alphabet we denote the set of Lyndon words of length l by Lynq(l) and Lq(l) = |Lynq(l)|. 
A useful classical result involving the number of Lyndon words is the following lemma (see e.g., Ref. [11]).

Lemma 1.

∑
l|m

lLq(l) = qm (8)

The lemma [11] follows from the fact that every word of length m is a repetition of some word w of length 
l|m, where w is in the conjugacy class of some Lyndon word. There are Lq(l) conjugacy classes and each 
conjugacy class has l distinct words.

The Chen–Fox–Lyndon factorization theorem [5] (see also Ref. [11]) is the following fundamental result 
in the theory of Lyndon words.

Theorem 1. Any non-empty word w can be uniquely written as a concatenation of Lyndon words in non-
increasing lexicographic order,

w = v1v2 . . . vk , (9)

where each vj is a Lyndon word and vj ≥lex vj+1.

We call the unique factorization (9) the standard decomposition (or Lyndon factorization) of w. So for 
example the Lyndon factorization of the word LYNDON is (LYN)(DON).

Furthermore, we say that a standard decomposition is strictly decreasing if vj >lex vj+1 for j = 1, . . . , k−1. 
We will denote by Strq(n) the number of strictly decreasing standard decompositions of words of length n
from an alphabet of q letters. So, for example, the standard decompositions of binary words of length 4 are 
shown below where the strictly decreasing standard decompositions are indicated in bold,
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(0)(0)(0)(0), (0001), (001)(0), (0011),
(01)(0)(0), (01)(01), (011)(0), (0111),

(1)(0)(0)(0), (1)(001), (1)(01)(0), (1)(011),
(1)(1)(0)(0), (1)(1)(01), (1)(1)(1)(0), (1)(1)(1)(1).

We see that precisely half of the binary words of length 4 have strictly decreasing standard decompositions. 
In general, for an alphabet of q letters, the proportion of words that have strictly decreasing standard 
decompositions is (q − 1)/q, which we prove in the next section.

3. Counting strictly decreasing standard decompositions

The following theorem is the main combinatorial result of the paper.

Theorem 2. For words of length n ≥ 2,

Strq(n) = (q − 1)qn−1 . (10)

We formally define a generating function for the number of strictly decreasing standard decompositions 
as

p (x) =
∞∑

n=0
Strq(n) · xn , (11)

where we set Strq(0) = 1 and Strq(1) = q. If we also define a function,

f (x) = qx2 − 1
qx− 1 = 1 + qx +

∞∑
n=2

(q − 1) qn−1xn , (12)

then proving the theorem is equivalent to showing that p = f on some interval. To do this we use the 
following lemma.

Lemma 2.

p (x) =
∞∏
l=1

(
1 + xl

)Lq(l) (13)

Proof. Observe that the set of words with strictly decreasing standard decomposition is in bijection with the 
set of subsets of all Lyndon words. The bijection is implemented by taking any collection of distinct Lyndon 
words, arranging them in (strictly) decreasing order, and concatenating. That this is invertible follows from 
the Chen–Fox–Lyndon theorem, as every word has a unique non-increasing standard decomposition. �
Proof of Theorem 2. As p(0) = f(0) = 1 we note that p = f on (−1, 1) if

d
dx log p = d

dx log f (14)

on (−1, 1). From Lemma 2,
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log p =
∞∑
l=1

Lq(l) log
(
1 + xl

)
(15)

=
∞∑
l=1

Lq(l)
∞∑
j=1

(−1)j+1

j
xlj , (16)

where the second equality is valid for |x| < 1. Hence,

d
dx log p = − 1

x

∞∑
l=1

∞∑
j=1

(−1)j lLq(l)xlj (17)

= − 1
x

∞∑
m=1

∑
l|m

(−1)m
l lLq(l)xm . (18)

Splitting the sum over m into sums over odd and even terms respectively,

d
dx log p = 1

x

∞∑
m=1

∑
l|2m−1

lLq(l)x2m−1 − 1
x

∞∑
m=1

∑
l|2m

(−1) 2m
l lLq(l)x2m (19)

= 1
x

∞∑
m=1

∑
l|m

lLq(l)xm − 1
x

∞∑
m=1

∑
l|2m

(
1 + (−1) 2m

l

)
lLq(l)x2m (20)

= 1
x

∞∑
m=1

∑
l|m

lLq(l)xm − 2
x

∞∑
m=1

∑
l|m

lLq(l)x2m, (21)

where, in the last step we used the fact that coefficients in the second sum vanish unless l divides m. 
Applying Lemma 1,

d
dx log p = 1

x

∞∑
m=1

(qx)m − 2
x

∞∑
m=1

(qx2)m (22)

= 1
x

qx

1 − qx
− 2

x

qx2

1 − qx2 . (23)

Finally comparing this to,

d
dx log f = q

1 − qx
− 2qx

1 − qx2 , (24)

completes the proof. �
4. Quantum q-nary graphs and their pseudo-orbits

A graph G is a set of vertices V connected by a set of edges E . We consider graphs with directed edges 
where each edge e = (u, v) ∈ E , connects an origin vertex o(e) = u to a terminal vertex t(e) = v. We write 
e ∼ v if v is a vertex in e. The number of edges e ∼ v is dv the degree of v. The total number of edges is 
E = |E|.

Let q and m be positive integers. We define a q-nary graph of order m in the following way. We use an 
alphabet, A, of q letters and let the set of graph vertices be labeled by the qm words of length m. The edges 
of the graph are labeled by words of length qm+1 where the first m letters of the edge label designate the 
origin vertex and the last m letters denote the terminal vertex. Consequently every vertex of the q-nary 
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Fig. 1. A binary graph with 23 vertices.

Fig. 2. A ternary graph with 32 vertices.

graph has q incoming edges and q outgoing edges. See Fig. 1 for an example of a binary graph with 23

vertices and Fig. 2 for a ternary graph with 32 vertices.
A path p = (v1, v2, . . . , vl+1) of topological length Ep = l can be labeled by a sequence of l+ 1 connected 

vertices or alternatively by the corresponding connected l edges p = (e1, . . . , el) where ej = (vj , vj+1). 
On the q-nary graph with qm vertices a path of length l is labeled by a word w = a1, . . . , al+m where 
the connected vertices on the path are obtained by reading off consecutive subwords of m letters; so the 
first vertex is labeled by a1, . . . , am the second by a2, . . . , am+1 and so on. Clearly every q-nary graph is 
connected as any vertex can be reached from any other vertex by a path of at most m edges. On the other 
hand, a periodic orbit γ = (v1, . . . , vl, v1) of Eγ = l edges, which is a closed path on G, is labeled by a 
word w = a1, . . . , al of length l, where to obtain all the l subwords of length m the letters of w are rotated 
cyclically. For example, in Fig. 1 the periodic orbit of topological length 1 denoted by 0 corresponds to the 
loop 0000 joining vertex 000 to itself. Alternatively 0001 is the periodic orbit of topological length 4,

000 → 001 → 010 → 100 → 000 .

Clearly the number of periodic orbits of length l on a q-nary graph is ql. A primitive periodic orbit is a 
periodic orbit that is not a repetition of a shorter periodic orbit. We observe that there is a bijection between 
the primitive periodic orbits and Lyndon words. Indeed, a Lyndon word serves as a representative of its 
conjugacy class and by definition cannot be a repetition of a shorter word (see Section 2).

A pseudo orbit γ̃ = {γ1, . . . , γM} on G is a set of periodic orbits. We will use mγ̃ = M to denote the 
number of periodic orbits in the pseudo orbit. The topological length of the pseudo orbit is
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Eγ̃ =
M∑
j=1

Eγj
. (25)

A primitive pseudo orbit γ̄ = {γ1, . . . , γM} is a set of primitive periodic orbits in which no periodic orbit 
appears more than once; so primitive pseudo orbits omit repetitions of periodic orbits both in the collection 
of periodic orbits and inside each periodic orbit that makes up the pseudo orbit.

We can now see that there is a bijection between primitive pseudo orbits and words whose standard 
decomposition does not contain any Lyndon word more than once so that they are strictly decreasing. 
Thus, we can apply Theorem 2 to count primitive pseudo orbits on q-nary graphs.

Corollary 1. The number of primitive pseudo orbits of topological length n on a q-nary graph of order m is 
(q − 1)qn−1.

5. The characteristic polynomial of a quantum graph

Quantum graphs were introduced as a model system in which to study spectral properties when the 
corresponding classical dynamics is chaotic by Kottos and Smilansky [9,10]. Spectral properties of quantum 
binary graphs (q-nary graphs with q = 2) were investigated by Tanner in Ref. [15].

A discrete graph can be turned into a metric graph by associating a length le > 0 to each edge e ∈ E . 
There are two main approaches to quantize a metric graph which are closely related (see Refs. [2,6]). We 
describe the approach adopted here. Given an arbitrary directed metric graph, where each vertex has q
incoming and q outgoing edges, we equip each vertex, v ∈ V with a prescribed unitary q× q matrix. We call 
this matrix a vertex scattering matrix and denote it by σ(v). Each entry of this matrix σ(v)

e,e′ is a scattering 

transmission amplitude from edge e′ to edge e. Hence, the entries, σ(v)
e,e′ are indexed such that e′ is an edge 

directed towards the vertex v and e is directed out of it, so v = t(e′) = o(e).
In particular we consider q × q vertex scattering matrices of the form,

σ
(v)
e,e′ = 1

√
q

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
1 ω ω2 . . . ωq−1

1 ω2 ω4 . . . ω2(q−1)

...
...

...
. . .

...
1 ωk−1 ω2(k−1) . . . ω(q−1)(q−1)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (26)

where ω = e
2πi
q is a primitive q-th root of unity. This matrix is the Discrete Fourier Transform (DFT) 

matrix. Such vertex scattering matrices have the advantage of being democratic, in the sense that the 
transmission probability |σ(v)

e,e′ |2 = 1/q for every outgoing edge e. Consequently graphs with the DFT vertex 
scattering matrices are a well studied model of quantum chaos for which spectral properties are seen to 
converge rapidly to the predictions of random matrix theory [16].

All the vertex scattering matrices σ(v) can be combined into a single E×E unitary matrix in the following 
way. Fixing an arbitrary order for the E graph edges we compose an E × E matrix, Σ, whose entries are 
indexed by the graph edges and set

Σe,e′ =
{
σ

(v)
e,e′ v = t(e′) = o(e)

0 otherwise
,

where t(e′) marks the terminal vertex of e′ and o(e) marks the origin vertex of e.
Next we define L = diag{l1, . . . , lE} to be a diagonal matrix of all edge lengths and set U (k) = eikLΣ, 

which is called the unitary (or quantum) evolution operator. The graph spectrum is then defined as
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{
k2∣∣ det (I − U (k)) = 0

}
. (27)

This is the set of eigenvalues of the negative Laplacian on the metric graph when the vertex scattering 
matrices are those obtained from a self-adjoint realization of the operator, see e.g. Ref. [2].

The characteristic polynomial of U (k) is,

Fξ (k) = det (ξI − U (k)) =
2B∑
n=0

anξ
2B−n , (28)

and we note that the graph’s eigenvalues are obtained as the zeros of Fξ=1. The characteristic polynomial 
coefficients, an, are the spectral quantity which we investigate here. It is shown in Ref. [1] that each an
may be expressed as a sum over pseudo orbits on the graph in the following way. To each periodic orbit 
γ = (e1, . . . , em) on the quantum graph it is natural to associate a metric length,

lγ =
m∑
j=1

lej (29)

and a stability amplitude, the product of the elements of the scattering matrix around the orbit,

Aγ = Σe2e1Σe3e2 . . .Σenen−1Σe1em . (30)

Then a pseudo orbit γ̃ = {γ1, . . . , γM} acquires a metric length and stability amplitude,

lγ̃ =
M∑
j=1

lγj
, (31)

Aγ̃ =
M∏
j=1

Aγj
. (32)

In Ref. [1] the authors prove the following theorem.

Theorem 3. The coefficients of the characteristic polynomial Fξ (k) are given by

an =
∑

γ̄|Eγ̄=n

(−1)mγ̄ Aγ̄ (k) exp (iklγ̄) , (33)

where the (finite) sum is over all the primitive pseudo orbits of topological length n.

In Ref. [1] Theorem 3 is used to express the secular function, zeta function and spectral determinant in 
terms of the dynamical properties of finite numbers of pseudo orbits. In the final section we present results 
on the second moment of the coefficients.

6. Variance of coefficients of the characteristic polynomial

Typically, spectral properties of quantum chaotic systems can be modeled by the spectrum of a corre-
sponding ensemble of random matrices according to the conjecture of Bohigas, Giannoni and Schmidt [4]. 
The variance of the coefficients of the characteristic polynomial of an E×E random scattering matrix from 
the Circular Orthogonal Ensemble (COE) and Circular Unitary Ensemble (CUE) [7] are,
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〈|an|2〉COE = 1 + n(E − n)
E + 1

, (34)

〈|an|2〉CUE = 1 . (35)

These correspond to predictions for quantum chaotic systems with and without time-reversal symmetry 
respectively. In our case the directed scattering matrices break time-reversal symmetry. Hence directed 
q-nary graphs would be in the class of systems to be modeled by the CUE. However, as is shown in the 
following, the coefficients of the characteristic polynomial of a quantum graph are seen to deviate from 
the random matrix predictions even when other spectral-statistics match the corresponding random matrix 
ensemble.

Starting from (33), we note that a0 = 1 and averaging over k the other coefficients have mean value 
zero, as the average over k of eiklγ̄ is zero for pseudo orbits of topological length n ≥ 1. The variance of 
coefficients of the characteristic polynomial was investigated numerically for the complete graph with four 
vertices in Ref. [10] and also for binary graphs numerically and theoretically in Refs. [15,16]. The approach 
we take here extends this discussion to the families of q-nary graphs, for which we obtain analytic results. 
Following (33) we write the variance of the coefficients of the characteristic polynomial as a sum over pairs 
of primitive pseudo orbits γ̄, ̄γ′ of the same metric length,

〈|an|2〉k =
∑

γ̄,γ̄′|Eγ̄=Eγ̄′=n

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′ lim
K→∞

1
K

K∫
0

eik(lγ̄−lγ̄′ )dk (36)

=
∑

γ̄,γ̄′|Eγ̄=Eγ̄′=n

(−1)mγ̄+mγ̄′Aγ̄Āγ̄′ δlγ̄ ,lγ̄′ . (37)

When the set of edge lengths is incommensurate, i.e. linearly independent as real numbers over the rationals, 
the condition that the metric lengths of the pseudo orbits be equal requires that γ̄ and γ̄′ traverse the same 
edges the same number of times. Then, in the absence of time-reversal symmetry, the first order contribution 
to the variance is generated by pairing an pseudo orbit with itself, γ̄′ = γ̄, as in the diagonal approximation 
of Berry [3]. We thus define

〈|an|2〉diag =
∑

γ̄|Eγ̄=n

|Aγ̄ |2 . (38)

From (26) we have that the transition probability from any incoming edge e′ to any outgoing edge e is 
always,

|σ(v)
e,e′ |2 = 1

q
(39)

and substituting in (38) produces,

〈|an|2〉diag =
∑

γ̄|Eγ̄=n

1
qn

. (40)

Evaluating this amounts to counting the number of primitive pseudo orbits of topological length n. Then 
applying Corollary 1 we see the diagonal approximation to the coefficients of the characteristic polynomial 
of families of q-nary graphs is,

〈|an|2〉diag = (q − 1)
. (41)
q
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According to the Bohigas–Giannoni–Schmidt conjecture one might expect, in the absence of time-reversal 
symmetry, the random matrix result 〈|an|2〉CUE = 1. Hence the diagonal approximation deviates from this 
result for each family of q-nary graphs in the semiclassical limit, which for graphs is the limit of large 
graphs, i.e. fixing q and taking the length of the words to infinity. However, the discrepancy is consistent 
with the results for binary graphs obtained by Tanner [17]. There 〈|an|2〉k is seen to converge numerically 
to a constant value of 0.5 independent of n. The diagonal approximation considered here reproduces this 
result. To avoid the approximation, higher order contributions to the variance of the coefficients would come 
from correlations between pseudo orbits of the same length with self-intersections such as the figure of eight 
periodic orbits considered by Seiber and Richter [13,14].

To summarize, the diagonal approximation for the pseudo orbit expansion shows a deviation from random 
matrix theory which does not disappear in the semi-classical limit for fixed q. However, this deviation would 
vanish for a sequence of quantum graphs with increasing degree, i.e. increasing q, which is another way 
of approaching the semi-classical limit. This suggests that random matrix results for the coefficients of 
the characteristic polynomial may be recovered for sequences of quantum graphs although under stronger 
conditions than those typically required for other spectral statistics such as the form factor.
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