
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-018-3111-2
Commun. Math. Phys. 362, 909–948 (2018) Communications in

Mathematical
Physics

Nodal Statistics on Quantum Graphs

Lior Alon1, Ram Band1, Gregory Berkolaiko2

1 Department of Mathematics, Technion — Israel Institute of Technology, Haifa, Israel
2 Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA.
E-mail: berko@math.tamu.edu

Received: 30 September 2017 / Accepted: 10 December 2017
Published online: 3 March 2018 – © Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract: It has been suggested that the distribution of the suitably normalized number
of zeros of Laplacian eigenfunctions contains information about the geometry of the
underlying domain. We study this distribution (more precisely, the distribution of the
“nodal surplus”) for Laplacian eigenfunctions of a metric graph. The existence of the
distribution is established, along with its symmetry. One consequence of the symmetry
is that the graph’s first Betti number can be recovered as twice the average nodal surplus
of its eigenfunctions. Furthermore, for graphs with disjoint cycles it is proven that the
distribution has a universal form—it is binomial over the allowed range of values of
the surplus. To prove the latter result, we introduce the notion of a local nodal surplus
and study its symmetry and dependence properties, establishing that the local nodal
surpluses of disjoint cycles behave like independent Bernoulli variables.

1. Introduction

Studying various properties of the nodal sets of Laplacian eigenfunctions is a subject
with a long history in mathematical physics. The number of the zeros or the nodal
domains (depending on the context and the dimension) of the n-th eigenfunction is one
of the simplest quantities one can observe experimentally. Yet, analytical study of this
quantity as a function of n is complicated by its non-locality, which can be appreciated
by observing that different nodal domains of the same eigenfunction can vary wildly
in size and shape. Classical results in estimating this number include those of Sturm
[56], Courant [22] and Pleijel [49], with notable recent contributions by Ghosh et al.
[30] and by Jung and Zelditch [35,36]. In a series of works of Smilansky and co-authors
[5,6,17,31,33,34,37], it has also been proposed that studying the distribution of the
appropriately rescaled number of nodal domains can reveal much about the geometry of
the underlying system. This line of thought has lead to such results as the Bogomolny and
Schmit [18] prediction for the average number of the nodal domains (by analogy with a
percolation model), a proof by Nazarov and Sodin [48] that the average rescaled number
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of the nodal domains for random waves is non-zero, as well as a slew of high-precision
numerical studies [8,39,47].

In this paper, we will investigate the distribution of the nodal count of Laplacian
eigenfunctions on metric graphs, a class of models which was used to study the nodal
count distributions from the very start [5,6,34]. First, we will show, that the statistical
distribution of the nodal count is a well defined object. The nodal count of the n-th
eigenfunction, when shifted down by n −1, takes values in a bounded range of integers;
we call the shifted count the nodal surplus. For any graph we will show that the limiting
frequency of the appearance of a given surplus in the spectral sequence can be calculated
as an integral of a piecewise constant function over an analytic subvariety of a toruswhich
is called secular manifold.

The nodal count distribution is shown to be symmetric around its mean, which is
equal to half the first Betti number β of the graph; conversely, the first Betti number can
be recovered from the nodal statistics. Furthermore, for a class of graphs whose cycles
are disjoint, we will prove that, despite knowing neither the individual eigenvalues nor
the zero count of individual eigenfunctions, we can predict the limiting nodal count
distribution. It takes a universal form—the binomial distribution over the a priori allowed
range of values, from 0 to β.

To prove the latter, we introduce a new concept of a local nodal surplus. That such a
quantity can be defined at all is very interesting in itself, due to the issue of non-locality
mentioned above. To explain this concept informally, recall that the global nodal surplus
can be viewed as a deviation of the number of zeros from the baseline n−1, attributable to
the presence of cycles in the graph. One therefore expects that the extra number of zeros
is “localized” on the cycles and, if the graph has block structure (can be disconnected by
cutting bridges, for example), one should be able to talk about the local nodal surplus of an
individual block. This notion will be rigorously defined in this paper by analytic means.
Its geometric meaning is far from obvious: the global nodal surplus is the difference
between the number of zeros and n − 1, and while the local meaning of the number of
zeros is obvious enough, there is no local analogue of the eigenfunction’s number n.
Our analytic definition, however, allows us to prove that for a graph with disjoint cycles,
the local surpluses of the cycles behave like independent Bernoulli variables, hence the
binomial distribution of the global nodal surplus.

2. Definitions and Main Results

Let � (V, E, l) be a finite connected metric graph with a set of vertices V and a set of
edges E . The sizes of the sets V and E are denoted V and E correspondingly. The last
entry of the triple is the length function l : E → R+ which associates to each edge e ∈ E
a positive length which we will denote le. We will identify each edge with an interval
[0, le] of the corresponding length. In doing so one needs to choose an orientation for
the edge, but this can be done arbitrarily and does not affect the results in any way. Note
that we allow multiple edges between the same pair of vertices and also edges with both
ends at the same vertex (loops).

A quantum graph is a metric graph � (V, E, l) equipped with a Schrödinger type
operator acting on the Hilbert space

⊕
e∈E L2([0, le]) with a suitable domain. We will

not consider potentials, restricting our attention to Laplace operator

H = −�, H : f �→ −d2 f

dx2e
. (1)
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The magnetic Schrödinger operator will also play an important role; we will define it
in Sect. 3.1.

In this paper we will consider the most common vertex conditions for which these
operators are self-adjoint. We say that a function obeys the Neumann boundary condi-
tions if at any vertex v ∈ V it is continuous and

∑

e∈Ev

d

dx
f (v) = 0 (2)

where Ev is the set of edges incident to the vertex v, and by convention the derivatives
are taken into the edge e. At a vertex of degree one, the above conditions reduce to the
standard Neumann condition f ′(v) = 0. At such vertices we will also allow Dirichlet
conditions (i.e. f (v) = 0). A connected quantum graph different from a circle or a
polygon and with the above vertex conditions will be called a nontrivial standard graph.

Further details about theory of quantum graphs can be found in the books [12,32,46]
as well as the recent elementary notes [11].

2.1. The nodal surplus. Since our quantum graph is compact, the operator H has a
discrete spectrum of eigenvalues {λn}∞n=1 and corresponding eigenfunctions { fn}∞n=1.
For the operators presented here, the spectrum is non-negative, and we will use the
notation λn = k2n . From here on we will also refer to kn ≥ 0 as the eigenvalue of
the graph. The eigenfunctions of (1) can be chosen to be real and, if the eigenfunction
does not vanish on entire edges (which is possible on graphs due to failure of unique
continuation principle), one can count the number of the zeros of the n-th eigenfunction.
This quantity will be denoted by φn and will be the main object of our study.

From now on we will call kn and fn generic eigenvalue and eigenfunction if the
eigenvalue kn is simple and the eigenfunction fn does not vanish on the vertices (and
therefore edges) of the graph. We will routinely assume that the edge lengths are inde-
pendent over the field Q of rational numbers (or rationally independent). This will be
shown to guarantee that a majority of the eigenvalues are generic1 (see [14,27] and
Appendix A). Furthermore, if the graph has no loops, for a choice of rationally indepen-
dent edge lengths all eigenvalues are generic, hence the name.

The nodal count of a tree graph is φn = n − 1 which is a generalization of Sturm’s
oscillation theorem that was obtained in [50,53] (interestingly, the converse result has
also been established [1]: if the nodal count is φn = n − 1 then the graph is a tree). For
graphs which are not trees n − 1 provides a baseline from which the actual number of
zeros does not stray very far. Defining the n-th nodal surplus by σn = φn − (n − 1) we
have the following bounds

0 ≤ σn ≤ β, (3)

where β is the number of independent cycles on the graph (i.e. the number of generators
of the first homology group of the graph—the first Betti number), and is equal to

β = E − V + 1. (4)

We remark that the 1 above stands for the number of connected components of the graph.
The upper bound was proven in [34] and the lower bound in [9] (see also [3]).

1 Unless the graph is a circle or a polygon, which we specifically excluded when defining a nontrivial
standard graph.
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An interesting insight on the nature of these bounds comes from the characterization
of the nodal surplus in terms of theMorse index of the eigenvalue as a function of certain
parameters [10,15,19]. This theorem will play a central role in our study and we review
it in Sect. 3.1.

2.2. Main results. In order to investigate the nodal surplus of a graph, we wish to define
a surplus distribution that will give the density of a given value in the nodal surplus
sequence.

Theorem 2.1. Let � be a nontrivial standard graph with rationally independent lengths.
Then the nodal surplus distribution of � is a well defined probability distribution on the
set {0, 1, . . . , β} given by

ps = lim
N→∞

|{n ∈ GN | σn = s}|
|GN | , 0 ≤ s ≤ β, (5)

where GN is the set of indices 1 ≤ n ≤ N such that kn is generic. Furthermore, the
distribution is symmetric, in the sense that

ps = pβ−s, 0 ≤ s ≤ β, (6)

and, therefore, the value of β can be recovered as twice the average nodal surplus

β = 2E(σn) := lim
N→∞

2

|GN |
∑

n∈GN

σn . (7)

Remark 2.2. Equation (7) generalizes the inverse result of [1]: p0 = 1 implies β = 0.

We now define the special structure of the graphs where we can say more about the
form of the distribution ps . A simple cycle in the graph � is a sequence of vertices
[v1, . . . , vk], such that there is an edge connecting vertex v j to v j+1 for all j (including
vk to v1) and no vertex appears more than once. A graph is said to have disjoint cycles
if there is a basis set of β cycles such that each vertex v ∈ V is traversed by at most one
cycle, see Fig. 1 for an example.

Fig. 1. An example of a graph with five disjoint cycles
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Theorem 2.3. Let � be a nontrivial standard graph with rationally independent lengths.
If the cycles of � are disjoint, then the nodal surplus distribution of � is Binomial with
parameters β and 1/2. That is,

ps = 1

2β

(
β

s

)

, 0 ≤ s ≤ β. (8)

Our approach to analyzing the nodal surplus sequence {σn} is interpreting it as a
sample of a certain function defined on a certain manifold endowed with a probability
measure. The manifold and the measure go back to an idea of Barra and Gaspard [7];
the fact that the nodal surplus can be read off the manifold was shown by Band [1] who
converted the nodal-magnetic connection of Berkolaiko andWeyand [15] into a function
on the manifold. Existence of the limit in (5) follows from the ergodicity of the sampling
process (which goes back to Weyl [59]). The symmetry (6) is a consequence of a simple
symmetry of the nodal surplus function, the underlying manifold and the measure.

Our second main result requires a much more detailed analysis of the manifold and
the nodal surplus function. Considering a more general situation, a graph consisting of
disjoint blocks of cycles, we show that the total nodal surplus is a sum of the “local
surpluses” of individual blocks. These local surpluses also have symmetry similar to
(6), but with β equal to the number of cycles in their block. Moreover this symmetry is
independent of the values taken by other local surpluses. If each block has just one cycle,
the local surpluses become independent (rather thanmerely “independently symmetric”),
thus producing the binomial distribution.

Our proofs require several technical tools and results. To avoid tiring the reader we
describe these results on an “as needed” basis. Section 3 introduces magnetic Laplacian,
the magnetic-nodal connection, secular equation and secular manifold, and the Barra–
Gaspard measure before proceeding to prove Theorem 2.1. Section 4 defines the notion
of a block of a graph, introduces scattering from a graph, a factorization of the secular
equation by splitting a graph into two parts, defines the local nodal surplus and studies its
properties, culminating in a proof of Theorem 2.3. In Appendices A, B and C we prove
some auxiliary results used in the paper. Finally (and perhaps most interestingly for
readers looking for open problems), in Appendix D we present some simple examples
of nodal surplus distributions, both numerical and analytical, mostly of the graphs falling
outside the assumptions of Theorem 2.3. This helps us to understand to what extent the
assumptions are optimal.

3. Defining the Distribution

To get an analytic handle on the nodal distribution we combine two techniques of quan-
tumgraphs analysis: themagnetic-nodal connection ofBerkolaiko,Colin deVerdière and
Weyand [10,15,19] and the secular manifold of Barra and Gaspard [7] further developed
in [2,16,20]. We lay out the required foundations in the next subsections.

3.1. The magnetic Laplacian and the magnetic-nodal connection. The magnetic Lapla-
cian is the operator on

⊕
e∈E L2([0, le]) acting as

HA : f �→
(

i
d

dx
+ A(x)

)2

f, (9)
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where A(x) is a piecewise continuous 1-form called the magnetic potential. The vertex
conditions are modified by substituting (2) with

∑

e∈Ev

(

i
d

dx
+ A(x)

)

f (v) = 0. (10)

Naturally, when A ≡ 0 we recover the non-magnetic Laplacian of (1).
A magnetic flux of a magnetic potential A through an oriented cycle γ is defined as

αγ :=
[∮

γ

A(x)

]

mod 2π. (11)

The fluxes through independent cycles of the graph� completely determine themagnetic
Laplacian in the following sense.

Lemma 3.1. Two magnetic Laplacian operators HA,HA′ are unitarily equivalent if the
magnetic potentials A and A′ have the same flux through every cycle γ .

The above lemma is well-known with proofs in the quantum graph setting appearing,
for example, in [15,42]. Due to additivity of fluxes, it is enough to know them for a
fundamental set of cycles, β in number. Fixing a particular fundamental set of cycles
(together with orientation) we collect the corresponding fluxes into the flux vector 
α ∈
T

β . Here T
β is the β-dimensional flat torus R

β/(2πZ)β .
We can thus speak of the eigenvalues of the “operator” H
α (which is actually an

equivalence class of operatorsHA). Consider these eigenvalues {kn (
α)}∞n=1 as functions
of the fluxes 
α. At the point 
α = 0 they are equal to the eigenvalues of the non-magnetic
operator H. What is far from obvious is that the behavior of kn(
α) around 
α = 0
determines the nodal surplus of the n-th eigenfunction of H.

Theorem 3.2 (Berkolaiko–Weyand [15]). Let � be a quantum graph, kn > 0 a generic
eigenvalue of H on � and σn its nodal surplus. Consider the eigenvalue kn(
α) of the
corresponding magnetic Schrödinger operator as a function of 
α. Then 
α = 0 is a
smooth non-degenerate critical point of kn (
α) and its Morse index is equal to the nodal
surplus σn.

The Morse index of a function is the number of negative eigenvalues of the Hessian
evaluated at a critical point of this function. Because Hessians will play a large role in
our proofs, we should set up notation carefully.

Definition 3.3. Let f (
x, 
y) be a twice differentiable function of a finite number of vari-
ables 
x = (x1, . . . , xn) and 
y = (y1, . . . , ym). TheHessian of f with respect to variables

y evaluated at the point 
x = 
x∗ and 
y = 
y∗ is a matrix of second derivatives

H
y( f )(
x∗, 
y∗) :=
[

∂2 f

∂yi∂y j
(
x∗, 
y∗)

]m

i, j=1
. (12)

For a symmetricmatrix Awewill denote byM[A] the number of its negative eigenvalues
(Morse index).

With this notation in hand, Theorem 3.2 can be summarized as

σn = M
[

H
α(kn)
(
0

)]
, (13)

where kn = kn (
α).
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3.2. Bond scattering matrix and secular equation. Solving the eigenvalue equation
HA f = k2 f for k > 0 on every edge and applying the vertex condition we arrive
at the secular equation on the eigenvalues k [43,44,58]. In this subsection we review
this procedure.

Taking, without loss of generality, the magnetic potential to be constant on each edge,
the solution on the edge e is given by

f (xe) = aee−i(k+Ae)(le−xe) + aêe−i(k−Ae)xe . (14)

Thus each edge corresponds to two “directed” coefficients, ae and aê, which can be
viewed as the amplitudes2 of waves traveling in and against the chosen direction of e.
The label ê is called the reversal of the (label) e. The hat can be viewed as a permutation
(fixed-point free involution) on the set of labels if we extend it by ˆ̂e = e. If we introduce
variables xê := L − xe and Aê = −Ae, expression (14) becomes nicely symmetric.

Let us fix a particular representative of the equivalence class of operatorsHA (see [15]
for more detail). Choose a set C of β edges whose removal from E does not disconnect
the graph. The remaining graph is a spanning tree. We set the magnetic potential to be
non-zero only on the edges e j ∈ C, with Ae j = α j/ le j .

Assume f is an eigenfunction ofHA corresponding to the eigenvalue k > 0. Accord-
ing to (14), f is uniquely determined by a vector of coefficients


a ∈ C
2E , 
a = (

a1, a1̂, . . . , aE , aÊ

)
. (15)

Note that we have chosen a specific order of the edge labels. Imposing the vertex con-
ditions on f and simplifying the result we arrive to the condition

(
I − eiαeikL S

)

a = 0, (16)

where L is the diagonal matrix of the edge lengths and α is the diagonal matrix of edge-
integrated magnetic potential values, which in our chosen representation of potential are
given by 0, αe or αê = −αe. Assuming for the moment that the edges in C are the first
in the order established by (15), we have

L = diag(l1, l1, l2, l2, . . . , lE , lE ) α = diag(α1,−α1, α2,−α2, . . . , 0, 0).

The matrix S (called the bond-scattering matrix) is unitary. For a graph with Neumann
(or Dirichlet) vertex conditions it has constant coefficients given by the following rules.
Let e be the label corresponding to a directed edge terminating at vertex v and let deg(v)

denote the degree of the vertex v. Then the elements of S are

Se′,e =

⎧
⎪⎨

⎪⎩

2
deg(v)

− 1, if e′ = ê,
2

deg(v)
, if d ′ originates at v and e′ �= ê,

0 otherwise.

. (17)

Finally, if we choose to impose Dirichlet condition at a vertex v of degree 1 then the
corresponding element of S changes from 1 given by (17) to −1.

2 More precisely, the coefficients ae and aê are the amplitudes of the waves measured just before they hit
the vertex they are traveling to; this causes the slightly unusual form of Eq. (14) but fits with the form we
choose for our secular equation (16).
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It is an explicit computation that each term in the product eiαeikL S is a unitary
matrix. The multiplicity of k2 �= 0 as an eigenvalue in the spectrum ofH is equal to the
dimension of the kernel of I − eiαeikL S. In other words, the geometric multiplicity of
k2 is equal to the algebraic multiplicity of k > 0 as the root of the secular equation

F̃ (k; 
α) := det
(
I − eiαeikL S

)
= 0, (18)

For more complete understanding of the scattering approach, we refer the reader to
[12,32].

3.3. The torus flow. We now describe an approach pioneered by Barra and Gaspard [7]
in their study of eigenvalue spacing of small quantum graphs.

Let � be a metric graph and define

F : T
E × T

β → C, F (
κ; 
α) = det
(
I − eiαeix S

)
, (19)

where S has been calculated according to prescription (17) and

x = diag (x1, x1, . . . xE , xE ) .

Consider the linear flow on the torus T
E

ϕ : R → T
E , ϕ (k) = k
l mod 2π, (20)

where 
l = (l1, . . . , lE ) is the vector of lengths of �. Observe that

F̃ (k; 
α) = F (ϕ(k); 
α) . (21)

For the rest of the paper, F will be referred to as the secular function of �. Define the
secular manifold,

 := {
κ : F (
κ; 0) = 0} ⊂ T
E (22)

(note that it is a slight misnomer, as generally is an algebraic variety with singularities
and not a smooth manifold). The spectrum ofH on � can be described as the values of
k for which the flow φ hits the secular manifold,

{kn}∞n=1 \ {0} = {k > 0 : ϕ(k) ∈ } , (23)

see Fig. 2 for an example. Moreover, the multiplicity of the eigenvalue k is the same
as the algebraic multiplicity of the root 
κ = ϕ(k) of F(
κ; 0). We remark that we took
some pains to exclude zero eigenvalue from (23). Zero may or may not be an eigenvalue
of the graph (it is not an eigenvalue if we have some Dirichlet vertices), and in general
its multiplicity is different from the multiplicity of 
κ = 
0 as a root of F(
κ; 0); this topic
is studied in some detail in [28].

We can similarly define (
α) whose piercings by the flow will give the eigenvalues
kn (
α) of the magnetic operator.

A surprising consequence of Theorem 3.2, pointed out in [1], is that one can read off
the nodal surplus information directly off the secular manifold .
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Theorem 3.4. For a graph �, define the nodal surplus function by

σ :  → {0, . . . , β} σ (
κ) := M

⎡

⎣−
H
α(F)

(

κ; 
0

)

∇κ F · 
l

⎤

⎦ . (24)

Then the function σ is independent of 
l and if kn > 0 is generic, it gives the nodal surplus
of the corresponding eigenfunction,

σ
(

kn
l
)

= σn . (25)

See Fig. 2a for a demonstration of the nodal surplus function for a particular graph.

Remark 3.5. Before we sketch the proof of the Theorem, let us discuss its significance.
We have defined an “oracle” function which calculates the nodal surplus from 
κ alone.
For different choices of 
l a given point 
κ ∈  may be reached by the flow ϕ(k) at very
different values of k, if it is reached at all. The corresponding eigenfunctions have very
different numbers of zeros and come at different sequence numbers in the spectrum of
their graph, yet the nodal surplus remains the same!

Proof of Theorem 3.4. Equation (25) follows directly from Theorem 3.2 by calculating
the Hessian in terms of the function F ,

H
α(kn)
(
0

)
= −

H
α(F)
(


κ; 
0
)

∇κ F · 
l .

This was performed in [1], where it was also pointed out that ∇κ F has all entries of the
same sign (up to an overall phase) or 0. Moreover, if kn is simple then at 
κ = kn
l the

(a) (b)

x1

x2

x3

α1 α2

Fig. 2. a The torus flow defined by (20) hits the secular manifold. The values of k for which this happens are
the eigenvalues of the graph. The secular manifold in the figure is of the “dumbbell graph” graph as analyzed in
Appendix D.2. The secular manifold is colored according to the values of the nodal surplus function, equation
(24). b The “dumbbell” graph with torus coordinates marked on corresponding edges



918 L. Alon, R. Band, G. Berkolaiko

gradient ∇κ F �= 0, so the function σ is well defined. Since only the sign of ∇κ F · 
l is
important in calculating the Morse index, and 
l entries are all positive, the value of σ

remains the same whatever the lengths of the graph’s edges are. ��
We can now sketch out the path to proving our first main result, Theorem 2.1. We

will first explain that the surplus function σ is well defined on a large subset of 

(Sect. 3.4). The surplus distribution will then be represented as an integral over  with
an appropriate measure (Sect. 3.5). Finally, we will exhibit a symmetry in the function
σ which will give us the symmetry of the surplus distribution (Sect. 3.6).

3.4. Regular and generic subsets of . To effectively use Theorem 3.4 we need to
understand its domain of applicability. First, the function σ is not defined if ∇κ F = 0.
Second, it would be convenient to be able to tell if kn is going to be generic just by
looking at the point 
κ on the torus. This motivates us to define and study properties of
two subsets of , reg (regular) and g (generic).

Theorem 3.6 (Colin de Verdière [20]). Let � be a nontrivial standard graph. Then the
set

reg = {
κ ∈  : ∇κ F (
κ; 0) �= 0} , (26)

has the following properties.

(1) The algebraic variety  \ reg is of co-dimension at least one in , which in turn
has co-dimension one in T

E .
(2) reg is an open manifold (possibly disconnected) with the normal at a point 
κ given

by

n̂ j (
κ) = C
(∣
∣a j

∣
∣2+

∣
∣a ĵ

∣
∣2
)

, (27)

where C is a normalization constant and 
a is the eigenvector of the eigenvalue 1 of
the matrix eix S.

(3) k > 0 is a simple eigenvalue of the graph � if and only if ϕ(k) ∈ reg. Equivalently,

κ ∈ reg if and only if k = 1 is a simple eigenvalue of the graph � with the lengths

l = 
κ; the corresponding eigenfunction will be called the canonical eigenfunction.

Remark 3.7. We would like to comment here on one important aspect of the proof of
Theorem 3.6. Sincewe defined as the zero set of a complex function, onewould expect
the co-dimension to be 2. It is 1 because the function is actually real up to a smooth
phase factor. More precisely, the function

FR (
κ; 
α) := e−i(x1+···+xE )

√
det(S)

F (
κ; 
α) (28)

is real and share the same zero set as F [44]. The degenerate cases FR ≡ 0 andreg = ∅
can be excluded because the spectrum kn is discrete, continuous in 
l and generically
simple (on nontrivial graphs).

Remark 3.8. The real version of F we defined in (28) can be used in place of F in the
definition of the surplus function on ,

σ (
κ) = M

⎡

⎣−
H
α(FR)

(

κ; 
0

)

∇κ FR · 
l

⎤

⎦ . (29)
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Indeed,

H
α(FR) = e−i(x1+···+xE )

√
det(S)

H
α(F),

∇κ FR = e−i(x1+···+xE )

√
det(S)

∇κ F +
∇κe−i(x1+···+xE )

√
det(S)

F = e−i(x1+···+xE )

√
det(S)

∇κ F,

where the second term in ∇κ FR disappears since on  we have F(
κ; 0) = 0. The
prefactors then cancel when taking the quotient in (29).

To have a well defined nodal count (and to apply Theorem 3.4) we need kn to be
generic, a quality that is determined by looking at the corresponding eigenfunction. We
would like to be able to determine it by looking directly at the secular manifold .
An observant reader would protest that there is no such thing as the “corresponding
eigenfunction” at 
κ ∈ : the eigenfunction depends on the choice of lengths 
l, as was
pointed out in Remark 3.5. However, it turns out that all eigenfunctions that arise3 from
a given 
κ ∈ reg share many properties, such as the values they take on the vertices.
In particular one can just check the genericity of the canonical eigenfunction, defined in
Theorem 3.6(3).

The generic eigenvalues need to be simple, therefore we are looking for a subset of
reg [see Theorem 3.6(3)]. Next we need to exclude the points on  where the corre-
sponding eigenfunctions vanish on a vertex. The point 
κ ∈ reg uniquely determines
the one-dimensional null space of I − eix S. If 
a is a vector spanning this null space, it
is proportional to any non-zero column of the adjugate of I − eix S and therefore each
entry of 
a is a trigonometric polynomial in 
κ. From (14), the value of any eigenfunction
at a vertex v is given by

f (v) = e−ikle ae + aê,

where e is any vector coming out of v and kle is the e-th component of the point 
κ on
the torus. Defining

0 :=
{


κ ∈ reg :
∏

e

(
e−iκe ae + aê

)
= 0

}

, (30)

we then have the following theorem.

Theorem 3.9. If � is a nontrivial standard graph, the set

g = reg \ 0 (31)

is a non-empty submanifold of T
E of co-dimension 1. An eigenvalue kn of � with lengths


l is generic if and only if
ϕ(kn) ∈ g,

where ϕ(k) = k
l mod 2π .
The surplus function σ is constant on every connected component of the manifold

g.

3 That is eigenfunctions fn corresponding to an eigenvalue kn of a graph� with lengths 
l such that kn
l = 
κ
mod 2π .



920 L. Alon, R. Band, G. Berkolaiko

Proof. The set g is the set consisting of all the generic eigenvalues by its construction.
To show that it is non-empty we use the results of [14]: for a typical choice of lengths 
l,
every eigenvalue is either generic or its eigenfunction is supported on a single loop. But
for graph which is not a cycle, the proportion of the loop eigenstates in the spectrum is
Lloops/2L ≤ 1/2, where Lloops is the total length of all loops and L is the total length
of all edges of the graph (including loops). This result easily follows from the Weyl
estimate for the number of eigenvalues combined with our explicit knowledge of the
loop eigenvalues (see Appendix A). Since the set 0 is a compact subset of reg , the
set reg \ 0 is a submanifold of reg of the same dimension.

Finally, the surplus function is constant on every connected component ofg because
the eigenvalues of the matrix in the definition of σ vary continuously with 
κ. To change
the Morse index, one of them has to become zero or FR · 
l has to vanish, both of which
are impossible on generic eigenvalue, by Theorems 3.2 and 3.6. ��

3.5. Ergodicity and the Barra–Gaspard measure. The main idea of Barra and Gaspard
[7] was that if one wants to calculate the average of a certain function of the spectrum
of a quantum graph, it is often possible to redefine this function in terms of the 
κ torus
coordinates instead and then integrate over the secular manifold  with an appropriate
measure. This idea was applied to eigenvalue statistics in the original paper [7], used
to study eigenfunction statistics [16], eigenfunction scarring [20], band-gap statistics of
periodic structures [2,26,54] and statistics of topological resonances [21].

Definition 3.10. (Barra–Gaspard measure [7,20]) Let � be a quantum graph with
lengths 
l. The Barra–Gaspard measure on the smoothmanifoldg is the lengths depen-
dent probability measure

dμ
g

l :=

∣
∣
∣n̂(
κ) · 
l

∣
∣
∣

C
dσ, (32)

where n̂ is the unit vector field normal to g , dσ is the surface element of g induced
by the Euclidean metric and C = ∫

g

∣
∣
∣n̂ · 
l

∣
∣
∣ dσ is the normalization constant which

depends on the lengths 
l.
Theorem 3.11 (Barra–Gaspard [7], Berkolaiko–Winn [16], Colin de Verdière [20]). Let
� be a nontrivial standard graph. Then μ

g

l satisfies the following properties:

(1) It is a Radon measure on g.
(2) If the lengths 
l are rationally independent, then for any Riemann integrable function

f : g → R

lim
N→∞

1

|GN |
∑

n∈GN

f (ϕ(kn)) =
∫

g
f dμ

g

l , (33)

where ϕ(k) = k
l mod 2π and GN is the set of indices 1 ≤ n ≤ N such that kn is
generic.

Remark 3.12. In [7,20] this was proven for continuous functions for a measure defined
on reg instead. Restricting it to g does not change any substance. The adjustment in
the normalizing constant is shown in Appendix A to be

Cg

Creg
= 1 − Lloops

2L .
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Extending the result from continuous to Riemann integrable functions is done using
proposition 4.4 of [16].

Note that part (2) of the theorem cannot be extended to include all measurable func-
tions since the set of our sample points has measure zero. A Birkhoff-type result holding
for almost every starting point would not be sufficient for us since our flow piercing 

[Eq. (20)] has the fixed starting point ϕ(0) = 
0.

3.6. The surplus function σ is even. Wenow exhibit a symmetry in that has a profound
effect on the nodal surplus distribution.

Lemma 3.13. Let � be a nontrivial standard graph with lengths 
l. The inversion

I : T
E → T

E , I (
κ) = −
κ = 2π − 
κ mod 2π (34)

is a measure preserving homeomorphism of
(
g, μ

g

l
)

to itself.

Furthermore, under the mapping I, the surplus function transforms as

σ ◦ I(
κ) = σ (−
κ) = β − σ (
κ) . (35)

An example of the symmetry (35) can be observed in Fig. 2a.

Proof. In order to prove that I is a measure preserving homeomorphism of
(
g, μ

g

l
)

to itself, first observe that I is smooth, has a smooth inverse (itself), and has Jacobian
determinant equal to 1 in absolute value. We are only left to show that


κ ∈ g ⇒ I(
κ) ∈ g, and
∣
∣
∣n̂(
κ) · 
l

∣
∣
∣ =

∣
∣
∣n̂(I(
κ)) · 
l

∣
∣
∣ . (36)

Let 
κ ∈ g and let f be the eigenfunction of the simple eigenvalue 1 guaranteed by
Theorem 3.6(3). On the edge e the function f has the form

fe(x) = Ce cos(x − θe), (37)

for some θe ∈ [0, 2π) and Ce > 0. We remark that C2
e is equal to the e-th component

of the normal vector n̂(
κ), namely
∣
∣a j

∣
∣2+

∣
∣a ĵ

∣
∣2. The function fe is analytic and 2π -

periodic; we can view it as being defined by (37) not just on the edge [0, le] but on the
whole real line.

We now let f̃e(x) = fe(−x). We claim it is an eigenfunction with eigenvalue 1 of
the graph with lengths l̃e = 2π − le. Indeed, it obviously solves the eigenvalue equation
on every edge and satisfies the vertex conditions since

f̃e(0) = fe(0), f̃e

(
l̃e
)

= fe(le − 2π) = fe(le),

f̃ ′
e(0) = − f ′

e(0), f̃ ′
e

(
l̃e
)

= − f ′
e(le).

This construction is obviously invertible so the multiplicity of eigenvalue 1 at 
κ and at
I(
κ) are the same. Similarly, f̃ is generic if and only if f is and the first part of (36) is
established.

The normal vectors at the two points coincide: n̂(
κ) = n̂(I(
κ)) up to a sign because
what appears in (27) is the square of the amplitude Ce of the cosine. Therefore, the
transformation I is measure preserving.
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Conjugating FR ,

FR (
κ; 
α) = e−i(x1+···+xE )

√
det(S)

det
(
I − eiα+ix S

)
,

which we know to be real, we get

FR (
κ; 
α) = FR (
κ; 
α) = ±FR (−
κ;−
α) , (38)

where the sign depends on whether det S is equal to 1 or −1. Therefore

H
α(FR)
(
−
κ; 
0

)
= ±H
α(FR)

(

κ; 
0

)
, while ∇κ FR

(
−
κ; 
0

)
= ∓∇κ FR

(

κ; 
0

)
.

(39)
If A is a nondegenerate symmetricβ×β matrix,weobviously haveM[−A] = β−M[A]
and thus Eq. (35) follows from Remark 3.8. ��

3.7. Proof of Theorem 2.1. We collect all the preceding discussion together for the proof
of our first main theorem.

Proof of Theorem 2.1. By Theorem 3.9 the surplus function is constant on each con-
nected component of g , so it is actually continuous. The frequency ps [see Eq. (5)]
can be obtained from Theorem 3.11 by setting f to be the indicator function of the set
σ−1(s),

ps = μ
g

l
(
σ−1(s)

)
= μ

(
σ−1(s)

)
. (40)

Abbreviating μ
g

l to μ to avoid clutter, we use the properties of I as seen in

Lemma 3.13,

μ
(
σ−1(s)

)
= μ

(
I−1 ◦ σ−1(s)

)
= μ

(
(σ ◦ I)−1(s)

)
= μ

(
σ−1(β − s)

)
,

which proves that
ps = pβ−s . (41)

��

4. Nodal Surplus of Graphs with Block Structure

The aim of this section is the proof of Theorem 2.3. After introducing some additional
tools (Sects. 4.1 and 4.2) and setting up the definitions (Sect. 4.3) we will see in Sect. 4.4
that the nodal surplus function can be localized to a block of the graph (see Fig. 4). After
studying properties of the local surplus functions in Sects. 4.5 and 4.6 we get a handle
on their probability distributions in Sect. 4.7 and hence prove our second main result,
Theorem 2.3.

Section 4.1 contains a review of well-known facts that we need in the proofs of
subsequent sections; a reader not interested in the details of the proofs may skip it
entirely. Section 4.2 is also needed only for the subsequent proofs (and only in its
simplest form). However it contains a new formulation of a well-known idea which may
turn out to be a useful in other settings.
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4.1. Scattering from a graph. One can probe spectral properties of a graph by attaching
(infinite) leads to it and considering the scattering of plane waves coming in from infinity
[3,23,24,29,40,44,45].

Let � = (E,V) be a standard graph and let �̃ be the non-compact quantum graph
constructed by attaching M infinitely long edges (leads) to some vertices of the graph
and imposing Neumann vertex conditions there.

A solution f of the eigenvalue equation HA f = k2 f on �̃ with k > 0 can be
described by its compact graph coefficients 
a ∈ C

2E [see (14)] together with similar
coefficients on the j-th infinite leads number, c j,in and c j,out ∈ C,

f j (y) = c j,ine−iky + c j,out e
iky, (42)

where y ∈ [0,∞) is the coordinate along the lead starting from 0 at the attachment
point. Note that f is usually not an eigenfunction since it has an infinite L2 norm unless
all coefficients c are zero.

Let 
cin and 
cout be the vectors of the corresponding coefficients on the leads. Imposing
vertex conditions on the vertices of the graph results in a condition similar to (16),

(
cout

a

)

=
(
I 0

0 eik
l+i 
α
)(

r t ′
t S̃

)(
cin

a
)

, (43)

where the entries of the subblocks r , t , t ′ and S̃ are calculated according to formula (17).
The M × M matrix r describes the reflection of the waves from the attachment vertices
directly back into the leads (without getting into the compact part �) and is symmetric,
r T = r . The matrix t describes scattering of the waves from the leads into�, t ′ describes
scattering from � into the leads and S̃ describes wave scattering between edges of �.
In our setting, we have t ′ = (J t)T , where J switches around the directed labels of the
edges of the graph �, namely (J 
α)e = aê. We need it because the wave traveling on
e ∈ � and scattering into the lead travels in the opposite direction from the wave in
this edge which came from the lead. This relation is a manifestation of the time-reversal
symmetry of the problem.

Eliminating 
a from Eq. (43) and solving of 
cout in terms of 
cin we obtain scattering
matrix Z


cout = Z 
cin, with Z := r + t ′
(
I − eik
l+i 
α S̃

)−1
eik
l+i 
αt, (44)

which is well defined as long as I −eik
l+i 
α S̃ is non-singular.4 We remark that expanding
the inverse in geometric series results in a nice interpretation of the scattering matrix
as a summation over all paths from one lead to another weighted with their scattering
amplitudes.

The following Theorem is an amalgamation of several results appearing in [3,40] and
also some new results. We consider the matrix Z as a function on the torus by replacing
k
l with 
κ.

Theorem 4.1. Consider the scattering matrix of a nontrivial standard graph � as a
function of torus coordinates 
κ and magnetic fluxes 
α

4 It is actually shown in [3,40] that for real k, det
(
I − eik
l+i 
α S̃

)
= 0 produces removable poles only.
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Z(
κ, 
α) := r + t ′
(
I − ei 
κ+i 
α S̃

)−1
ei 
κ+i 
αt (45)

= r + t ′
(

e−i 
κ−i 
α − S̃
)−1

t.

It has the following properties.

(1) For a given 
α denote the set of 
κ such that

det
(
I − ei 
κ+i 
α S̃

)
= 0,

by W (
α). Then, if 
κ ∈ W (
α), the compact graph � with lengths 
l = 
κ and magnetic
fluxes 
α has an eigenfunction with eigenvalue 1 vanishing at all lead attachment
vertices as well as satisfying Neumann conditions there.

(2) For every point p = (
κ; 
α) ∈ T
E × T

β such that 
κ �∈ W (
α), the matrix Z(
κ, 
α) is
unitary.

(3) Z satisfies

Z(−
κ,−
α) = Z(
κ, 
α), (46)

Z(
κ,−
α) = Z(
κ, 
α)T , (47)

Proof. Parts (1) and (2) are well known, see, for example, [40, Theorems 3.1 and 3.3]
or [3, Lemma 2.3 and Theorem 2.1(2)].

Equation (46) follows by conjugating the definition of Z and using the fact that r , t ,
t ′ and S̃ have real entries.

Equation (47) can be derived from [40, Corollary 3.2], but we prefer to give a direct
proof, introducing a useful technique. Let J denote the permutation matrix switching
the orientation of the edge labels. The matrix J is an orthogonal involution, i.e. J−1 =
J T = J . We observe that

J S̃ J = S̃T , Jei 
κ+i 
α J = ei 
κ−i 
α =
(

ei 
κ−i 
α)T
, t ′ = (J t)T .

Substitute the latter equation in the form t ′ = (t)T J into the definition of Z and propagate
J through the product,

Z(
κ, 
α) = r + t ′
(

e−i 
κ−i 
α − S̃
)−1

t = r + (t)T J
(

e−i 
κ−i 
α − S̃
)−1

t

= r + (t)T
(

e−i 
κ+i 
α − S̃T
)−1

J t = r + (t)T
(

e−i 
κ+i 
α − S̃T
)−1

(t ′)T

=
(

r + t ′
(

e−i 
κ+i 
α − S̃
)−1

t

)T

= Z(
κ;−
α)T .

��
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Γ Γ1 Γ2

C

Fig. 3. An example of a splitting of a graph. The original graph � is on the left. The two subgraphs (in solid
lines) and the connector set C (in dashed and dotted lines) is on the right. The dotted lines indicate edges of
length 0

4.2. Secular equation via a splitting of a graph. The following definition introduces the
concept of a splitting of a graph, illustrated in Fig. 3. It uses the notion of an edge of
length zero. This is to be viewed as the result of contracting an edge, when the two end
vertices of the edge are merged and the Neumann conditions are imposed at the newly
formed vertex. For further information, see [4, Appendix A] which studies convergence
of the eigenvalues in the process of contraction and Appendix B which considers the
effect of setting κe to 0 in the secular function. Stronger forms of convergence in more
general settings are established in the forthcoming work [13].

Definition 4.2. A splitting of a graph � is a triple [�1,C, �2], where �1 and �2 are two
subgraphs of �, and the connector set C is a set of edges of � with one endpoint marked
as first and the other as second; it may also contain a number of edges of zero length
whose endpoints coincide. Furthermore, the following conditions are satisfied:

(1) the first endpoints belong to the subgraph �1, the second belong to �2,
(2) if we glue edges from C to subgraph �1 by their first endpoint and to subgraph �2

by their second (and contract the edges of zero length), we recover the graph �.

For any splitting, there is a decomposition of the secular function in terms of the
scattering matrices of the subgraphs. This is a version of the interior-exterior duality
which is nicely summarized in the introduction to [55] (original articles include [51,52]).
Similar questions on quantum graphs were also considered in [41] and [32, Sect. 3.3],
but we work in a more restricted setting and the result is more compact and transparent.

Theorem 4.3. Let the graph � have a splitting [�1,C, �2]. Denote by 
κ1, 
κ0 and 
κ2
the torus variables corresponding to the edges in �1, C and �2 correspondingly (with
κe = 0 for the zero-length edges from C). Let 
α1, 
α0 and 
α2 be the corresponding flux
variables with 
α0 oriented in the direction from �1 to �2 .

Attach the edges C to �1 by their first endpoints and let Z1(
κ1, 
α1) be the |C| ×
|C| scattering matrix of �1 with the edges from C acting as leads. Define the matrix
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Z2(
κ2, 
α2) analogously, and let ei 
κ0+i 
α0 be the |C|×|C| diagonal matrix of exponentials
of the variables corresponding to C. Then

F(
κ; 
α) = cD1D2 det
(
I − ei 
κ0+i 
α0 Z1 ei 
κ0−i 
α0 Z2

)
, (48)

where c is a constant, the factors D j = D j (
κ j ; 
α j ) are given by

D j (
κ j ; 
α j ) := det
(
I − ei 
κ j+i 
α j S j

)
, j = 1, 2, (49)

and S j is the submatrix of the bond scattering matrix S of � responsible for scattering
from and into the edges of the subgraph � j . In particular, the prefactors D1 and D2 are
non-zero when 
κ ∈ g and 
α = 
0.

Remark 4.4. The determinant in Eq. (48) has an elegant interpretation. Reading the
matrices right to left, we have the wave scattering from the subgraph �2, acquiring a
phase by traversing C from �2 to �1, scattering off the subgraph �1 and traversing C in
the opposite direction. The secular function is zerowhen thewave dynamics is stationary,
i.e. there is an eigenvector of this 4-step scattering process with eigenvalue one.

Wewill use Theorem4.3 only in its simplest setting,when the connector setC consists
of one edge of zero length. The proof of the more general setting given above is deferred
to Appendix C.

4.3. Block decomposition of a graph. To delve deeper into the dependence of the nodal
surplus on the structure of the graph, we introduce some terminology. We use Tutte’s
definition of the graph [57] as a set of vertices V , a set of edges E and the incidence map
from edges to pairs of vertices (endpoints of the edge). This allows for multiple edges
connecting a pair of vertices and for loop edges (if the endpoints coincide). A subgraph
is comprised of a subset Vs ⊆ V and a subset of Es ⊆ E which form a valid graph: all
endpoints of edges in Es are included in Vs . An intersection or union of two subgraphs
is formed by taking the intersection or union, respectively, of both the vertex and edge
sets.

Definition 4.5. A vertex separation of a graph � is an ordered sequence of connected
subgraphs [�1, . . . , �n] such that

(1) for each j = 2, . . . , n, the subgraph � j has exactly one vertex in common with the
union of all previous subgraphs, �1 ∪ · · · ∪ � j−1,

(2) the union of all subgraphs is the graph �,

� = �1 ∪ · · · ∪ �n .

Each subgraph � j in a vertex separation we will call a vertex-separated block.5

Definition 4.6. An edge separation of a graph� is a vertex separation [�1, . . . , �n] such
that for all j = 2 . . . , n the common vertex of � j with �1 ∪ · · · ∪ � j−1 is a vertex of
degree one in � j . The edge of � j incident to this vertex we call the bridge of � j .

Each subgraph � j of an edge separation we call an edge-separated block.

The notion of vertex separation is a generalization of the 1-separation of Tutte [57,
Sect. III.1]. Examples of vertex and edge separations are given in Figs. 4 and 5.

5 Our term “vertex-separated block” is a generalization of amore standard term block, a maximal connected
subgraph without a cutvertex [25, Sect. 3.1]. Our vertex-separated block is a connected union of such blocks.
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Γ

Γ1

Γ3

Γ2

Γ4

Fig. 4. An example of a graph and its vertex separation. Dashed lines indicate one possible choice for the
introduction of zero-length edges that would make it an edge separation. Note that the blocks �2 and �4 can
be further decomposed

Γ2

(a) (b)

Γ

Γ1
Γ3

Γ4

Fig. 5. An example of a graph and its edge separation

Remark 4.7. While we defined a vertex separation as an ordered sequence of blocks, we
have a freedom to choose an arbitrary block as the first one and reorder other blocks
accordingly. The same can be done with an edge separation but one may have to move
bridges from one subgraph to another.

One can “convert” a vertex-separated block decomposition into an edge-separated
one by introducing zero-length edges, see Fig. 4 for an example. Note that in this example
the choice of zero-length edges is not unique.

Finally, the feature of separations which is most important for our considerations is
that they naturally partition the set of magnetic fluxes, since the cycles of � are precisely
the cycles of its blocks [25, Lemma 3.1.1].

To be more specific, in Sect. 3.2 we have defined the standard representation of a
magnetic operator with fluxes 
α by choosing a set C of β edges whose removal does not
disconnect the graph and by placing the magnetic potential on these edges only. Each
of the β edges must belong to some � j , therefore each flux is naturally associated with
one of � j .

From now on we will assume that if we are given a separation (of either kind)
[�1, . . . , �n], thefluxes are ordered in such away that 
α = [
α1, . . . , 
αn],where the vector
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α j contains all the fluxes corresponding to cycles in � j . In particular, the dimension of

α j is equal to the first Betti number β( j) of � j .

4.4. Block structure of the graph and local nodal surplus.

Lemma 4.8. Let � be a magnetic standard graph with a vertex separation into two blocks
and let 
α = [
α1, 
α2] be the corresponding partition of the fluxes of �. Let F(
κ; 
α) be
the secular function of �. Then for any 
κ and 
α1 we have

F(
κ; 
α1, 
α2) = F(
κ; 
α1,−
α2). (50)

Proof. We will be applying Theorem 4.3 with the connector set C containing one edge
which has zero length and no magnetic potential. Both scattering matrices are one-
dimensional, and therefore (47) implies that Z2(
κ2,−
α2) = Z2(
κ2, 
α2).

We just need to verify that D2 is also even with respect to 
α. Similarly to the proof
of Theorem 4.1(3), we employ a label switching matrix J2 to write

D2(
κ2; 
α2) = det
[

J2
(
I2 − ei 
κ2+i 
α2 S2

)
J2
]

= det
(
I2 − ei 
κ2−i 
α2 ST

2

)

= det
(
I2 − S2ei 
κ2−i 
α2

)T = det
(
I2 − ei 
κ2−i 
α2 S2

)
= D2(
κ2;−
α2),

where we used the identity det (I − AB) = det (I − B A).
Since all terms in (48) are even with respect to the change, 
α2 �→ −
α2, the whole

expression is even. ��
Theorem 4.9. Let � be a graph with a vertex separation [�1, . . . , �n], and let β( j) be

the number of cycles in � j . Then the Hessian H
α(F)
(


κ; 
0
)

is block-diagonal with j-th

block of size β( j). In other words, if fluxes α1 and α2 belong to different vertex-separated
blocks of the graph � then

∂2F

∂α1∂α2
(
κ; 
0) = 0 for any 
κ. (51)

Proof. Let α1 and α2 belong to different blocks. Then

∂2F

∂α1∂α2

∣
∣
∣
∣
α=0

= ∂

∂α1

[
∂ F

∂α2

∣
∣
∣
∣
α2=0

]


α1=0

= 0, (52)

since ∂ F
∂α2

= 0 at 
α2 = 0 by (50). ��
Simple examples of the block-diagonal structure of Hessian can be found in Appen-

dices D.1 and D.2. The above theorem motivates the following definition.

Definition 4.10. Let � be a nontrivial standard graph with a vertex separation which
induces the partition of fluxes 
α = [
α1, 
α2, . . . 
αn]. The local surplus functions σ (b) :
g → {0, . . . , β(b)} are defined as follows:

σ (b) (
κ) := M

⎡

⎣−
H
αb (F)

(

κ; 
0

)


∇F · 
l

⎤

⎦ , (53)



Nodal Statistics on Quantum Graphs 929

where β(b) is the number of cycles in the block �b or, equivalently, the number of entries
in the vector 
αb. We stress that the Hessian H
αb (F) is taken with respect to the fluxes in
b-th block only; it is a subblock of the full Hessian H
α(F), which is block-diagonal by
Theorem 4.9.

Remark 4.11. Observe that the summation of all local surplus functions gives the (total)
surplus function,

n∑

b=1

σ (b) = σ. (54)

We also point out that the functions σ (b) can be viewed as random variables on the

probability space
(
g, μ

g

l
)
. Thiswill be convenient laterwhenwe talk about conditional

probabilities and independence of σ (b).

Remark 4.12. We have seen that the mapping I : 
κ �→ −
κ introduced in Lemma 3.13
changes the sign of the entire matrix appearing in the definition of the surplus functions.
Therefore, the conclusion applies to local surplus functions as well, namely

σ (b)(−
κ) = β(b) − σ (b)(
κ), (55)

where β(b) is the number of cycles in the b-th block. Consequently, the distribution of
the local surplus of the block b is symmetric around β(b)/2.

4.5. Local surplus is determined by its block coordinates. It is important to consider
how much information is needed to determine the value of a local surplus. It turns out
that for a block with only one common vertex with the rest of the graph, the value of the
torus coordinates corresponding to the edges of the block are enough—together with the
implicit information that 
κ lies on the secular manifold.

Lemma 4.13. Let � be a nontrivial standard graph with a vertex separation into two
blocks, [�1, �2]. Let kn be a generic eigenvalue. Then the local surplus σ (1) at a point
(
κ1, 
κ2) ∈ g, is uniquely determined by the 
κ1 coordinates.

More precisely if two points 
κ, 
κ′ ∈ g share the same 
κ1 coordinates, then

σ (1) (
κ) = σ (1) (
κ′) . (56)

Furthermore, if �1 has a vertex separation [�1,1, �1,2, . . .] (see Fig. 6) then for each
subblock j

σ (1, j) (
κ) = σ (1, j) (
κ′) . (57)

Proof. We apply Theorem 4.3 with the connector set being just one edge of zero length
from v to v, where v is the vertex common to �1 and �2. The secular equation is then
written in the form

F(
κ; 
α) = D1(
κ1; 
α1)D2(
κ2; 
α2)
(
1 − Z1(
κ1; 
α1)Z2(
κ2; 
α2)

)
, (58)

where Z j are 1 × 1 unitary matrices.
Since 
κ ∈ g , both determinants D j are non-zero, therefore, on the manifold g ,

Z2 = 1

Z1
= Z1. (59)
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v
Γ2

Γ1,1
Γ1,2 Γ1,3

Γ1

Fig. 6. Agraph with two vertex-separated blocks. The block�1 has a further separation into subblocks labeled
�1, j

We now use definition (53) in a modified form

σ (1) (
κ) = M

⎡

⎣−
H
α1(F)

(

κ; 
0

)


∇ 
κ1 F · 
l1

⎤

⎦ , (60)

where we used the fact that all entries of ∇F are of the same sign (up to a phase) and
nonzero on g [by (27) and (30)]. When calculating this ratio of the Hessian of F with
respect to 
α1 and the gradient of F with respect to 
κ1, the prefactor D2 is canceled and
Z2 can be substituted with Z1 removing all dependence on 
κ2 variables.

The second part of the statement follows immediately since the local surpluses of the
subblocks of �1 are determined as the Morse indices of the subblocks of the matrix in
(60) which we just determined to be independent of 
κ2 variables. ��

4.6. Local surplus of edge-separated blocks. In this section, we show that it is possible
to “localize” the homeomorphism of Lemma 3.13: there is a mapping that flips a given
local surplus while keeping all other local surpluses fixed. We are able to establish this
result only for edge-separated blocks and we know from the example of Appendix D.4
that the result is not always true for vertex separations. To start, we need some simple
facts about the form of the eigenfunction on a bridge separating two blocks.

Lemma 4.14. Let � be a graph with an edge separation [�1, �2] and let the bridge
be denoted by e0. For a 
κ ∈ g let the corresponding canonical eigenfunction (see
Theorem 3.6(3)) on the edge e0 be written in the form

fe0 = Ce0 cos (x − θ0(
κ)) (61)

on the bridge edge. Then θ0(
κ) is a smooth function on g which is fully determined by
the torus coordinates 
κ1 corresponding to the edges of the block �1. In other words, if
there is another point 
κ′ ∈ g such that 
κ′

1 = 
κ1, then θ0(
κ) = θ0(
κ′).
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Proof. The above does not mean that θ0 is independent of the other coordinates in 
κ:
the dependence is implicit via the relation 
κ ∈ . We can rephrase the result as saying
that there exists a function � = �(
κ1) which is independent of 
κ2 and which on g

coincides with θ0(
κ).
Any solution of the subgraph �1 and the bridge must belong to the set of scattering

solutions on �1 with the bridge extended to infinity. Comparing (61) with Eqs. (42) and
(44), we see that the function �(
κ1) can be determined from Z1(
κ1) = e2i�( 
κ1), where
Z1 is the 1 × 1 scattering matrix of the subgraph �1, see Sect. 4.1. Smoothness of �

follows from Theorem 4.1. ��
Lemma 4.15. Let � be a graph with an edge separation [�1, �2] and the bridge denoted
by e0 (according to Definition 4.6, e0 belongs to the block �2). Let 
κ = (
κ1, κ0, 
κ2) be
the torus coordinates, where 
κ1 corresponds to the edges of �1, κ0 corresponds to e0
and 
κ2 corresponds to all other edges of �2. Consider the mapping

R : reg → reg, R (
κ1, κ0, 
κ2) = (
κ1,−κ0 + 2θ0(
κ1),−
κ2) , (62)

where θ0(
κ1) is a function whose existence is established in Lemma 4.14. Then R is a

measure preserving homeomorphism of
(
g, μ

g

l
)

to itself.

Furthermore, the local surplus functions of the two subgraphs transform under R
according to

σ (1) ◦ R(
κ) = σ (1)(
κ) σ (2) ◦ R(
κ) = β(2) − σ (2)(
κ), (63)

where β(2) is the number of cycles in the subgraph �2.

Proof. The proof runs along the lines of the proof of Lemma 3.13 with some modifica-
tions. The transformation R is smooth (since θ0 is smooth) and invertible; its Jacobian
matrix is triangular (because θ0 is determined by 
κ1) with ±1 on the diagonal, therefore
the Jacobian determinant is 1 in absolute value. We are left to show the analogue of (36)
for R.

Starting with an eigenfunction f of eigenvalue 1 at the point (
κ1, κ0, 
κ2) we will
construct an eigenfunction f̃ at (
κ1,−κ + 2θ0(
κ1),−
κ2).

On the edges e ∈ �1 wewill set f̃e = fe. On the edges e ∈ �2 we let f̃e(x) = fe(−x),
where fe is understood to have been suitably extended [see Eq. (37)]. Finally, on the
bridge e0 the function fe0 has the form

fe0(x) = Ce0 cos(x − θ0(
κ1)),

where the variable x is assumed to go from x = 0 at the vertex common with the
subgraph �1 to x = Le0 at the vertex common with the subgraph �2. We again let
f̃e0(x) = fe0(x).

As in the proof of Lemma 3.13, the function values of f̃e for e ∈ �2 remains the
same while all derivatives change sign. For e ∈ �1, both function values and derivatives
remain trivially the same.We only need to check the function f̃e0 on the bridge. At x = 0
both the function value and the derivative is the same, fitting the rest of �1.

At the new edge end x = −κ0 + 2θ0(
κ1) =: κ̃0 we have

f̃e0 (κ̃0) = Ce0 cos(−κ0 + θ0) = Ce0 cos(κ0 − θ0) = fe0(κ0)

while
f̃ ′
e0 (κ̃0) = −Ce0 sin(−κ0 + θ0) = Ce0 sin(κ0 − θ0) = − f ′

e0(κ0).
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This fits the values and the derivatives of the function on �2 and therefore f̃ is an
eigenfunction.

As before, this construction preservesmultiplicity and genericity of the eigenfunction

and also preserves the density function of the Barra–Gaspard measure,
∣
∣
∣n̂ · 
l

∣
∣
∣, by (27).

By Remark 4.12, we have σ (2)(−
κ) = β(2) − σ (2)(
κ). Now we simply apply
Lemma 4.13 to conclude

σ (1) ◦ R(
κ) = σ (1)(
κ), σ (2) ◦ R(
κ) = σ (1)(−
κ) = β(2) − σ (2)(
κ),

since the surplus-determining coordinates agree in each case. ��
Remark 4.16. If the subgraph �2 in Lemma 4.15 consists of several subblocks, the same
conclusion applies to the local surpluses of the subblocks. Namely, if a subblock �2, j

has β(2, j) cycles and σ (2, j) is the corresponding surplus function, then with the trans-
formation R defined in (62) we have

σ (2, j) ◦ R(
κ) = σ (2, j)(−
κ) = β(2, j) − σ (2, j)(
κ), (64)

where first equality follows fromLemma4.13 and the second equality fromRemark 4.12.

Corollary 4.17. Let � be a nontrivial standard graph with an edge separation

[�1, �2, . . . , �n]. There exist a measure preserving homeomorphism R of
(
g, μ

g

l
)

to itself, such that

σ (1) ◦ R = β(1) − σ (1), (65)

σ ( j) ◦ R = σ ( j), j > 1. (66)

Proof. Assume initially that all blocks are connected directly to �1 (this assumption is
satisfied by the graph in Fig. 7 and not satisfied by the graph in Fig. 5). Denote their
bridges by b j , j = 2, . . . , n. For each b j we define a map R j : g → g guaranteed
by Lemma 4.15 such that the bridge of Lemma 4.15 is b j , the second subgraph is � j
and the first subgraph is the rest of the graph (including the block �1); see Fig. 7 for an
example.

Each of the maps
{

R j
}n

j=2 is a measure preserving transformation of
(
g, μ

g

l
)
to

itself. Consider the map R, defined as follows

R := R2 ◦ R3 ◦ . . . ◦ Rn ◦ I.

It is a measure preserving transformation of
(
g, μ

g

l
)
to itself as a finite composition of

such. Since each R j leaves σ (1) invariant, and I by Remark 4.12 flips σ (1) to β(1) −σ (1),
we get

σ (1) ◦ R2 ◦ R3 ◦ . . . ◦ Rn ◦ I = σ (1) ◦ R3 ◦ . . . ◦ Rn ◦ I = . . . = σ (1) ◦ I = β(1) − σ (1).

For the block number j > 1, it is easy to see that R
κ j = 
κ j (the sign gets flipped
exactly twice, by R j and I) and Eq. (66) follows from Lemma 4.13. In fact this holds
for all subblocks of j-th block, proving the Lemma in the general case (when some
subblocks � j are connected to another subblock � j ′ , j > j ′ > 1 rather than directly to
�1). ��
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Γ4

Γ1
Γ2 Γ3

b2 b3

b4

Fig. 7. Construction of R2 in the proof of Corollary 4.17: subgraph within the dashed box is the first subgraph
in the application of Lemma 4.15 and within the dotted box is the second

4.7. Conditional surplus probabilities and the proof of Theorem 2.3. We would now
like to study the dependence among the local surpluses. We remind the reader that we
can view the local nodal surplus functions σ (1), . . . , σ (n) as random variables on the

probability space
(
g, μ

g

l
)
which automatically enables us to talk about conditional

probabilities. In particular we will condition σ (b) on all random variables σ (1), . . . , σ (n)

except σ (b). We will denote the latter set by 
σb̂.

Theorem 4.18. Let � be a nontrivial standard graph with an edge separation
[�1, . . . , �n] and let the block �b have β(b) cycles. Then

P

(
σ (b) = s

∣
∣
σb̂

)
= P

(
σ (b) = β(b) − s

∣
∣
σb̂

)
(67)

for all s, 0 ≤ s ≤ β(b). We say that the local surplus functions of � are independently
symmetric.

Proof. We renumber the blocks so that b = 1 (see Remark 4.7) and use Lemma 4.15
to construct the measure preserving transformation R satisfying (65)–(66). Since R is
measure preserving,

P

(
σ (b) = s

∣
∣
σb̂

)
= P

(
σ (b) ◦ R = s

∣
∣
σb̂ ◦ R

)
.

On the other hand, properties (65)–(66) imply that

P

(
σ (b) ◦ R = s

∣
∣
σb̂ ◦ R

)
= P

(
σ (b) = β(b) − s

∣
∣
σb̂

)
,

completing the proof. ��
The previous theorem and the law of total probability immediately yields the follow-

ing corollary.
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Corollary 4.19. If β(b) = 1 then

P

(
σ (b) = 0

∣
∣
σb̂

)
= P

(
σ (b) = 1

∣
∣
σb̂

)
= 1

2
, (68)

That is, σ (b) takes one of its two possible values with equal probabilities and indepen-
dently of all other local surpluses.

Proof of Theorem 2.3. In the setting of the Theorem, there is an edge separation where

each block contains just one cycle of the graph. It follows that
{
σ (b)

}β

b=1 are indepen-

dent Bernoulli random variables with p = 1
2 . Therefore their sum σ has the binomial

distribution with p = 1
2 and n = β. ��

Appendix A. Relative Volume of �g

The main theorems in this paper apply to generic eigenfunctions (i.e., those that do
not vanish at vertices and correspond to a simple eigenvalue). It is therefore of interest
to estimate the proportion of such eigenfunctions out of the whole spectrum. The next
proposition gives a precise geometric expression for this ratio and shows that themajority
of the eigenfunctions are generic.

Proposition A.1. Let � be a nontrivial standard graph with rationally independent edge
lengths 
l. Denote by GN the set of indices 1 ≤ n ≤ N such that the eigenvalue kn is
generic. Then

d(
l) := lim
N→∞

|GN |
N

= 1 − Lloops

2L ≥ 1

2
, (69)

where L is the total length of the graph and Lloops is the total length of all loops (edges
from a vertex to itself) in the graph.

Proof. Combining Lemma 3.1 in [20] together with Theorem 3.9 in our paper we have
that if the lengths 
l are rationally independent then

d(
l) =
∫
g

∣
∣
∣n̂ · 
l

∣
∣
∣ dσ

∫
reg

∣
∣
∣n̂ · 
l

∣
∣
∣ dσ

. (70)

Using (70) wemay extend d(
l) to consider it as a function which is defined for all 
l ∈ R
E
+

and get that it is continuous. It is therefore enough to prove (69) for a residual set of
lengths, which is what we do next.

Denote by T ⊂ R
E
+ the set of length vectors 
l for which the spectrum of the corre-

sponding graph obeys both of the following:

(1) Every eigenvalue is simple.
(2) Every eigenfunction which vanishes on one of the vertices is supported on a single

loop.

Theorem 3.6 in [14] ensures that T is residual in R
E
+ .

Let us number the loop-edges of the graph by {e1, . . . , em} and define the counting
functions
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N (K ) = {n : kn < K }
N g(K ) = {n : kn < K and kn is generic}

N ( j)
(K ) = {

n : kn < K , kn is simple and fn is supported only on e j
}
,

j = 1, . . . , m.

Assuming 
l ∈ T , we get the following relation

N g(K ) = N (K ) −
m∑

j=1

N ( j)
(K ).

Next, we use the Weyl asymptotics, N (K ) ∼ KL/π to estimate the counting func-
tions above. The eigenvalues producing eigenfunctions supported only on the loop e j are

precisely kn = 2πn/ l j , n ∈ N, so that their count isN ( j)
(K ) ∼ Kl j/2π . We conclude

that if 
l ∈ T then

lim
N→∞

|GN |
N

= lim
K→∞

N g(K )

N (K )
= lim

K→∞

⎛

⎝1 −
m∑

j=1

N ( j)
(K )

N (K )

⎞

⎠ = 1 −
m∑

j=1

l j /2

L = 1 − Lloops

2L ,

(71)

which shows that (69) holds for a residual set, as required. ��
The proof above has a nice interpretation on the level of the secular manifold. We

present a decomposition of the secular manifold, which is schematically demonstrated
in Fig. 8. First, eigenfunctions of simple eigenvalues correspond toreg , the regular part
of the secular manifold (Theorem 3.6). Out of those eigenfunctions, the eigenfunctions
which vanish at some vertex of the graph correspond to 0 [see (30)]. We may further
decompose 0, by defining

F = {
(x1, . . . , xE ) ∈ reg | xe = 2π for some edge e, which is a loop

}
. (72)

It is not hard to see that F corresponds to simple eigenvalues whose eigenfunctions
are supported on a single loop of the graph. Note that in (32) we could have defined the
Barra–Gaspard measure on the whole of reg (as is actually done in [20]). Doing so

we would get that 0\F is of zero measure and that the total measure of F is
Lloops
2L

(assuming that the total measure of reg is 1). In particular, it follows that for graphs
without loop-edges, g = reg up to measure zero set.

Appendix B. Contracting an Edge in a Graph

As pointed out by Band and Lévy in [4, Appendix A], when the length of an edge
tends to zero, the eigenvalues of the graph converge to the eigenvalues of the graph with
this edge contracted. The edge to be contracted has Neumann conditions at its two end
vertices and upon contraction, those vertices are merged, and the Neumann conditions
are imposed on the newly formed vertex (see Fig. 9). Here, we consider what happens
when the torus variable corresponding to this edge is set to zero, which is needed for the
proof of Theorem 4.3 given in Appendix C.
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Σ

Σ0

Σ

Σ\Σ

Σ0\Σ

Σ

Σ\ΣΣ

Fig. 8. A schematic drawing which shows the relevant subsets of. The shaded regions\reg and0\F
are subsets of  which are of zero measure

v1 v2

e
v

Fig. 9. Contracting the edge e in a graph. Here d1 = 3 and d2 = 5

Lemma B.1. Let � be a magnetic standard graph. Let e be an edge with no magnetic
potential on it and with distinct endpoints both endowed with Neumann conditions. Let
�c be the graph obtained from � by contracting the edge e and imposing Neumann
condition at the newly formed vertex. Setting κe = 0 in the secular function of � we
obtain

F((0, 
κc); 
α) = 2
d1 + d2 − 2

d1d2
Fc(
κc; 
α), (73)

where Fc is the secular function of �c , and d1, d2 are the degrees of the endpoints of e.

Remark B.2. If a graph � has a loop and we set the corresponding variable to zero in the
graph’s secular function, the secular function becomes identically zero. This is why we
explicitly assumed in Lemma B.1 that the edge to be contracted has distinct endpoints.

Proof of Lemma B.1. Assume we are contracting an edge connecting vertices v1 and v2
of degrees d1 and d2 correspondingly, see Fig. 9. Let e refer to the directed label of this
edge going towards v1 and ê denote its reversal. Upon contraction of the edge e the new
joined vertex v = v1 = v2 will have the degree d1 + d2 − 2. The new graph will be
denoted �c and its torus coordinates are 
κc.

Further assume that e comes first in the numbering of edges (15) used in the set up
of the secular equation (16). As a result, 
κ = (κ1, 
κc). Once we set κ1 = 0, the matrix
used in the definition of the secular function F(
κ; 
α) takes the form
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I − ei( 
κ+
α)S =

⎛

⎜
⎜
⎝

1 1 − 2
d2

− 2
d2


r2
1 − 2

d1
1 − 2

d1

r1

− 2
d1

eiξ 
c1 − 2
d2

eiξ 
c2 I − eiξ Sr

⎞

⎟
⎟
⎠ , (74)

where ξ = (κ2 + α2, κ2 − α2, κ3 + α3, . . .) is the vector of torus coordinates and fluxes
of all edges except the edge e and Sr is the matrix S without its first two rows and
columns. We have the relation 
r j = (Jc j )

T , where J is a matrix which switches around
the directed labels of the edges [see Eq. (43) and preceding discussion]. Furthermore,
the vectors 
c j and 
r j = (Jc j )

T contain zeros and ones only; for example, 
r2 has ones
only in the entries corresponding to the edge labels coming into vertex v2 while 
c1 has
ones corresponding to edge labels coming out of v1.

We would like to evaluate the determinant of (74) using Schur’s determinant identity
in the form

det

(
A B
C D

)

= det(A) det
(

D − C A−1B
)

. (75)

We get

F((0, 
κc); 
α) = 2
d1 + d2 − 2

d1d2
det

(
I − eiξ Sc

)
, (76)

where the prefactor is the determinant of the top left corner and

Sc = Sr +
(
c1 
c2

)
(

2
d1

0
0 2

d2

)(
1 1 − 2

d2
1 − 2

d1
1

)−1 ( 2
d2

0
0 2

d1

)(
r2

r1
)

= Sr +
(
c1 
c2

)
(

2
d1+d2−2

2
d1+d2−2 − 2

d1
2

d1+d2−2 − 2
d2

2
d1+d2−2

)(
r2

r1
)

.

The effect of adding the term is best understood on some examples. If ein is one of the
edges going to v2 and eout is one of the edges coming out of v1, then

(Sc)eout ,ein = 0 +
(
1 0

)
(

2
d1+d2−2

2
d1+d2−2 − 2

d1
2

d1+d2−2 − 2
d2

2
d1+d2−2

)(
1
0

)

= 2

d1 + d2 − 2
.

If ein is one of the edges going to v1 and eout is its reversal,

(Sc)eout ,ein = 2

d1
− 1 +

(
1 0

)
(

2
d1+d2−2

2
d1+d2−2 − 2

d1
2

d1+d2−2 − 2
d2

2
d1+d2−2

)(
0
1

)

= 2

d1 + d2 − 2
− 1.

In both cases the answer is the correct scattering amplitude for the vertex v of degree
d1 + d2 − 2 which resulted from the contraction of e (see, for example, Fig. 9, right).
The remaining cases are checked analogously and we find that Sc is the bond scattering
matrix of the graph �c, so that

Fc(
κc; 
α) = det
(
I − eiξ Sc

)
.

This, together with (76) gives (73). ��
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We note that Lemma B.1 indeed implies the claim in [4, Appendix A], that graph
eigenvalues are continuous with respect to edge length when the length goes to zero.
Next, we provide another proof for this statement. The proof is insightful as it is done
via the eigenfunctions. Yet, it does not reproduce the exact prefactor given in (73). More
precisely, we now prove that

F (0, 
κc; 
α) = 0 ⇐⇒ Fc (
κc; 
α) = 0, (77)

with notations similar to those in Lemma B.1.
First, we generalize the notion of canonical eigenfunction as given in Theorem 3.6(3).

We do so by taking a canonical eigenfunction to be any eigenfunction belonging to the
eigenvalue k = 1 for a graph with edge lengths given by 
l = 
κ ∈  [not just for

κ ∈ reg as in Theorem 3.6(3)]. Now, the proof is based on showing a one to one
correspondence between canonical eigenfunctions of � with edge lengths 
l = (2π, 
κc)

and canonical eigenfunctions of �c with edge lengths 
lc = 
κc. Let f be a canonical
eigenfunction of � for edge lengths 
l = (2π, 
κc). Denote its restriction f̃ = f |�\e0 and
consider f̃ to be a function on �c with 
lc = 
κc under the identification of v1 ∼ v2. We
will show that f̃ is actually a canonical eigenfunction of �c. Note that we may write f
as

fe (t) =
{

f̃e (t) e �= e0
B cos (t + θ) e = e0

, (78)

for some values of B, θ . First of all, since e0 is not a loop, f̃ cannot be identically zero.
Otherwise the function f would have zero value and zero derivative at v1 and therefore
would be identically zero on the edge e0 as well. Denote the set of edge labels coming
into vi and not including the labels e0, ê0 by Ei (blue and green edges in Fig. 9). Let e0
be oriented from v2 to v1 (see Fig. 9). The Neumann conditions on the vertices imply
that

∀e ∈ E1 fe (le) = fe0 (2π) = B cos (θ)

∀e ∈ E2 fe (le) = fe0 (0) = B cos (θ)

∑

e∈E1

(

i
d

dx
+

αe

le

)

fe (le) = −i
d

dx
fe0 (2π) = i B sin (θ)

∑

e∈E2

(

i
d

dx
+

αe

le

)

fe (le) = i
d

dx
fe0 (0) = −i B sin (θ) ,

where for convenience we have chosen the magnetic potential to be constant along each
edge, Ae ≡ αe

le
[see (10)]. It follows that

∀e ∈ (E1 ∪ E2) fe (le) = B cos (θ)

∑

e∈(E1∪E2)

(

i
d

dx
+

αe

le

)

fe (le) = 0.

We get that if f satisfies the Neumann boundary conditions at v1 and v2 then f̃ satisfies
the Neumann boundary conditions at the merged vertex v. Obviously, f̃ satisfies the
same vertex conditions as f at all other vertices and it obeys − f̃ ′′ = f̃ . Therefore f̃ is
a canonical eigenfunction of �c with 
l = 
κ.
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In the other direction, assume that f̃ is a canonical eigenfunction of �c with edge
lengths 
lc = 
κc. It can be extended to a canonical eigenfunction f on � with edge
lengths 
l = (2π, 
κc), by setting f to be as in (77), where B, θ are chosen to satisfy

B cos (θ) = f̃ (v)

i B sin (θ) =
∑

e∈E1

(

i
d

dx
+

αe

le

)

f̃ |e (le) .

This proves (77). Furthermore, from the above also follows that the multiplicities of
corresponding zeros of F (0, 
κc; 
α) and Fc (
κc; 
α) = 0 are equal.

Appendix C. Proof of Theorem 4.3

Proof of Theorem 4.3. Let us have an in-depth look at the bond scattering matrix S of
the graph �. We order the directed edge labels as follows: edge labels of �1, edge labels
of C in the direction from �1 to �2, edge labels of C in the opposite direction and then
edge labels of �2. With this order and edge groupings, the matrix S has the following
block structure

S =
⎛

⎜
⎝

S1 0 t1 0
t ′1 0 r1 0
0 r2 0 t ′2
0 t2 0 S2

⎞

⎟
⎠ , (79)

where, for example, the matrix t1 corresponds to scattering of waves from C into the
subgraph �1 and r1 represents reflection of the waves from C, off �1 and back into C. We
have the relations t ′i = (Ji ti )T , where the permutation matrix Ji switches the orientation
of the edge labels in the subgraph �i [see Eq. (43) and preceding discussion].

We nowmultiply the matrix S by the diagonal matrix ei 
κ+i 
α which, in the block form
similar to (79), is given by

ei 
κ+i 
α =

⎛

⎜
⎜
⎝

ei 
κ1+i 
α1 0 0 0
0 eiκ0+i 
α0 0 0
0 0 eiκ0−i 
α0 0
0 0 0 ei 
κ2+i 
α2

⎞

⎟
⎟
⎠ . (80)

We would like to apply Schur’s determinant identity

det

(
A B
C D

)

= det(D) det
(

A − B D−1C
)

, (81)

to the determinant of the matrix I − ei 
κ+i 
αS written as

I−ei 
κ+i 
αS =

⎛

⎜
⎜
⎝

I1 − ei 
κ1+i 
α1 S1 0 −ei 
κ+i 
α1 t1 0
−ei 
κ0+i 
α0 t ′1 I0 −ei 
κ0+i 
α0r1 0

0 −ei 
κ0−i 
α0r2 I0 −ei 
κ0−i 
α0 t ′2
0 −ei 
κ2+i 
α2 t2 0 I2 − ei 
κ2+i 
α2 S2

⎞

⎟
⎟
⎠ . (82)
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The block D is going to be I2−ei 
κ2+i 
α2 S2 and, as a first step, wewould like to determine
when it is invertible. Suppose, for a choice of 
κ2 and 
α2, the vector 
v2 is an eigenvector
of ei 
κ2+i 
α2 S2 with eigenvalue 1. Then the vector


v = (0, 0, 0, 
vT
2 )T (83)

is the eigenvector of ei 
κ+i 
αS with eigenvalue 1. Indeed, we know that the last entry
ei 
κ+i 
αS
v is going to be 
v2 and if any other entry is non-zero, it would mean that an
application of ei 
κ+i 
αS increases the norm of 
v which is impossible for a unitary matrix.

We conclude that I2 − ei 
κ2+i 
α2 S2 is non-invertible only when the graph has an
eigenfunction vanishing on the connector set C and the entire subgraph �1. When this
is the case we have that (48) holds with D2 = 0. To add on that, when this happens for

α = 
0, the eigenfunction mentioned above implies 
κ /∈ g , which proves the claim at
the end of the theorem.

Assuming the matrix is invertible, we have for B D−1C
⎛

⎝
0
0

−eiκ0−i 
α0 t ′2

⎞

⎠
(
I2 − ei 
κ2+i 
α2 S2

)−1 (
0 −ei 
κ2+i 
α2 t2 0

) =
⎛

⎝
0 0 0
0 0 0
0 eiκ0−i 
α0(Z2 − r2) 0

⎞

⎠ ,

where Z2 is given

Z2(
κ2; 
α2) = r2 + t ′2
(
I2 − ei 
κ2+i 
α2 S2

)−1
ei 
κ2+i 
α2 t2, (84)

which coincides with the definition of the scattering matrix of the subgraph �2, see (45).
Subtracting this from the block A we get

det
(
I − ei 
κ+i 
αS

)
= det

(
I2 − ei 
κ2+i 
α2 S2

)

× det

⎛

⎝
I1 − ei 
κ1+i 
α1 S1 0 −ei 
κ+i 
α1 t1

−eiκ0+i 
α0 t ′1 I0 −ei 
κ0+i 
α0r1
0 −ei 
κ0−i 
α0 Z2 I0

⎞

⎠ .

Applying Schur’s determinant identity again now with I1 − ei 
κ1+i 
α1 S1 acting as a
factor to bring outside, we get

det

⎛

⎝
I1 − ei 
κ1+i 
α1 S1 0 −ei 
κ+i 
α1 t1

−eiκ0+i 
α0 t ′1 I0 −ei 
κ0+i 
α0r1
0 −ei 
κ0−i 
α0 Z2 I0

⎞

⎠

= det
(
I1 − ei 
κ1+i 
α1 S1

)
det

(
I0 −ei 
κ0+i 
α0 Z1

−ei 
κ0−i 
α0 Z2 I0

)

,

where in the above we used an expression of Z1 similar to (84) and also assumed the
invertibility of I1 − ei 
κ1+i 
α1 S1. If it is not invertible, we get just as before that D1 = 0
and (48) still holds. Evaluating the last determinant (using Schur’s identity once more),
we get

det

(
I0 −ei 
κ0+i 
α0 Z1

−ei 
κ0−i 
α0 Z2 I0

)

= det(I0) det
(
I0 − ei 
κ0+i 
α0 Z1ei 
κ0−i 
α0 Z2

)
.
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If all entries of 
κ0 are different than zero, collecting all the factors above together gives
(48) with the prefactor c = 1 at its right hand side. Otherwise, for any vanishing entry
of 
κ0, we apply Lemma B.1 to conclude that (48) still holds. This time, the prefactor c
in (48) equals the product of prefactors at the right hand side of (73), applied for each
of the vanishing entries in 
κ0. ��

Appendix D. Examples of Nodal Surplus Distribution

In this appendix we will calculate, analytically or numerically, the nodal surplus dis-
tribution of the graphs shown in the Fig. 10. We say that a graph is a [p1, p2, . . . , pn]
chain if the graph consists of a sequence of n + 1 vertices with pk edges connecting
vertices vk and vk+1. Note that the graphs we call “figure of 8” (Fig. 10a) and “dumb-
bell” (Fig. 10b) can be considered as a [2, 2] chain and a [2, 1, 2] chain correspondingly.
This terminology for “chains” comes from the notion of “mandarin chain” or “pumpkin
chain” graphs which appeared in [4,38].

The results are summarized in Table 1. Example (b) satisfies the assumptions of The-
orem 2.3 and therefore has a binomial distribution, which we confirm both analytically
and numerically. Examples (a), (d) show that these assumptions are essential as there
are graphs with non-binomial distribution. Example (c) shows that not all graphs with
binomial distribution can be characterized as edge-separated, so the interesting question
of characterizing all the graphs with binomial distributions remains open.

D.1. A figure of 8 graph. Consider the graph shown in Fig. 10a (Afigure of 8 graph). The
torus which describes this graph is T

2 = R
2/(2πZ)2. Using the coordinates (x1, x2) ∈

T
2, the real secular function (28) can be calculated to be

FR (x1, x2;α1, α2) = 2 (cosα2 sin x1 + cosα1 sin x2 − sin (x1 + x2)) . (85)

(a) (b)

(c) (d)

Fig. 10. Graphs considered in Sect. D: a “figure of 8”, b “dumbbell”, c “[1, 2, 2, 1] chain”, d “[3, 2, 1] chain”

Table 1. A summary of the results of Sect. D.

Edge-separated Not edge-separated

Binomial distribution (b) “dumbbell” (c) “[1, 2, 2, 1] chain”

Non-binomial distribution
(a) “figure of 8”,

(d) “[3, 2, 1] chain”
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(a) (b)

x1 x2

α1 α2

Fig. 11. a The secular manifold of the “figure of 8” graph with different subsets (reg , 0, F and g)
highlighted by different colors. b The “figure of 8” graph

For 
α = 0 we get a nice form of

FR (x1, x2; 0, 0) = 8 sin
( x1
2

)
sin

( x2
2

)
sin

( x1 + x2
2

)
.

It is not hard to show that (see also Fig. 11),

reg =
{
(x1, x2) ∈ T

2 : x1 = 0 or x2 = 0 or x1 + x2 ≡ 0 (mod 2π)
}

\ {(0, 0)}
0 = F = {(π, π)} ∪

{
(x1, x2) ∈ T

2 : x1 = 0 or x2 = 0
}

\ {(0, 0)}
g = reg\0 =

{
(x1, x2) ∈ T

2 : x1 + x2 ≡ 0 (mod 2π)
}

\ {(0, 0) , (π, π)} .

Note that 0 is defined in (30) as a subset of reg for which the corresponding eigen-
functions vanish at some vertex. Also,F is defined in (72) as a subset of0, for which
the corresponding eigenfunctions are supported on a loop. See also Fig. 8 which shows
this decomposition of the secular manifold.

In addition, a straightforward calculation shows that for 
κ ∈ g (for which
sin

( x1+x2
2

) = 0) we get

∇x FR · 
l = 4 sin
( x1
2

)
sin

( x2
2

)
cos

( x1 + x2
2

)
(l1 + l2)

= −4 sin
( x1
2

)
sin

( x2
2

)
(l1 + l2) < 0.

Thus

− Hα FR

∇x FR · 
l = − 1

4 sin
( x1
2

)
sin

( x2
2

)
(l1 + l2)

(
2 sin (x2) 0

0 2 sin (x1)

)

, (86)

σ (
κ) = M
(

− Hα FR

∇x FR · 
l
)

= M
(− sin (x2) 0

0 − sin (x1)

)

(87)

and as for 
κ ∈ g we have x1 + x2 = 2π , this gives

σ (
κ) = M
(
sin (x1) 0

0 − sin (x1)

)

≡ 1, (88)
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with the following local surplus functions

∀
κ ∈ g , σ (i) (xi ) =
{
0 xi ∈ (0, π)

1 xi ∈ (π, 2π)
.

It is obvious from (88) that the surplus distribution is not binomial. In addi-
tion, this example nicely demonstrates that local surpluses may be anti correlated,
P
(
σ (1) = j

∣
∣σ (2) = j

) = 0.

Remark D.1. Another approach in this simple case, would be to notice that for a given
choice of rationally independent lengths 
l, we have two kinds of eigenfunctions. The
first kind are the eigenfunctions supported on one of the loops and zero on the other, with
corresponding eigenvalues in k ∈ 2π

l1
Z ∪ 2π

l2
Z. The second kind of eigenfunctions can

be obtained from an eigenfunction of a circle of length l1 + l2, under identification of two
points with the same function value which are at l1 distance apart. Such eigenfunctions,
which are generic, would correspond to eigenvalues k ∈ 2π

l1+l2
Z and their nodal count

will therefore be φ = k(l1+l2)
π

. It remains to figure the position in the spectrum of such an
eigenvalue. One can check that the two sets A = 2π

l1
Z ∪ 2π

l2
Z and B = 2π

l1+l2
Z interlace

and as the second eigenvalue after k1 = 0 will be k2 = 2π
l1+l2

, then we get that the generic

eigenvalues will be the even ones k2n = n 2π
l1+l2

with

φ2n = k2n (l1 + l2)

π
= 2n ⇒ σ ≡ 1

D.2. A dumbbell graph. Consider the graph shown in Fig. 12b (“dumbbell” graph).
Its real secular function (28) can be calculated to be

FR (x1, x2, x3;α1, α2) = 16

9
cos x2

(
cosα1 sin x3 + cosα2 sin x1 − sin (x1 + x3)

)

−8

9
sin x2

(
4 (cosα1 − cos x1) (cosα2 − cos x3)

− sin x1 sin x3
)
. (89)

Observe that by taking the limit x2 → 0 we recover the secular function of the figure
of 8 graph, (85), up to a factor of 8

9 , which demonstrates the result of Lemma B.1.
For 
α = 0 we get for the secular function

FR (x1, x2, x3; 0, 0) = 16

9
sin

x1
2

sin
x3
2

(

− sin x2

(

3 cos
x1 − x3

2
− 5 cos

x1 + x3
2

)

+ 4 cos x2 sin
x1 + x3

2

)
(90)

and correspondingly the Hessian is

Hα FR (x1, x2, x3; 0, 0)
= 8

9

(
4 sin x2 (1 − cos x3) − 2 cos x2 sin x3 0

0 4 sin x2 (1 − cos x1) − 2 cos x2 sin x1

)

.
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(a) (b)

x1

x2

x3

α1 α2

Fig. 12. The generic secular manifold g for the “dumbbell graph”. It is depicted in four colors, according
to all possible values for the local surpluses. b The “dumbbell” graph with torus coordinates and magnetic
fluxes marked on corresponding edges

(91)

We may use (90) in order to extract x2 (x1, x3) for points 
κ ∈ g and thus get the
following expressions in terms of x1, x3 solely,

− Hα (F)

∇FR · 
l =

(
4 sin x3

2 cos x1
2 C(x3) 0

0 4 sin x1
2 cos x3

2 C(x1)

)

2 sin x1
2 sin x3

2 (2C(x3)l1 + C(x3)C(x1)l2 + 2C(x1)l3)
,

where C(x) = 5 − 3 cos x is never zero. Therefore,

σ (
κ) = M
(

− Hα (F)

∇FR · 
l
)

= M
(
cot x1

2 0
0 cot x3

2

)

.

By the above, the local surplus functions are given by

σ (1) (x1) =
{
0 x1 ∈ (0, π)

1 x1 ∈ (π, 2π)
, σ (2) (x3) =

{
0 x3 ∈ (0, π)

1 x3 ∈ (π, 2π)
.

Figure 12a shows the secular manifold of the “dumbbell” graph with different local
nodal surpluses indicated by color. In Fig. 13, we give a normalized histogram of the
nodal surplus for the first 106 eigenfunctions calculated numerically for the rationally
independent lengths 
l = (π, e, 1).We compare it in the figure to the binomial distribution
Bin

(
2, 1

2

)
and find a perfect match according to the prediction of Theorem 2.3.

D.3. A [1, 2, 2, 1] pumpkin chain. Consider the [1, 2, 2, 1] chain graph shown in
Fig. 14b. In Fig. 14a, we give a normalized histogram of the nodal surplus for the
first 106 eigenfunctions calculated numerically for the rationally independent lengths


l =
(
π, e, 1,

√
2,

√
3,

√
5
)

.
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Fig. 13. The normalized histogram of the nodal surplus of the “dumbbell” graph calculated from the first 106

eigenfunctions, compared to the relevant binomial distribution
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0.5
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surplus
binomial

(b)
Fig. 14. a The normalized histogram of the nodal surplus of the [1, 2, 2, 1] pumpkin chain calculated from
the first 106 eigenfunctions, compared to the relevant binomial distribution. b The [1, 2, 2, 1] pumpkin chain
graph

We compare it in the figure to the binomial distribution Bin
(
2, 1

2

)
and find that they

match. This is in spite of the fact that this graph does not satisfy the assumptions of
Theorem 2.3, as its cycles are not edge-separated. This numerical finding calls for a
further investigation.

D.4. A [3, 2, 1] pumpkin chain. Consider the [3, 2, 1] chain graph shown in Fig. 15b.
In Fig. 15a, we show a normalized histogram of the nodal surplus for the first
106 eigenfunctions calculated numerically for the rationally independent lengths

l =

(
π, e, 1,

√
2,

√
3,

√
5
)
. We compare it in the figure to the binomial distribution

Bin
(
3, 1

2

)
as β = 3 for this graph.

It is easy to notice that there is no match and the nodal surplus probability of the
(3, 2, 1) chain graph is not binomial. We further investigate this graph by examining
the conditional probabilities of its local surpluses. Note that this graph has two vertex-
separated blocks, of Betti numbers, β(1) = 2, β(2) = 1. First, we calculate numer-
ically the conditional probability, P

(
σ (2) = s

∣
∣σ (1)

)
for different values of σ (1) and

see that it is not symmetric (shown in Fig. 16a). Then, we do the same for the other
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(b)
Fig. 15. a The normalized histogram of the nodal surplus of the [3, 2, 1] chain graph calculated from the first
106 eigenfunctions, compared to the relevant binomial distribution. b The [3, 2, 1] chain graph
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Fig. 16. The normalized histograms of the conditional probability of local surpluses for the graph in Fig. 10d

calculated from the first 106 eigenfunctions. a P

(
σ (1) = j

∣
∣
∣σ (2)

)
, b P

(
σ (2) = j

∣
∣
∣σ (1)

)

conditional probability, P
(
σ (1) = s

∣
∣σ (2)

)
in Fig. 16b) and once again find no symme-

try. This demonstrates that the property of independently symmetric local surpluses (see
Theorem 4.18) does not hold for this graph.
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