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Quantum Graphs which Optimize
the Spectral Gap
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Abstract. A finite discrete graph is turned into a quantum (metric) graph
once a finite length is assigned to each edge and the one-dimensional
Laplacian is taken to be the operator. We study the dependence of the
spectral gap (the first positive Laplacian eigenvalue) on the choice of edge
lengths. In particular, starting from a certain discrete graph, we seek the
quantum graph for which an optimal (either maximal or minimal) spectral
gap is obtained. We fully solve the minimization problem for all graphs.
We develop tools for investigating the maximization problem and solve it
for some families of graphs.

1. Introduction

The spectral gap is a vastly explored quantity due to its importance both
for applicative purposes and for theoretic ones. The applicative aspects range
from estimates of convergence to equilibrium to behavior of quantum many-
body systems. The theoretic study concerns with connecting the shape of an
object to a fundamental spectral property. Such relations stand in the heart
of spectral geometry and motivate the current work.

A compact quantum graph can be thought of as a threefold object, con-
sisting of a topology, a metric and an operator. The topology is described by an
underlying discrete graph and the metric is simply the assignment of a positive
length to each of the edges. The operator together with its domain completes
this description. In the current work we adopt the most common choice and fix
the operator to be the one-dimensional Laplacian acting on functions which
satisfy the so-called Neumann conditions at the graph vertices (see [5,17]).
It is then most natural to fix a certain graph topology and explore how the
graph spectral properties depend on the choice of edge lengths [6,13,16]. In
particular, we examine the spectral gap which, in our case, is the first posi-
tive eigenvalue of the Laplacian. Picking a particular graph topology, we ask
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which edge lengths minimize or maximize the spectral gap. We notice that as
our space of edge lengths is not compact, it is possible that there is no maxi-
mum or no minimum. The space of edge lengths is thus extended by allowing
zero length edges so that the minima (maxima) of this new length space are
the infimums (supremums) of the previous. This leads to a most interesting
exploration direction: sending edge lengths to zero changes the topology of the
original graph and makes us wonder what are the topologies which are obtained
as optimizers (either maximizers or minimizers) of other graphs. This is the
central question of the current paper.

Already in 1987, Nicaise showed that among all graphs with a fixed
length, the minimal spectral gap is obtained for the single-edge graph [29].
In 2005, Friedlander proved a more general result, showing that the mini-
mum of the kth eigenvalue is uniquely obtained for a star graph with k edges
[15]. More recently, Exner and Jex showed how the change of graph edge
lengths may increase or decrease the spectral gap, depending on the graph’s
topology [13]. In the last couple of years, a series of works on the subject
came to light. Kurasov and Naboko [25] treated the spectral gap minimiza-
tion and together with Malenová they explored how the spectral gap changes
with various modifications of the graph connectivity [24]. Kennedy, Kurasov,
Malenová and Mugnolo provided a broad survey on bounding the spectral gap
in terms of various geometric quantities of the graph [20]. Karreskog, Kurasov
and Trygg Kupersmidt generalized the minimization results mentioned above
to Schrödinger operators with potentials and δ-type vertex conditions [19]. Del
Pezzo and Rossi proved upper and lower bounds for the spectral gap of the p-
Laplacian and evaluated its derivatives with respect to change of edge lengths
[11]. Rohleder solved the spectral gap maximization problem for all eigenvalues
of tree graphs [31]. When this manuscript was accepted for publication, two
additional preprints became available online. Ariturk provides some improved
upper bounds for all graph eigenvalues [1]. Berkolaiko, Kennedy, Kurasov and
Mugnolo further generalize lower and upper bounds of the spectral gap in
terms of the edge connectivity [4].

We complement this literature review by mentioning some interesting and
recent works on the spectral gap of metric graphs, whose scope is different than
ours. Post [30], Kurasov [23], Kennedy and Mugnolo [21] all treated various
estimates of the spectral gap in terms of the Cheeger constant (a line of research
which already originated in [29] for quantum graphs). Buttazzo, Ruffini and
Velichkov optimize over spectral gap of graphs given some prescribed set of
Dirichlet vertices embedded in R

d [7].
The spectral gap optimization we consider in this paper is close in nature

to the first line of works mentioned above. Nevertheless, our point of view
is different as we wish to solve the optimization problem for each and every
topology. This broad phrasing of the question provides a unified framework for
several of the works mentioned above. In particular, it allows to take a step
forward and complement those.
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1.1. Discrete Graphs and Graph Topologies

Let G = (V, E) be a connected graph with finite sets of vertices V and edges
E and we denote V := |V| , E := |E|. We allow edges to connect either two
distinct vertices or a vertex to itself. In the latter case, this edge is called a
loop, or sometimes a petal.

For a vertex v ∈ V, its degree, dv, equals the number of edges connected to
it. Vertices of degree one are called leaves. Furthermore, we abuse this naming
and frequently also use the name leaf for an edge which is connected to a
vertex of degree one.

An important topological quantity of the graph is

β := E − V + 1, (1.1)

which counts the number of “independent” cycles on the graph (assuming the
graph is connected). This is also known as the first Betti number, which is
the dimension of the graph’s first homology. In particular, tree graphs are
characterized by β = 0.

We consider the following two ways for treating the graph connectivity.
The graph’s edge connectivity is the minimal number of edges one needs to
remove in order to disconnect the graph. If the graph’s edge connectivity equals
one, then an edge whose removal disconnects the graph is called a bridge. In
particular, leaf edges are bridges. Similarly, the graph’s vertex connectivity is
the number of vertices needed to be removed in order to disconnect the graph.
In particular, we show the special role played by graphs of edge connectivity
one (Theorem 2.1) and of vertex connectivity one (Theorem 2.6).

1.2. Spectral Theory of Quantum Graphs

A metric graph is a discrete graph for which each edge, e ∈ E , is identified
with a one-dimensional interval [0, le] of positive finite length le. We assign to
each edge e ∈ E a coordinate, xe, which measures the distance along the edge
from the starting vertex of e. We denote a coordinate by x, when its precise
nature is unimportant.

A function on the graph is described by its restrictions to the edges,
{f |e}e∈E , where f |e : [0, le] → C. We equip the metric graphs with a self-
adjoint differential operator,

H : f |e (xe) �→ − d2

dx2
e

f |e (xe) , (1.2)

which in our case is just the one-dimensional negative Laplacian on every edge.1

It is most common to call this setting of a metric graph and an operator by
the name quantum graph.

To complete the definition of the operator we need to specify its domain.
We denote by H2(Γ ) the following direct sum of Sobolev spaces

H2(Γ ) :=
⊕

e∈E
H2([0, le]) . (1.3)

1 Note that more general operators appear in the literature. See, for example, the book [5]
and the survey [17].
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In addition, we require the following matching conditions on the graph vertices.
A function f ∈ H2(Γ ) is said to satisfy the Neumann vertex conditions at a
vertex v if

1. f is continuous at v ∈ V, i.e.,

∀e1, e2 ∈ Ev f |e1
(0) = f |e2

(0), (1.4)

where Ev is the set of edges connected to v, and for each e ∈ Ev we choose
the coordinate such that xe = 0 at v.

2. The outgoing derivatives of f at v satisfy
∑

e∈Ev

df

dxe

∣∣∣∣
e

(0) = 0. (1.5)

Another common vertex condition is called the Dirichlet condition. Imposing
Dirichlet condition at vertex v ∈ V means

∀e ∈ Ev f |e (0) = 0. (1.6)

Requiring either of these conditions at each vertex leads to the operator (1.2)
being self-adjoint and its spectrum being real and bounded from below [5]. In
addition, since we only consider compact graphs, the spectrum is discrete. We
number the eigenvalues in the ascending order and denote them with {λn}∞

n=0

and their corresponding eigenfunctions with {fn}∞
n=0. As the operator is both

real and self-adjoint, we may choose the eigenfunctions to be real, which we
will always do.

In this paper, we almost solely consider graphs whose vertex conditions
are Neumann at all vertices. Those are called Neumann graphs. For Neumann
graphs, we define the Rayleigh quotient

R(f) :=

∫
Γ

|f ′(x)|2dx∫
Γ

|f(x)|2dx
, (1.7)

which makes sense whenever f ∈ H1(Γ ) (see (1.3)). The eigenvalues of a
Neumann graph have a nice expression using the Rayleigh quotient. Indeed,
denoting Vn := Span{f0, . . . , fn} for n ∈ N, we have

λn = min
f⊥Vn−1

R(f). (1.8)

In particular, the spectrum of a Neumann graph is nonnegative, which means
that we may represent the spectrum by the nonnegative square roots of the
eigenvalues, kn =

√
λn, and say that {kn}∞

n=0 are the k-eigenvalues of the
graph. For convenience, we express most of our results and proofs in terms of
the k-eigenvalues. This choice makes all expressions of this paper look nicer.
A Neumann graph has k0 = 0 with multiplicity which equals the number of
graph components (which is taken to be one throughout this paper). It is k1
which is in the focus of this paper and is called the spectral gap.2

2 This terminology is justified, as a spectral gap is a common name for the difference between
some trivial eigenvalue (which is k0 = 0 in our case) and the next eigenvalue. We note that
in this sense it is also common to call λ1 the spectral gap.
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1.3. Graph Optimizers

Definition 1.1. Let G be a discrete graph with E edges.
1. Denote by

LG :=

{
(l1, . . . , lE) ∈ R

E

∣∣∣∣∣

E∑

e=1

le = 1 and ∀e, le > 0

}
(1.9)

the space of all possible lengths we may assign to the edges of G. We
further denote by L G the closure of LG in R

E and by ∂L G its boundary.
2. Denote by Γ (G; l) the metric graph whose connectivity is the same as G

and whose edge lengths are given by l ∈ L G . We take Γ (G; l) to be a
Neumann graph. If l ∈ ∂LG , then l has some vanishing entries and in this
case the connectivity of Γ (G; l) is not the same as G. For each vanishing
entry, le = 0, the edge e does not exist in Γ (G; l), but rather the vertices
at the endpoints of this edge are identified and form a single vertex when
considered in Γ (G; l).

We emphasize that the definition above contains a normalization choice;
unless otherwise stated, all the graphs studied in this paper are required to
have total metric length one.

This paper studies the spectral gap, k1 [Γ (G; l)], as a function of l ∈ L G .
A first step is to show that the function k1 [Γ (G; l)] is continuous on L G ,
which is done in “Appendix A.” Combining this continuity statement with the
compactness of this set LG , the existence of a maximum and a minimum of
the spectral gap on LG (but not necessarily on LG) follows. Indeed, the focus
of the current paper is on the extremal points of k1 [Γ (G; l)]. In particular, we
investigate whether the extremal points are obtained on LG or on ∂L G and
to which metric graphs Γ (G; l) they correspond. This motivates the following.

Definition 1.2. Let G be a discrete graph.
1. Γ (G; l∗) is called a maximizer of G if l∗ ∈ LG and

∀l ∈ LG k1 [Γ (G; l∗)] ≥ k1 [Γ (G; l)] . (1.10)

In this case we call k1 [Γ (G; l∗)] the maximal spectral gap of G.
2. Γ (G; l∗) is called a supremizer of G if l∗ ∈ L G and

∀l ∈ L G k1 [Γ (G; l∗)] ≥ k1 [Γ (G; l)] . (1.11)

In this case we call k1 [Γ (G; l∗)] the supremal spectral gap of G.
3. Γ (G; l∗) is called the unique maximizer of G if for all l �= l∗, Γ (G; l) is not

a maximizer of G. The same definition holds for the unique supremizer.
4. Analogous definitions to the above hold for minimizers and infimizers.
5. Γ (G; l∗) is called an optimizer of G if it is either a supremizer, a maxi-

mizer, an infimizer or a minimizer of G.

Continuing the discussion preceding the definition, we note that there
might be graphs which do not have a maximizer or a minimizer. Yet, a suprem-
izer and an infimizer exist for any graph. Let G be a discrete graph and Γ (G; l∗)
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be its supremizer (infimizer), with l∗ ∈ L G . Denote by G∗ the discrete graph
which corresponds to Γ (G; l∗). We note that if l∗ ∈ LG then G∗ = G and if
l∗ ∈ ∂L G then G∗ is obtained from G by contracting all edges which correspond
to the zero entries of l.

The questions which motivate this work are the following: What are the
metric graphs Γ (G; l∗) which serve as supremizers (or infimizers) and what
are all the possible topologies (i.e., the discrete graphs G∗) obtained by these
optimizations?

We start by presenting a few examples of topologies which form part of
the answer to the questions above.

Example 1.3 (Star graph). Let G be a graph with V ≥ 3 vertices, and E = V −1
edges, where one of the vertices (called the central vertex) is connected by edges
to all the V − 1 other vertices (Fig. 1a). G is called a star graph. The graph
Γ (G; l) with l = ( 1

E , . . . , 1
E ) is called the equilateral star. A simple calculation

shows that k1 [Γ (G; l)] = π
2E. We show (Theorem 2.2) that the equilateral

star is the unique maximizer of the star topology and that it is also the unique
supremizer of any tree graph with E leaves. If we choose above V = 2, E = 1
we get an interval, which is the unique infimizer of any graph with a bridge
(Theorem 2.1).

Example 1.4 (Flower graph). Let G be a graph with a single vertex and
E ≥ 2 edges, where each edge is a loop (petal) connecting that single ver-
tex to itself (Fig. 1b). G is called a flower graph. The graph Γ (G; l) with
l = ( 1

E , . . . , 1
E ) is called the equilateral flower. A simple calculation shows that

k1 [Γ (G; l)] = πE. We show (Corollary 2.8) that the equilateral flower is the
unique maximizer of the flower topology. If we choose above E = 1 we get a
single-loop graph, which is an infimizer for all bridgeless graphs (Theorem 2.1).

Example 1.5 (Stower graph). Let G be a graph with V vertices and E = Ep +
El ≥ 2 edges. Ep of the edges are loops which connect a single vertex to itself
(the same vertex for all those edges) and, as before, they are called petals.
Each of the rest El = V − 1 edges connects this single vertex to another graph
vertex and they are called dangling edges or just leaves (Fig. 1c). Being a
hybrid between a star graph and a flower graph, such G is called a stower

(a)

l1
l2

l3
l4

l5

(b)

l1 l2

l3

l4

l5

(c)

1
8

1
4

1
8

1
4

1
4

Figure 1. A few basic examples. a Star graph, b flower
graph, c equilateral stower graph with Ep = 3, El = 2
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graph. We note that a flower graph is a stower (with El = 0) and a star graph
is a stower as well (with Ep = 0). The graph Γ (G; l) with

l =
1

2Ep + El
(2, . . . , 2︸ ︷︷ ︸

Ep

, 1, . . . , 1︸ ︷︷ ︸
El

)

is called the equilateral stower. Note that we abuse terminology and call the
graph equilateral, even though not all edges of the description above have the
same length. A simple calculation shows that k1 [Γ (G; l)] = π

2 (2Ep + El).
We show (Corollary 2.8) that the equilateral stower is the unique maxi-
mizer of the stower topology, except when Ep = El = 1, for which the
supremizer is actually a single loop. Furthermore, spectral gaps of stow-
ers obey a sort of additive property in the following sense: if two graphs
whose supremizers are stowers are glued at non-leaf vertices to form a sin-
gle graph, then this graph’s supremizer is a stower graph obtained by adding
the petals and the leaves of the two individual stower supremizers (Corol-
lary 2.8).

Example 1.6 (Mandarin graph). Let G be a graph with 2 vertices and E
edges, each connecting those two vertices (Fig. 2a). Such G is called a man-
darin graph. In the literature it is also called a watermelon or a pumpkin,
but we adopt the name mandarin which was used in a thorough explo-
ration of spectral properties of these graphs [2]. The graph Γ (G; l) with
l = ( 1

E , . . . , 1
E ) is called the equilateral mandarin. A simple calculation

shows that k1 [Γ (G; l)] = πE. The equilateral mandarin is the unique max-
imizer of the mandarin topology, as shown recently in [20] (theorem 4.2
there).

Example 1.7 (Necklace graph). Let G be a graph with V vertices and E =
2 (V − 1) edges, such that every two adjacent vertices, vi, vi+1 (1 ≤ i ≤ V −1)
are connected by two edges (Fig. 2b). If l is chosen such that every pair of
parallel edges connecting two vertices has the same length, Γ (G; l) is called a
symmetric necklace. Note that the two vertices at the endpoints of the necklace
are redundant, being Neumann vertices of degree two (they are merely used
here to shorten the graph description). Necklace graphs are the only graphs
which may serve as infimizers of bridgeless graphs (Theorem 2.1).

(a)

l1
l2

l3

l4 (b)

l1
l2

l3
l4

l1
l2 l3

l4

Figure 2. a Mandarin graph, b symmetric necklace graph
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2. Main Results

The main results of the current paper are stated below, arranged by subjects.
In each of the following subsections, we mention which section of the paper
contains the relevant proofs and discussions.

2.1. Infimizers (Sect. 3)

Theorem 2.1.

1. Let G be a graph with a bridge. Then the infimal spectral gap of G equals
π. Moreover, the unique infimizer is the unit interval.

2. Let G be a bridgeless graph. Then the infimal spectral gap of G equals 2π.
Moreover, any infimizer is a symmetric necklace graph.

We note that it was already proved in [15,25,29] that π is a universal
lower bound for the spectral gap, attained only by the interval. In [15] it is
even shown that πn is a lower bound for kn. The paper [25] proves that the
lower bound may be improved to 2π if all vertices have even degrees. Theorem
2.1 extends the set of graph topologies whose spectral gap is bounded by 2π to
all bridgeless graphs (indeed graphs whose all vertices are of even degrees form
a particular case). Furthermore, combining Theorem 2.1 with the continuity
of eigenvalues with respect to the graphs edge lengths (Appendix A) allows to
conclude that our result cannot be improved by imposing further restrictions
on the graph topology. For any bridgeless graph G, there exists l∗ ∈ L G for
which Γ (G; l∗) is a single-cycle graph with spectral gap 2π. As k1 [Γ (G; l)] is
a continuous function of l, the spectral gap may be as close to 2π as we wish,
by choosing l ∈ LG close enough to l∗. Similarly, the lower bound π cannot be
improved for graphs with a bridge. Therefore, Theorem 2.1 complements the
previous results and provides a complete answer to the infimization problem.

2.2. Supremizers of Tree Graphs (Sect. 4)

Theorem 2.2. Let G be a tree graph with El ≥ 2 leaves. Then the unique
supremizer of G is the equilateral star with El edges, whose spectral gap is
π
2El. In particular, the uniqueness implies that this supremizer is a maximizer
if and only if G is a star graph.

Theorem 2.2 completely solves the optimization problem for tree graphs.
While writing this paper, we became aware of the recent work, [31], which
solves the maximization problem for trees (theorem 3.2 there). In the course
of doing so, that work provides the upper bound π

2E on the spectral gap of
trees.3 Our proof is close in spirit to that of theorem 3.4 in [31]. Yet, thanks
to a basic geometric observation (Lemma 4.2 here), the better bound π

2El is
obtained.4

Theorem 2.2 allows to deduce the following.

3 Theorem 3.2 in that paper is actually more general and provides the upper bound πn
2

E

for kn.
4 Furthermore, the same geometric observation may be used to improve the more general
Theorem 3.2 of [31].
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Corollary 2.3. Let G be a non-tree graph. Then its supremizer is not a tree
graph.

2.3. Supremizers Whose Spectral Gap is a Simple Eigenvalue (Sect. 5)

Whenever the spectral gap is a simple eigenvalue, it is differentiable with
respect to edge lengths, which allows to search for local maximizers. There
are indeed examples for critical values (not just maximizers) of the spectral
gap, which we demonstrate in Proposition 5.8. If such a local critical point is
actually a supremizer it is possible to prove the following.

Theorem 2.4. Let G be a discrete graph and let l ∈ LG. Assume that Γ (G; l) is
a supremizer of G and that the spectral gap k1 (Γ (G; l)) is a simple eigenvalue.
Then Γ (G; l) is not a unique supremizer. There exists a choice of lengths
l∗ ∈ L G such that Γ (G; l∗) is an equilateral mandarin and

k1 (Γ (G; l)) = k1 (Γ (G; l∗)) . (2.1)

2.4. Supremizers of Vertex Connectivity One (Sects. 6, 7, 8)

Next, we describe a bottom to top construction which allows to find out a
supremizer of a graph by knowing the supremizers of two of its subgraphs.
This is possible for graphs of vertex connectivity one. In order to state the
result, the following criteria are introduced.

Definition 2.5. 1. A Neumann graph Γ obeys the Dirichlet criterion with
respect to its vertex v if imposing Dirichlet vertex condition at v does not
change the value of k1 (comparing to the one with Neumann condition
at v).

2. A Neumann graph Γ obeys the strong Dirichlet criterion with respect to
its vertex v if it obeys the Dirichlet criterion and if imposing the Dirichlet
vertex condition at v strictly increases the eigenvalue multiplicity of k1.

Theorem 2.6. Let G1,G2 be discrete graphs; let vi (i = 1, 2) be a vertex of
Gi. Let G be the graph obtained by identifying v1 and v2. Let l(i) ∈ L Gi

and Γi := Γ (G; l(i)) be the corresponding metric graphs. Define l :=
(Ll(1), (1 − L) l(2)) ∈ L G, for some L ∈ [0, 1]. Then the graph Γ := Γ (G; l)
is a supremizer of G if all the following conditions are met:

1. L = k1(Γ1)
k1(Γ1)+k1(Γ2)

.
2. Γi is a supremizer of Gi (i = 1, 2).
3. Γi obeys the Dirichlet criterion with respect to vi (i = 1, 2).

If we further assume either of the following:
(a) For both i = 1, 2 , Γi is a unique supremizer of Gi or
(b) For both i = 1, 2, Γi obeys the strong Dirichlet criterion and any other

supremizer of Gi violates the Dirichlet criterion,
then Γ is the unique supremizer of G.
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Remark. This theorem may be strengthened by weakening condition (3). Yet,
the description of the weaker condition is more technical and we leave its
specification, as well as the proof of the stronger version of this theorem, to
Sect. 6.

We note that the equilateral stower obeys the Dirichlet criterion with
respect to its central vertex. Obviously, this observation also includes the equi-
lateral star and equilateral flower as special cases. This observation together
with Theorem 2.6 allows to prove the following corollaries.

Corollary 2.7. Let G1,G2 be discrete graphs. Denote by v1, v2 non-leaf vertices
of each of those graphs and let G be the graph obtained by identifying v1 and
v2. If the (unique) supremizer of Gi is the equilateral stower with E

(i)
p petals

and E
(i)
l leaves, such that E

(i)
p + E

(i)
l ≥ 2, then the (unique) supremizer of G

is an equilateral stower with E
(1)
p + E

(2)
p petals and E

(1)
l + E

(2)
l leaves.

We note that as we have shown (Theorem 2.2) that equilateral stars are
the unique supremizers of trees, the corollary above implies that gluing a tree
(at its internal vertex) to any graph whose (unique) supremizer is a stower
gives a graph whose (unique) supremizer is a stower as well.

Corollary 2.8. Let G be a stower graph with Ep petals and El leaves, such that
Ep + El ≥ 2 and (Ep, El) �= (1, 1). Then it has a maximizer which is the
equilateral stower graph with Ep petals and El dangling edges and the corre-
sponding spectral gap is π

2 (2Ep + El). Furthermore, this maximizer is unique
for all cases except (Ep, El) ∈ {(2, 0) , (1, 2)}.

We remark that a partial result of the above was already proved within
the proof of theorem 4.2 in [20]. It was shown there that the equilateral flower
is the unique maximizer among all flowers.5 This was used there to prove the
global bound k1 [Γ ] ≤ πE (theorem 4.2 in [20]). Having corollary 2.8, it is
possible to prove the following improved bound.

Corollary 2.9. Let G be a graph with E edges, out of which El are leaves. Then

∀ l ∈ LG , k1 [Γ (G; l)] ≤ π

(
E − El

2

)
, (2.2)

provided that (E,El) /∈ {(1, 1) , (1, 0) , (2, 1)}.
Assume in addition that (E,El) /∈ {(2, 0) , (3, 2)}. Then an equality above

implies that the graph Γ (G; l) achieving the inequality is either an equilateral
mandarin or an equilateral stower.

This latter bound is sharp as it is attained by most equilateral stower
graphs (see Example 1.5 and Corollary 2.8).

5 It is claimed there that the equilateral flower is the unique maximizer for all flowers with
E ≥ 2. Actually, the uniqueness does not hold for the E = 2 case, as we show in the proof
of Corollary 2.8.
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3. Infimizers

Proof of Theorem 2.1. Let Γ be a metric graph whose total edge length equals
one and let f be an eigenfunction corresponding to the spectral gap k1(Γ ) and
normalized such that its L2 norm equals one. Denote

m := min f < 0 (3.1)

M := max f > 0, (3.2)

where the inequalities arise as f , being a Neumann eigenfunction is orthogonal
to the constant function. In what follows we bound from below the Rayleigh
quotient of f by using the rearrangement technique in a similar manner to the
proof of lemma 3 in [15]. We further define

μf (t) := |{x ∈ Γ | f (x) < t}| for t ∈ [m,M ] , (3.3)

where |·| denotes the Lebesgue measure of the corresponding set on the graph.
This allows to define a continuous, non-decreasing function f∗ on the interval
[0, 1], such that μf∗ = μf . This property gives

1 =
∫

Γ

|f (x)|2 dx =
∫ M

m

t2dμf =
∫ 1

0

|f∗ (x)|2 dx (3.4)

and

0 =
∫

Γ

f (x) dx =
∫ M

m

tdμf =
∫ 1

0

f∗ (x) dx, (3.5)

where the first equality in (3.5) holds since f is orthogonal to the constant
function.

Another ingredient we use in the proof is the co-area formula [8]. Let
t ∈ [m,M ] such that if f (x) = t then x is not a vertex and f ′ (x) �= 0 and call
this t a regular value. By Sard’s theorem, the non-regular values are of zero
measure. According to the co-area formula if t is a regular value then

μ′
f (t) =

∑

x ; f(x)=t

1
|f ′ (x)| , (3.6)

and for any L1 function g on the graph

∫

Γ

g (x) |f ′ (x)| dx =
∫ M

m

⎛

⎝
∑

x ; f(x)=t

g (t)

⎞

⎠dt. (3.7)

We now estimate the numerator of the Rayleigh quotient,
∫

Γ
|f ′ (x)|2 dx,

as follows. Denote by xm, xM two points for which f (xm) = m, f (x
M

) = M
(they are not necessarily unique). Let t ∈ [m,M ] be a regular value. As Γ
is connected there is a path on the graph connecting xm with xM and by
continuity of f it attains the value t at least once along this path, say at some
point xt. By the choice of t, xt is not a vertex. If Γ is a bridgeless graph, then
cutting the graph at xt, the graph is still connected and we can find another
path joining xm and xM . By the same reasoning f attains the value t along
this path as well, so that t is attained by f at least twice on Γ . Denoting by
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n (t) the number of times that the value t is attained by f on the graph, we
get that

n (t) ≥
{

1 if Γ has a bridge,
2 if Γ is bridgeless.

(3.8)

We may also bound n (t) from above

(n (t))2 =

⎛

⎝
∑

x ; f(x)=t

1√|f ′ (x)|
√

|f ′ (x)|
⎞

⎠
2

(3.9)

≤
⎛

⎝
∑

x ; f(x)=t

1
|f ′ (x)|

⎞

⎠

⎛

⎝
∑

x ; f(x)=t

|f ′ (x)|
⎞

⎠ (3.10)

= μ′
f (t)

⎛

⎝
∑

x ; f(x)=t

|f ′ (x)|
⎞

⎠ , (3.11)

by applying the Cauchy–Schwarz inequality and (3.6). Writing (3.7) with
g (x) = |f ′ (x)| gives

∫

Γ

|f ′ (x)|2 dx =
∫ M

m

⎛

⎝
∑

x ; f(x)=t

|f ′ (x)|
⎞

⎠dt ≥
∫ M

m

(n (t))2

μ′
f (t)

dt. (3.12)

We may repeat the arguments above for f∗, which attains each regular
value exactly once and obtain that (3.11),(3.12) hold for f∗ as equalities and
with n∗ (t) = 1. Therefore,

∫

Γ

|f ′ (x)|2 dx ≥ ess inf
m≤t≤M

(n (t))2
∫

Γ

∣∣(f∗)′ (x)
∣∣2 dx, (3.13)

where the infimum above is taken only with respect to regular values. As
f is the eigenfunction corresponding to k1(Γ ) with unit L2 norm we have∫

Γ
|f ′ (x)|2 dx = (k1(Γ ))2. Considering f∗ as a test function of unit L2 norm

(see (3.4)) and zero mean (see (3.5)) on the unit interval we get that its
Rayleigh quotient is no less than the first positive eigenvalue, namely that∫

Γ

∣∣(f∗)′ (x)
∣∣2 dx ≥ π2. Combining this with (3.13) and (3.8) we get the lower

bounds,

k1(Γ ) ≥
{

π if Γ has a bridge,
2π if Γ is bridgeless.

(3.14)

All that remains to complete the proof is the characterization of the infimizers.
Assume first that Γ has a bridge. An equality in (3.14) is possible only if

n (t) = 1 for all regular t ∈ [m,M ]. This implies that Γ does not have vertices
of degree 3 and above. Otherwise, due to continuity of f , we would have n �= 1
in the vicinity of such a vertex. Γ cannot be a single-cycle graph as it has a
bridge and is therefore the unit interval, [0, 1]. Hence, it is the unique candidate
for an infimizer. Indeed, its spectral gap is π and starting from any discrete
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graph G with a bridge, Γ (G; l) is the unit interval if l ∈ L G is chosen such
that all of its entries vanish, except the entry corresponding to the bridge.

Next, the possible minimizers of bridgeless graphs are characterized. By
Menger’s theorem [27], a graph is bridgeless if and only if there are at least
two edge disjoint paths connecting any pair of points. We use that to deduce
that if G is bridgeless then Γ (G; l) is bridgeless as well. Indeed, any path
between a pair of points in Γ (G; l) corresponds to at least one path between
those points in G. Thus, to seek for a possible minimizer, we assume that Γ
is bridgeless and k1 (Γ ) = 2π. As a bridgeless graph is 2-edge-connected, we
deduce from Menger’s theorem that there are at least two edge disjoint paths
connecting xm with xM . Pick two such paths and denote them by γ1, γ2. A
necessary condition for k1(Γ ) = 2π is that n (t) = 2 for each regular value
t ∈ [m,M ]. By continuity, f attains each regular value at least once on γ1 and
at least once on γ2. As n (t) = 2 for a regular value t, f attains the value t
exactly once on each of γ1 and γ2. Hence, f is strictly increasing on γ1 from
xm to xM and the same holds for γ2. We further conclude that f may attain
only non-regular values at Γ\ {γ1 ∪ γ2}. In particular, if there exists an edge
in Γ\ {γ1 ∪ γ2}, f should be constant on that edge and due to −f ′′ = (2π)2 f
this constant equals zero. Thus, the edges of Γ\ {γ1 ∪ γ2} may be removed
from Γ , such that f still satisfies the Neumann conditions on the remaining
graph γ1 ∪ γ2 and it is an eigenfunction on that graph. However, by this we
find an eigenfunction of k-eigenvalue 2π on a bridgeless graph whose total
length smaller than one, which contradicts the lower bound, (3.14). Hence,
Γ consists of just the union of the paths γ1, γ2. As γ1, γ2 are edge disjoint,
γ1 ∩ γ2 contains only vertices. We denote those vertices by v0, . . . , vn, with
v0 = xm, vn = xM and the indices are arranged in an increasing order along
the path γ1. As f is strictly increasing along both γ1, γ2, the order of those
vertices along γ2 is the same: v0, . . . , vn. Consider two adjacent vertices vi, vi+1

(0 ≤ i ≤ n − 1) and denote the corresponding path segments connecting them
by γ1 (vi, vi+1),γ2 (vi, vi+1). As f takes the same values on the endpoints of
γ1 (vi, vi+1),γ2 (vi, vi+1), is increasing and satisfies −f ′′ = (2π)2 f on both, we
conclude f |γ1(vi,vi+1)

= f |γ2(vi,vi+1)
and also that γ1 (vi, vi+1) has the same

length as γ2 (vi, vi+1). Hence, Γ = γ1 ∪ γ2 is a symmetric necklace. �
Remark. A further exploration of symmetric necklace graphs appears in Propo-
sition 5.8. It is shown there that a symmetric necklace graph belongs to a family
of graphs in which every graph has a simple spectral gap and its spectral gap
k1 [Γ (G; l)] is a critical value when considered as a function of l ∈ LG .

Theorem 2.1 provides a complete answer to the minimization problem.
In particular, it states that any infimizer of a bridgeless graph is a symmet-
ric necklace. A further task would be to classify the entire family of necklace
graphs which serve as infimizers of a particular discrete graph. We start treat-
ing this by observing that the spectral gap of any symmetric necklace (of total
length one) is 2π. This follows from noting that 2π is an eigenvalue of any
symmetric necklace and combining this with Theorem 2.1. Now, let G be a
bridgeless graph and let l∗ ∈ LG , such that Γ (G; l∗) is a symmetric necklace
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with some β number of cycles. By the observation above and Theorem 2.1 we
have that Γ (G; l∗) is an infimizer of G. Furthermore, by choosing other values
for l ∈ LG we may get Γ (G; l) to be any symmetric necklace with at most
β cycles, and from the above this Γ (G; l) would also serve as an infimizer.
Therefore, the answer to the classification problem above would be given once
we find what is the maximal number of cycles among all symmetric necklaces
that can be obtained from a given discrete graph G. Solving this requires some
elements from the theory of graph connectivity which we shortly present below.
A graph is called k-edge-connected if it remains connected whenever less than
k edges are removed. In particular, a bridgeless graph is 2-edge-connected. A
cactus graph is a graph in which every edge is contained in exactly one cycle.
Let G be a bridgeless graph. There exists l ∈ LG such that Γ (G; l) is a cac-
tus graph with the following property. For every two edges e, e′ which form
a 2-edge-cut in G (two edges whose removal disconnects the graph), we have
le, le′ �= 0. Namely, those two edges also appear in Γ (G; l). The theory leading
to this result appears in [12,14,28] for general k-connected graphs and is very
nicely explained for the particular case of 2-edge-connected graphs in section
10 of the recent paper [26]. Now, in order to determine the maximal number of
cycles of a necklace obtained from G we perform the following procedure. Find
all subgraphs of G which are 3-edge-connected and contract each of them to
a vertex; for example by choosing l ∈ LG such that the corresponding entries
vanish and considering Γ (G; l). This yields a cactus graph with the property
mentioned above [26]. The cactus graph has a tree-like structure. This can be
observed by considering an auxiliary graph Γ ′, where each cycle of Γ (G; l)
is represented by a vertex of Γ ′ and two vertices of Γ ′ are connected if the
corresponding cycles in Γ (G; l) share a vertex (a cactus graph has the prop-
erty that any two cycles of it, share at most one vertex). The obtained graph,
Γ ′ turns to be a tree graph. Any path of this tree graph then corresponds to
a necklace which can be obtained from the cactus Γ (G; l) by further setting
some edge lengths to zero. The longest possible necklace is found by identifying
the longest path of the tree Γ ′.

4. Supremizers of Tree Graphs

The proof of Theorem 2.2 is based on bounding the graph diameter, as follows.

Definition 4.1. Let Γ be a compact metric graph. The diameter of Γ is

d(Γ ) := max {dist (x, y) | x, y ∈ Γ} . (4.1)

Lemma 4.2. Let Γ be a metric tree graph of total length 1 and with El ≥ 2
leaves. Then

d(Γ ) ≥ 2
El

(4.2)

with equality if and only if Γ is an equilateral star.
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Proof. Choose two points, x1, x2, in Γ such that the distance between them is
exactly d(Γ ). We show that x1, x2 are necessarily leaves. Assume by contra-
diction that (w.l.o.g) x1 is not a leaf. Then Γ\{x1} has at least two connected
components. Let Γ1 be one of these components satisfying x2 �∈ Γ1. Let z be
a point of Γ1 different from x1. As Γ is a tree, any path from z to x2 contains
x1, which yields

d(x2, z) > d(x2, x1) = d (Γ ) , (4.3)

thus contradicting the definition of d(Γ ). Let now P be the shortest path
connecting x1 to x2 and denote by x0 its middle, such that

d(x1, x0) = d(x2, x0) =
d(Γ )

2
. (4.4)

We cover Γ with El paths, each starting at x0 and ending at a leaf of Γ . The
length of each of these paths is at most d(x1, x0) (otherwise, we may replace
x1 by a different leaf and increase d (Γ )). As the union of these paths cover Γ ,
whose total length is 1, we have

1 ≤
∑

v is a leaf

d(x0, v) ≤
∑

v is a leaf

d(x0, x1) = El
d(Γ )

2
, (4.5)

from which the inequality of the lemma follows. The first inequality can be an
equality if and only if Γ is a star and x0 is its central vertex. Assuming this, the
second inequality can be an equality if an only if the star is equilateral. �

Aided with Lemma 4.2, we turn to the proof of the theorem.

Proof of Theorem 2.2. We show in the following that there exists a test func-
tion f on Γ such that its Rayleigh quotient satisfies

R(f) ≤
(

π

d(Γ )

)2

. (4.6)

Indeed, let y, z be two leaves of Γ such that the distance between them is
exactly d(Γ ). Let us denote by P a path of Γ , of length d(Γ ), connecting y
and z. We consider P as the interval [0, d(Γ )], for example by identifying y
with 0 and z with d(Γ ) and define the following function on P,

f(x) = cos
(

πx

d(Γ )

)
for x ∈ P. (4.7)

We extend f to be defined on the whole graph, Γ , by setting its value on
each connected component of Γ\P to the unique constant which preserves
the continuity of f . Referring to “Appendix C” and using f − 〈f〉 as our test
function we have from (C.2),

R (f − 〈f〉) =

∫
Γ

|f ′(x)|2dx
∫

Γ
|f(x)|2dx − (∫

Γ
f(x)dx

)2 (4.8)

=

(
π

d(Γ )

)2
d(Γ )
2

d(Γ )
2 +

∫
Γ\P |f(x)|2dx − (∫

Γ
f(x)dx

)2 . (4.9)
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As the integral of f on P vanishes, using Cauchy–Schwarz inequality we
get
(∫

Γ

f(x)dx

)2

=

(∫

Γ\P
f(x)dx

)2

≤ (1 − d(Γ ))
∫

Γ\P
|f(x)|2dx. (4.10)

Plugging (4.10) in (4.9) gives

R (f − 〈f〉) ≤
(

π
d(Γ )

)2
d(Γ )
2

d(Γ )
2 + d (Γ )

∫
Γ\P |f(x)|2dx

≤
(

π

d(Γ )

)2

. (4.11)

Using this and Lemma 4.2 we get

k1 (Γ ) ≤ π

d(Γ )
≤ π

2
El. (4.12)

Let G be a tree graph with El leaves. We may choose l ∈ L G such that
Γ (G; l) is an equilateral star graph with El leaves, so that k1 [Γ (G; l)] = π

2El

and from the bound above we get that Γ (G; l) is a supremizer. This is a
unique supremizer as having equality in the right inequality of (4.12) implies
by Lemma 4.2 that Γ is an equilateral star with El leaves. �

Remark. We note that the upper bound k1 (Γ ) ≤ π
d(Γ ) , which is obtained in

the course of the proof above, is a particular case of a result proven recently
in [31]. There it was shown that for any n, kn (Γ ) ≤ πn

d(Γ ) . Applying (4.2) to
the latter we may get that for any n ≥ 1, kn (Γ ) ≤ πn

2 El, which improves the
bound kn (Γ ) ≤ πn

2 E given in [31].

The theorem above yields the following.

Proof of Corollary 2.3. Let G be a graph with β > 0 cycles and El leaves.
We start by observing that for (β,El) ∈ {(1, 0) , (1, 1)}, the supremizer is the
single-cycle graph (see Lemma 8.5), which is not a tree. We continue assuming
(β,El) /∈ {(1, 0) , (1, 1)}. Choose a maximal spanning tree of G\El, where El is
the set of the graph’s El leaves. Choose l∗ ∈ L G such that all of its entries
corresponding to the spanning tree edges are set to zero. This makes Γ (G; l∗)
a stower with β petals and El leaves. Furthermore, l∗ may be chosen such that
Γ (G; l∗) is an equilateral stower. The spectral gap of this graph is π

2 (2β + El)
(see Example 1.5). Alternatively, if l ∈ L G is such that Γ (G; l) is a tree then
the number of its leaves is at most El and by Theorem 2.2 its spectral gap
is at most π

2El. Therefore, the stower graph Γ (G; l∗) obtained above has a
greater spectral gap than any tree graph Γ (G; l). �

5. Spectral Gaps as Critical Values

In this section we assume that the spectral gap, k1 (Γ (G; l)), is a simple eigen-
value. This allows to take derivatives of the eigenvalue with respect to the edge
lengths, l ∈ LG , and to find critical points which serve as candidates for max-
imizers. We prove here Theorem 2.4 which shows that such local maximizers
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do not achieve a spectral gap higher than that achieved by turning the graph
into a mandarin or a flower.

Lemma 5.1. Let Γ be a metric graph and f an eigenfunction corresponding to
the eigenvalue k2 with arbitrary vertex conditions. Then the function f ′(x)2 +
k2f(x)2 is constant along each edge.

Proof. The proof is immediate by differentiating the function f ′(x)2 +k2f(x)2

along an edge. �
The last lemma motivates us to define the energy6 of an eigenfunction

on an edge e as Ee := f ′(x)2 + k2f(x)2 for any x ∈ e. This energy shows up
naturally when differentiating an eigenvalue with respect to an edge length. In
order to evaluate such derivatives we extend Definition 1.1 so that Γ (G; l) is
defined for all l ∈ R

E with positive entries and relax the restriction
∑E

e=1 le =
1, imposed by l ∈ LG . The following lemma appears also as Lemma A.1 in [9]
and within the proof of a lemma in [16].

Lemma 5.2. Let G be a discrete graph and let l ∈ R
E with positive entries.

Assume that the spectral gap, k1 [Γ (G; l)] is a simple eigenvalue and let f
be the corresponding eigenfunction, normalized to have unit L2 norm. Then
k1 [Γ (G; l)] is differentiable with respect to any edge length lẽ and

∂

∂lẽ

(
(k1 [Γ (G; l)])2

)
= −Eẽ. (5.1)

Proof. In this proof we use the analyticity of the eigenvalues and eigenfunctions
with respect to the edge lengths. This is established, for example, in sections
3.1.2, 3.1.3 of [5]. Let s ∈ R and let ẽ be an edge of Γ (G; l). Denote l (s) :=
l + s	e, with 	e ∈ R

E a vector with one at its ẽth position and zeros in all other
entries. We use the notation Γ (s) := Γ (G; l (s)) and denote by k1 (s) the
spectral gap of Γ (s). By assumption, k1 (0) is a simple eigenvalue and hence
there is a neighborhood of zero for which all k1 (s) are simple eigenvalues. The
corresponding eigenfunctions are denoted by f (s; ·) and we further assume
that all those eigenfunctions have unit L2 norm,

∫

Γ (s)

(f (s; x)) 2dx =
E∑

e=1

∫ le(s)

0

(f (s; xe)) 2dxe = 1, (5.2)

where le(s) = le + δe,ẽs and δe,ẽ being the Kronecker delta function.
Taking a derivative of the above with respect to s,

(f (s; lẽ (s))) 2 + 2
E∑

e=1

∫ le(s)

0

f(s; xe)
∂

∂s
f(s; xe)dxe = 0. (5.3)

In addition, evaluating the Rayleigh quotient of f ,

k1 (s) 2 = R [f (s; ·)] =
E∑

e=1

∫ le(s)

0

(
∂

∂xe
f (s; xe)

)2

dxe, (5.4)

6 A simple harmonic oscillator whose spring constant is k and whose position is given by
f(x) has a total energy of 1

2
Ee.
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using that f (s; ·) has unit norm. Differentiating this with respect to s gives

d
ds

(
k1 (s) 2

)
=
(

∂

∂xẽ
f (s; lẽ (s))

)2

+ 2
E∑

e=1

∫ le(s)

0

∂

∂xe
f (s; xe)

∂2

∂s∂xe
f (s; xe) dxe. (5.5)

Integrating by parts in the right-hand side and using the eigenvalue equation,
we get for each term in the sum above

∫ le(s)

0

∂

∂xe
f (s; xe)

∂2

∂s∂xe
f (s; xe) dxe

=
∂

∂xe
f (s; le (s))

(
∂

∂s
f

)
(s; le(s)) − ∂

∂xe
f (s; 0)

∂

∂s
f (s; 0)

+ k1(s)2
∫ le(s)

0

f (s; xe)
∂

∂s
f (s; xe) dxe

=
∂f

∂xe

(
df

ds
− δe,ẽ

∂f

∂xe

)∣∣∣∣
(s; le(s))

− ∂f

∂xe

df

ds

∣∣∣∣
(s; 0)

+ k1(s)2
∫ le(s)

0

f
∂f

∂s

∣∣∣∣
(s; xe)

dxe, (5.6)

where the partial derivatives with respect to s are rewritten in terms of com-
plete derivatives.

Summing the first two terms of the right-hand side of (5.6) over all edges
and rewriting it as a sum over all graph vertices we get

E∑

e=1

{
∂f

∂xe
f

(
df

ds
− δe,ẽ

∂f

∂xe

)∣∣∣∣
(s; le(s))

− ∂f

∂xe

df

ds

∣∣∣∣
(s; 0)

}

=
∑

v

(
∑

e∼v

∂f

∂xe

)
df

ds

∣∣∣∣∣
(s; v)

−
(

∂f

∂xẽ

∣∣∣∣
(s; lẽ(s))

)2

= −
(

∂f

∂xẽ

∣∣∣∣
(s; lẽ(s))

)2

, (5.7)

where the sum e ∼ v above is taken over all edges adjacent to a chosen ver-
tex v, the derivatives ∂

∂xe
in this sum are all taken toward the vertex v and∑

e∼v
∂

∂xe
f (s; v) = 0, as f satisfies Neumann conditions at v.

Plugging (5.6), (5.7) and (5.3) in Eq. (5.5) we get

d
ds

(
k1 (s) 2

)
= −

(
∂f

∂xẽ

∣∣∣∣
(s; lẽ(s))

)2

− (k1 (s))2
(

f |(s; lẽ(s))

)
2 = −Eẽ, (5.8)

which finishes the proof once s = 0 is taken. �

We note that the derivative of an eigenvalue with respect to an edge
length is derived in [11] (theorem 4.4) for the general case of the p-Laplacian
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on a graph. In the case of the 2-Laplacian, using Lemma 5.1 shows that the
integral expression obtained in [11] simplifies to equal −Eẽ.

The lemma above provides a practical tool for increasing the spectral gap
once the corresponding eigenfunction is known. In order to do so, one should
increase the length of edges with lower energy on the expense of shortening
those with higher energy. In particular, focusing on a particular vertex, one
should increase the lengths of the edges for which the eigenfunction derivative
is the lowest and vice versa. This method is useful as long as the spectral
gap is not a critical point in the edge length space, LG . An equilateral star
with an odd number of edges illustrates the importance of simplicity: though
we cannot increase the spectral gap, no eigenfunction on this graph will have
equal energy at all edges.

The next lemma provides a necessary and sufficient condition for exis-
tence of a critical point in the edge length space, LG .

Lemma 5.3. Let G be a discrete graph and let l∗ ∈ LG. Assume that the spec-
tral gap, k1 [Γ (G; l∗)] is a simple eigenvalue and let f be the corresponding
eigenfunction. The function k1 [Γ (G; l)] has a critical value at l = l∗ if and
only if both conditions below are satisfied

1. The derivative of f vanishes at all vertices of odd degree.
2. The derivative of f satisfy,

∣∣∣ ∂
∂xe1

f (v)
∣∣∣ =
∣∣∣ ∂
∂xe2

f (v)
∣∣∣, for all edges e1, e2

adjacent to a vertex of even degree, v.

Proof. We first observe that positivity of the spectral gap yields that k1
[Γ (G; l)] has a critical point at l = l∗ if and only if (k1 [Γ (G; l)])2 has a
critical point there. From Lemma 5.2 we deduce that a critical point occurs
if and only if the corresponding eigenfunction has equal energies on all graph
edges. The last deduction comes as this is a critical point under the constraint∑

e le = 1. Let v be a graph vertex and e1, e2 two edges adjacent to it. Since
f is continuous (i.e., single valued) at v we conclude

Ee = Eẽ ⇔
(

∂

∂xe
f (v)

)2

=
(

∂

∂xẽ
f (v)

)2

, (5.9)

which proves the second claim of the lemma. The first claim follows since the
Neumann condition gives that the sum of all derivatives at v vanishes. �

Obviously, graphs whose spectral gap is a critical point in the space LG
serve as good candidates for maximizers. The next lemma characterizes those
graphs and their corresponding eigenfunctions.

Lemma 5.4. Let G be a discrete graph, l∗ ∈ LG and denote Γ := Γ (G; l∗).
Assume that k := k1 [Γ ] is a critical value and let f be the corresponding
eigenfunction. Then we have the following edge disjoint decomposition

Γ =
P⋃

i=1

Pi, (5.10)

where
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1. All Pi’s are graphs which possess an Eulerian path or an Eulerian cycle.
Namely, for each Pi there is a path (either open path or a cycle), which
visits each edge exactly once.

2. Different Pi’s may share only vertices, but not edges.
3. f |Pi

is a Neumann eigenfunction of Pi, whose eigenvalue equals k.
4. Denote by μi the number of zeros of f |Pi

, where each zero at a vertex of
Pi is counted as half the degree of this vertex in Pi. Denoting by Li the
metric length of Pi, the following holds

kLi = πμi. (5.11)

5. In addition,

k = πμ, (5.12)

where μ is the number of zeros of f on Γ , where each zero at a vertex of
Γ is counted as half the degree of this vertex in Γ .

Proof. We use the claims of Lemma 5.3 to describe a recursive process, which
produces this path decomposition.

• Assume first that Γ has at least one vertex of odd degree, v0. Take v0
to be the starting point of a path P and add to P any edge, e0, which
is adjacent to v0 and the vertex connected at its other end, which we
denote by v1. If v1 is of even degree we seek for an edge e1 connected to
v1 such that f ′|e1

(v1) = − f ′|e0
(v1) (both derivatives are outgoing from

v1). Such edge exists by Lemma 5.3,(2) and as the sum of derivatives of
f at v vanish. Add e1 and its other endpoint, v2 to P and repeat the
step above until reaching a vertex of odd degree. Once an odd degree
vertex is reached, we end the construction of P and continue recursively
to form the next path on Γ\P. Note that a certain vertex may be reached
more than once during P ′s construction. Such a vertex would appear in
P only once, but with a degree greater than two. This process of path
constructions continues until we exhaust the whole of Γ or alternatively,
until Γ does not have any more odd degree vertices, at which point we
continue with performing the next stage.

• If Γ has no vertex of odd degree, the construction of P is as follows.
We choose an arbitrary vertex, v0 as the starting point of P and choose
an arbitrary edge, e0 which is connected to v0 and add it to P as well,
together with its other endpoint, v1. Now, just as we did in the first stage,
we seek for an edge e1 connected to v1 such that f ′|e1

(v1) = − f ′|e0
(v1).

We keep constructing P as above, keeping in mind that all vertices are of
even degree. At some point we reach again the vertex v0, arriving from
some edge denoted en. If f ′|e0

(v0) = − f ′|en
(v0) (both derivatives are

outgoing from v0) then we end the construction of P. Otherwise, continue
the construction of P until the condition above is satisfied. This will
indeed occur, as the graph is finite and f satisfies Neumann conditions
on Γ . Once we finish constructing of P we continue recursively to form
the next path on Γ\P.



Vol. 18 (2017) Quantum Graphs which Optimize the Spectral Gap 3289

By construction, each Pi either possesses an Eulerian path (first stage above) or
an Eulerian cycle (second stage) and f |Pi

satisfies Neumann conditions on Pi.
Thus, claims (1) and (3) are valid. Also, as each subgraph Pi is removed from
Γ once constructed, it is clear that ∀i �= j, Pi ∩ Pj may contain only vertices,
which is stated in claim (2). A subgraph Pi of the first stage of the construction,
where Γ has some odd degree vertices, possesses an Eulerian path and may be
identified with an interval [0, Li], where Li is the metric length of Pi. Also by
way of construction, f |[0,Li]

is a Neumann eigenfunction (notice that this is
more restrictive than stating that f |Pi

is a Neumann eigenfunction, because

of possible self-crossings). Hence, f |[0,Li]
= cos

(
π
Li

μix
)

for some positive
integer, μi. Clearly, μi equals the number of zeros of f |[0,Li]

. Furthermore, μi

also equals the number of zeros of f |Pi
, where a zero at a vertex is counted

as many times as half the degree of that vertex in Pi. A subgraph Pi of the
second construction stage, where all Γ vertices are of even degrees possesses
an Eulerian cycle and may be identified with an interval [0, Li], where Li is
the metric length of Pi. Also by way of construction, f |[0,Li]

is a Neumann
eigenfunction which satisfies periodic boundary conditions. Hence, f |[0,Li]

=

cos
(

π
Li

μix
)

for some positive even integer, μi. As before, μi equals the number
of zeros of f |Pi

, counted according to vertex degrees. In both cases, we have
that k = π

Li
μi, which shows claim (4) of the theorem.

Finally, claim (5) is deduced from claim (4), by summing over all Pi’s.
�

Having characterized local critical points, we wish to connect those to
supremizers.

Lemma 5.5. Let Γ (G; l) be a supremizer of a discrete graph G, such that its
spectral gap k1 [Γ (G; l)] is simple. Then, there exists a discrete graph G∗ and
positive edge lengths l∗ ∈ LG∗ such that Γ (G; l) = Γ (G∗; l∗) and the spectral
gap k1 [Γ (G∗; l∗] is a critical value.

Proof. Start by forming a new discrete graph G∗ by contracting the edges
of G which correspond to the vanishing values of l, or setting G∗ = G if all
entries of l are strictly positive. We get that there exists l∗ ∈ LG∗ such that
Γ (G; l) = Γ (G∗; l∗). In effect, l∗ entries are exactly the non-vanishing entries
of l. Since Γ (G; l) is a supremizer of G we get that Γ (G∗; l∗) is a supremizer
of G∗. Furthermore, Γ (G∗; l∗) is even a maximizer of G∗ as all of l∗ entries are
positive. Since k1 [Γ (G∗; l∗)] is a simple eigenvalue, it is analytic with respect
to edge lengths and therefore must be a critical value. �

Having Lemma 5.5 allows to conclude that all the claims in Lemmata 5.3
and 5.4 hold for supremizers whose spectral gaps are simple. We use this in
proving Theorem 2.4.

Proof of Theorem 2.4. We start by noting that the path decomposition of
Lemma 5.4 is valid under the assumptions of the theorem. Denote for brevity
Γ := Γ (G; l) and k := k1 [Γ ], with corresponding eigenfunction f . Denote
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Γ+ := {x ∈ Γ | f (x) > 0}, Γ− := {x ∈ Γ | f (x) < 0} and denote by β+, β−
their corresponding first Betti numbers. The connected components of Γ+, Γ−
are called the nodal domains of f . As k is the second eigenvalue of Γ , we
deduce from the Courant nodal theorem and the simplicity of k that f has
only two nodal domains (see [10] for the original proof of Courant, or [3,18] for
its adaptation for graphs). Hence, the sets Γ+ and Γ− are connected (notice
that Γ± are not exactly subgraphs, as they do not include the vertices at which
f vanishes).

Next, note that f cannot completely vanish on an edge. Otherwise, the
energy of that edge equals to zero and as k is a critical value, by the proof
of Lemma 5.3 all edge energies are equal to zero which leads to f ≡ 0. Fur-
thermore, we show that f cannot vanish more than once on the same edge,
including its endpoints. Assume by contradiction that there exists an edge,
e = [u, v] on which f vanishes at least twice. As f has only two nodal domains,
it can vanish at most twice on e. For each zero of f located on the interior of
e, add a dummy vertex of degree two at the position of this zero. Those two
zeros now coincide with two vertices of Γ (G; l), which we denote by v1, v2 and
further denote the degrees of those vertices by d1, d2. We note that both d1
and d2 are even and in particular not smaller than two. This holds as a zero
at an odd degree vertex implies by Lemma 5.3 that the energy at this vertex
vanishes as well. As k is a critical value, all energies are equal throughout the
graph, which implies f ≡ 0. From Lemma 5.4, (5) we get k = 1

2 (d1 + d2) π.
We modify Γ by contracting the edge segment connecting between v1 and v2,
turning them into a single vertex which we denote by v0. We get that in the
new graph, the vertex v0 has a degree d0 = d1 + d2 − 2. This new graph is
connected and we modify it by contracting all edges except those d0 edges
connected to v0. Doing so, we obtain a mandarin graph with d1 +d2 −2 edges.
By turning the mandarin into an equilateral mandarin it achieves a spectral
gap of (d1 + d2 − 2) π (see Example 1.6). As Γ is a supremizer we conclude
(d1 + d2 − 2) π ≤ 1

2 (d1 + d2) π, so that d1 + d2 ≤ 4. Since we have seen above
that d1 ≥ 2, d2 ≥ 2 we deduce d1 = d2 = 2. By the path decomposition in
Lemma 5.4, each path must contain at least one zero of f . Hence, only a single
path is possible in the decomposition and Γ must be a single-cycle graph. We
arrive at a contradiction, as the spectral gap of this graph is not simple. Hence,
f vanishes at most once on each edge, which includes both the interior of the
edge and its two endpoints.

If f vanishes at points which are not vertices, we turn those points into
dummy vertices of degree two. Each zero of f is now located at some vertex
of Γ . We introduce the following notation. Denote by V+ (V−) the number of
vertices at which f is positive (negative), which is just the number of vertices
of Γ+ (Γ−). Denote by V0 the number of vertices at which f vanishes (this
includes the additional dummy vertices we added). Similarly, denote by E++

(E−−) the number of edges which connect two vertices from V+ (V−). Note
that f does not vanish at all on those edges. Further denote by E0+ (E0−) the
number of edges which connect a vertex of V0 to a vertex of V+ (V−). Note
that due to the additional dummy vertices there are no edges which connect a
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positive vertex to a negative one. With those notations, the graph’s first Betti
number is

β = E − V + 1

= (E++ + E−− + E0+ + E0−) − (V+ + V− + V0) + 1

= (E++ − V+ + 1) + (E−− − V− + 1) + (E0+ + E0− − V0) − 1

= β+ + β− + (E0+ + E0− − V0) − 1, (5.13)

where β+ := E++ − V+ + 1 is the first Betti number of Γ+ and similarly for
β− := E−− − V− + 1 and Γ−. In addition,

E0+ + E0− =
∑

v∈V0

dv = 2V0 + 2δ, (5.14)

where δ ≥ 0 is defined by the equality above. The sum above is even by
Lemma 5.3 and hence, δ is an integer. In addition, δ = 0 if and only if f does
not vanish on the original vertices of Γ (i.e., it vanishes only on the added
dummy vertices which are of degree two). The number of graph zeros, counted
with their multiplicities as in Lemma 5.4 (namely, each zero is counted as
many times as half the degree of the corresponding vertex) is

μ =
1
2

∑

v∈V0

dv = E0+ + E0− − V0 − δ, (5.15)

where we used (5.14). Combining (5.12), (5.13), (5.15) we get

k = π (β + 1 − (β+ + β−) − δ) . (5.16)

Let v be a vertex such that f (v) = 0. We concluded above such a vertex
must be of even degree. Furthermore, from Lemma 5.3 we have that half of
f derivatives at v are positive and half negative. Hence, v is connected to
the same number of positive values vertices as to negative valued once. We
conclude that E0+ = E0− and from the left equalities in (5.14) and (5.15) we
get μ = E0−. Choose l∗ ∈ L G such that all of its entries equal zero except
those which correspond to the E0− edges, which we set to be equal 1/E0−. We
get that Γ (G; l∗) is an equilateral mandarin graph whose spectral gap equals
πE0− = πμ, which finishes the proof of the theorem. �

The proof above yields the following.

Corollary 5.6. Let G be a discrete graph and let l ∈ LG. Assume that Γ (G; l) is
a supremizer of G and that the spectral gap k1 (Γ (G; l)) is a simple eigenvalue
and let f be the corresponding eigenfunction. Denote Γ+ := {x ∈ Γ | f(x) > 0},
Γ− := {x ∈ Γ | f(x) < 0} and further denote by β+, β− their corresponding first
Betti numbers. Then

1. β+ + β− ≤ 1.
2. If β++β− = 1 there exists a choice of lengths l∗ ∈ L G such that Γ (G; l∗)

is an equilateral flower and

k1 (Γ (G; l)) = k1 (Γ (G; l∗)) = βπ. (5.17)
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3. The number of (non-dummy) vertices at which f vanishes is at most one.
Such a vertex may exist only if β+ + β− = 0 and if it exists then this
vertex is of degree four.

Remark. We note that Γ−, Γ+ defined above are open sets and hence not
metric graphs in the sense defined so far in the paper. Nevertheless, we can
still define their Betti numbers according to the usual definition for topological
spaces.

Proof. We start from Eq. (5.16) in the preceding proof. If β+ + β− > 1 we get
that k < πβ, so that the spectral gap of Γ (G; l) is strictly smaller than the
one we can get by turning it into an equilateral flower (πβ) which contradicts
it being a supremum. Therefore, β+ + β− ≤ 1, which is claim (1).

If β+ + β− = 1, then by (5.16), the spectral gap of Γ (G; l) equals
π (β − δ). As it cannot be smaller than the one of the equilateral flower we
have δ = 0, which means that f does not vanish at vertices (with the excep-
tion of the dummy ones) and also that there exists l∗ ∈ L G for which Γ (G; l∗)
is an equilateral flower, hence showing claim (2).

If β+ + β− = 0, then by (5.16), the spectral gap of Γ (G; l) equals
π (β + 1 − δ). As it cannot be smaller than the one of the equilateral flower
we have δ ≤ 1, which means that f vanishes at most on a single (non-dummy)
vertex. In addition, if such a vertex exists its degree equals four. �

Another corollary of the proof of Theorem 2.4 is the following

Corollary 5.7. Let G be a discrete graph. Let l ∈ LG and assume that Γ :=
Γ (G; l) decomposes as

Γ = Γ+ ∪ Γ0 ∪ Γ−, (5.18)
such that

1. The subgraphs Γ+, Γ0 and Γ− are pairwise edge disjoint.
2. The subgraphs Γ+ and Γ− do not have any vertex in common.
3. The vertices of Γ0 have an odd degree in Γ .

Then, the spectral gap of Γ cannot be both a simple eigenvalue and a critical
value as a function of l ∈ LG.

Proof. Let k denote the spectral gap of Γ and assume that it is a simple
eigenvalue and a critical value. Let f be the eigenfunction corresponding to
k. Since k is simple, Courant’s nodal theorem ([3,10,18]) entails that f has
exactly two nodal domains. By Lemma 5.3 and as the vertices of Γ0 are of odd
degree, we deduce that f vanishes on every edge of Γ0. From the decomposition
(5.18), it follows that Γ+ and Γ− are contained each in a different nodal domain
of Γ and also that each is a connected subgraph. Furthermore, Γ0 does not
have any interior vertex as otherwise, it would belong to a third nodal domain.
It follows that Γ0 consists of edges connecting vertices of Γ+ and Γ−.

Observe that f |Γ+
is a Neumann eigenfunction on Γ+. Indeed, it satisfies

Neumann conditions at all vertices of Γ+\Γ0 and its derivative vanishes at each
edge connected to a vertex in Γ+ ∩ Γ0. Therefore, f |Γ+

should be orthogonal
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to the constant function on Γ+. As f |Γ+
is positive everywhere, this is possible

only if Γ+consists of a single vertex, which we denote by v+ (it cannot contain
more than a single vertex as we have shown it is connected). The same goes for
Γ− (its vertex denoted by v−) and as we have shown that Γ0 consists of edges
connecting vertices of Γ+ and Γ−, we conclude that Γ is a mandarin graph. As
all derivatives of f at v± vanish and f cannot vanish more than once on edges
connecting them we deduce that all those edges are of equal length. Hence, Γ
is an equilateral mandarin, whose spectral gap is not a simple eigenvalue and
we get a contradiction. �

This corollary applies, among other examples, to graphs having a bridge
linking two vertices of odd degrees, or to bipartite and d−regular graphs for
some odd d. All of those cannot have a spectral gap which is both simple and
a critical value.

Demonstrating examples of the other side, we next show a family of
discrete graphs, G, and connected subsets L ∗ ⊂ LG , such that for all l∗ ∈ L ∗,
Γ (G; l∗) satisfies the conditions of Lemma 5.3. This provides a collection of
graphs whose spectral gap is both simple and a critical value. Those graphs
are essentially chains of mandarins glued serially one to the other and with an
optional star glued at either side of this chain. We call those standarin chains
(see Fig. 3).

Proposition 5.8. Let n ≥ 2, M ≥ 1 be integers. Take some M discrete n-
mandarin graphs and glue them serially to form a chain of mandarins. At
each end of this chain either glue or not an n-star graph at its central vertex.
Let S ∈ {0, 1, 2} be the number of star graphs which were glued and assume
M + S ≥ 2. Denote the obtained discrete graph by G. Set l∗ ∈ LG to be a
vector of edge lengths such that

1. All edges belonging to the same mandarin have equal length.
2. All edges belonging to the same star graph have equal length, which is in

the range (0, 1
2n ).

Then for all such l∗ ∈ LG, Γ (G; l∗) satisfies the conditions of Lemma 5.3.
Namely

1. The spectral gap, k1 [Γ (G; l∗)], is a simple eigenvalue.
2. The function l �→ k1 [Γ (G; l)] has a critical value at l = l∗.

In addition, the corresponding spectral gap k = k1 [Γ (G; l)] equals nπ.

(a)

l1
l2l1

l1
l1

l2

l2
l2

l3
l3
l3

l3
(b)

l2

l2

l2

l1
l1

l1

l3
l3

l3

Figure 3. Two examples for the standarin chain graphs
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Proof. Let l∗ ∈ LG which satisfies the assumptions of the proposition. Denote
Γ := Γ (G; l∗) and note that we may construct Γ by taking n intervals, {γi}n

i=1,
of length 1

n each, picking M + 1 points on each interval which are similarly
positioned on each of the intervals, and identifying each set of parallel n points
to form a vertex of Γ . We use this decomposition of Γ to describe an eigen-
function which is shown on the sequel to correspond to the spectral gap of Γ .
Set f |γi

(x) = cos (nπxi) on each γi. It is easy to check that f satisfies Neu-
mann conditions at all vertices and hence it is a valid eigenfunction and its
k-eigenvalue equals nπ. We conclude that the spectral gap obeys, k1 [Γ ] ≤ nπ,
and show in the sequel that this is actually an equality and that the spectral
gap is a simple eigenvalue.

Let g be an eigenfunction corresponding to the spectral gap k1 [Γ ]. We
may assume that all the restrictions g|γi

at mentioned intervals are equal.
Otherwise, we symmetrize g by taking

∀1 ≤ i ≤ n, g̃|γi
=

n∑

j=1

g|γj
. (5.19)

This symmetrized function g̃ indeed satisfies Neumann conditions at all ver-
tices and we just need to justify that it is different from the zero function.
Assume by contradiction that it is the zero function. In particular, g̃ vanishes
at all vertices and hence g itself vanishes at all vertices which are not leaves.
Necessarily, there exists some edge on which g does not identically vanish.
If such an edge, e, is an inner edge we get that k1 [Γ ] ≥ π

le
> nπ, and a

contradiction. If this edge is a dangling edge, we get by assumption (2) that
k1 [Γ ] ≥ π

2le
> nπ, which is again a contradiction. Hence, we continue assuming

that g is an eigenfunction with all {g|γi
}n

i=1 equal to each other. From here we
conclude that for all i, g|γi

is an eigenfunction of the interval with Neumann
condition at both of its ends. This together with g being an eigenfunction
corresponding to the spectral gap implies g = f and k1 [Γ ] = nπ.

Next, we show the simplicity of k1 [Γ ]. Let g be an eigenfunction of k1 [Γ ],
not assuming it is symmetric this time. Take all parallel edges of some man-
darin which is a subgraph of Γ . All those edges have a common length l < 1

n
and we have k1 [Γ ] · l = nπl < π so that sin(k1 [Γ ] · l) �= 0. Therefore, the value
of g on each of those parallel edges is given by

g|e (x) =
1

sin (k1 [Γ ] · l)
{g (u) sin (k1 [Γ ] · (l − x)) + g (v) sin (k1 [Γ ] · x)} ,

(5.20)

where u, v are the vertices of this mandarin and e any edge connecting them.
A similar argument shows that g is also uniquely determined at the dangling
edges. The simplicity of k1 [Γ ] follows.

Finally, computing the energy, Ee = (f ′)2+k2f2, of f as defined above, we
get that it is equal on all edges. By Lemma 5.2 we conclude that the function
l �→ k1 [Γ (G; l)] has a critical value at l = l∗. �
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We note that the particular case n = 2, M = 1, S = 1 is dealt with in
Lemma 8.1. It is stated there that for this particular stower the graphs Γ (G; l)
not only have the spectral gap as a critical value, but they are also maximizers.
Furthermore, those graphs are supremizers and thus satisfy the conditions of
Theorem 2.4. Indeed, this stower has a spectral gap of 2π, which equals the
spectral gap of a single cycle, which is merely a one-petal flower or a two-edge
mandarin.

In general, the graphs in the proposition above share the same spectral
gap as equilateral n-mandarin graphs. As such they obey the conclusion of
Theorem 2.4 even though they do not satisfy the requirements of the theorem
as they are not necessarily supremizers. For example, the graphs Γ (G; l∗) of
the proposition above are not supremizers if we take n ≥ 3. In this case, there is
a choice of lengths, l, for which Γ (G; l) is a stower graph with Ep = M ·(n−1)
and El = S ·n, whose spectral gap is π

2 (2M · (n − 1) + S · n) and greater than
nπ.

6. Gluing Graphs

In this section we develop spectral gap inequalities for graphs whose vertex
connectivity equals one. Such graphs may be obtained by considering two
disjoint graphs and identifying two vertices, one of each graph. We bound the
spectral gap of the obtained graph by the sum of spectral gaps of its two
subgraphs and provide necessary and sufficient conditions for equality to hold
(Proposition 6.5). We use this in order to prove sufficient conditions needed
for graphs with vertex connectivity one to be supremizers (Theorem 2.6).

We fix some notations to use throughout this section. Let Γ be a graph
and let v be a vertex of Γ . We say that f satisfies the δ-type conditions at v
with parameter θ if

f is continuous at v

and

cos
(

θ

2

) ∑

e∈Ev

df

dxe
(v) = sin

(
θ

2

)
f (v) , (6.1)

where θ ∈ (−π, π] (see Definition B.1). Note that Neumann conditions are
obtained as a special case with θ = 0 and Dirichlet conditions are obtained
from θ = π. We denote by kn (Γ ; θ) the nth k-eigenvalue of Γ , endowed with
the δ-type condition with parameter θ at v and Neumann at all other vertices.
The corresponding k-spectrum is denoted by

σ (Γ ; θ) := ∪n {kn (Γ ; θ)} . (6.2)

It will be understood in the sequel which vertex v is chosen so that it is not
indicated in the notation. In addition, we omit the notation Γ from kn (Γ ; θ)
and σ (Γ ; θ) whenever it is clear which graph we refer to. Similarly, θ is omitted
from these notations whenever θ = 0 to comply with the notations used so
far. At this point, we refer the reader to “Appendix B,” where we quote some
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results from [5] on δ-type conditions, that are used throughout this section. The
structure of the spectrum as it depends on the parameter θ (for some chosen
vertex v) is described in the next lemma, which quotes parts of Theorem 3.1.13
from [5], slightly rephrased for our purpose.

Lemma 6.1. Let Γ be a metric graph and let v be a vertex of Γ . There exist
a bounded from below discrete set, Δ(Γ ) ⊂ R and a real smooth function,
K (Γ ; ·) : (−π,∞) → R (called “dispersion relation”) such that

1. The function θ �→ K (Γ ; θ) is strictly increasing so that limθ→∞ K (Γ ; θ) =
∞.

2. For any θ ∈ (−π, π], σ (Γ ; θ) = {K (Γ ; θ + 2πn)}∞
n=0 ∪ Δ(Γ ).

Remark. We see from the lemma above that

Δ (Γ ) =
⋂

θ∈(−π,π]

σ (Γ ; θ) . (6.3)

The values of this discrete set, common to all spectra, are often called flat
bands.

A particular value of θ which plays a special role is defined below.

Definition 6.2. Let Γ be a graph and let v be a vertex of Γ . A parameter
θSG ∈ R which satisfies

K
(
Γ ; θSG

)
= k1 (Γ ; 0) (6.4)

is called the spectral gap parameter (SGP) of Γ (with respect to v). See Fig. 4.

In the following we point out some of the SGP properties.

Lemma 6.3. 1. The spectral gap parameter exists and it is unique.
2. θSG ∈ [0, 2π].
3. If θSG �= 2π then k1 (Γ ; 0) ∈ Δ(Γ ).
4. If θSG ∈ (0, π] then

⎧
⎪⎨

⎪⎩

k0 (θ) < k1 (0) for θ ∈ (0, θSG
)

k0 (θ) = k1 (0) for θ ∈ [θSG, π
]

k1 (θ − 2π) = k1 (0) for θ ∈ (π, 2π] .
(6.5)

π−π θSG θ

σ (Γ; θ)

k1 (Γ; 0)

(a)

π−π θ

σ (Γ; θ)

k1 (Γ; 0)

(b)

π−π θ

σ (Γ; θ)

k1 (Γ; 0)

θSG

(c)

Figure 4. Three examples of dispersion relations curves.
a θSG ∈ (0, π), b θSG = π, c θSG ∈ (π, 2π)
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5. If θSG ∈ (π, 2π) then
⎧
⎪⎨

⎪⎩

k0 (θ) < k1 (0) for θ ∈ [0, π]
k1 (θ − 2π) < k1 (0) for θ ∈ (π, θSG

)

k1 (θ − 2π) = k1 (0) for θ ∈ [θSG, 2π
]
.

(6.6)

Proof. The existence of the spectral gap parameter follows from K (Γ ; 0) = 0
together with K (Γ ; ·) being monotonically increasing. This latter argument
also shows the uniqueness of the SGP and that θSG ≥ 0.

We have that K(Γ ; 2π) = kn(Γ ; 0) for some n and hence, by continuity
and monotonicity of K we get θSG ≤ 2π, which shows property (2) above.

If θSG < 2π we have k1(Γ ; 0) ∈ σ(Γ ; 0) ∩ σ(Γ ; θSG) and by Lemma
B.5 conclude k1(Γ ; 0) ∈ Δ(Γ ), which proves property (3). Finally, properties
(4) and (5) are straightforward consequences of the strict monotonicity of K
together with the eigenvalue interlacing with respect to the δ-type condition
parameter (see Lemma B.2). �

The main construction in this section involves scaling two disjoint graphs
and gluing them at a vertex to form a new graph, as defined below.

Definition 6.4. Let Γ1, Γ2 be two Neumann graphs of total length 1 each. Let
vi be a vertex of Γi (i = 1, 2). Let Γ be the graph obtained by the following
process

1. Multiply all edge lengths of Γ1 by some factor L ∈ [0, 1].
2. Multiply all edge lengths of Γ2 by a factor of 1 − L.
3. Identify v1 and v2 of the graphs above and endow the new vertex with

Neumann vertex conditions.
We call Γ the gluing of Γ1, Γ2 (with respect to v1, v2 and L).

Proposition 6.5. Let Γ1, Γ2 be two connected Neumann graphs of total length
1 each. Let vi be a vertex of Γi (i = 1, 2). Let Γ be the gluing of Γ1, Γ2 with
respect to v1, v2 and some value L ∈ [0, 1]. Let θSG

1 , θSG
2 be the spectral gap

parameters of Γ1, Γ2 with respect to v1, v2, correspondingly. Then the following
inequality holds

k1 (Γ ) ≤ k1 (Γ1) + k1 (Γ2) , (6.7)
with equality if and only if both conditions below are satisfied

1. L = k1(Γ1)
k1(Γ1)+k1(Γ2)

.

2. θSG
1 + θSG

2 ≤ 2π.
Additional necessary conditions for equality in (6.7) are
(a) The spectral gaps of the glued graphs obey k1 (Γ1) ∈ Δ(Γ1) and k1 (Γ2) ∈

Δ(Γ2).
(b) The spectral gap of the outcome graph, k1 (Γ ) is a multiple (i.e., non-

simple) eigenvalue.

Proof. We start by showing the inequality (6.7).
Let L ∈ [0, 1]. If L = 0 (L = 1), then Γ = Γ2 (Γ = Γ1) and (6.7) obviously

holds as a strict inequality and indeed condition (1) is violated if L = 0 or
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L = 1. We therefore assume L ∈ (0, 1). Denote by Γ̃ 1 the graph obtained
by multiplying all edge lengths of Γ1 by L and by Γ̃ 2 the graph obtained by
multiplying all edge lengths of Γ2 by 1 − L. Therefore, identifying the vertices
v1, v2 of Γ1, Γ2 gives the graph Γ . Applying Lemma B.3 we get

k1 (Γ ) ≤ k2

(
Γ̃ 1 ∪ Γ̃ 2

)
. (6.8)

As the spectrum of Γ̃ 1 ∪ Γ̃ 2 is the union of spectra of both graphs, we have
that

k0

(
Γ̃ 1 ∪ Γ̃ 2

)
= k1

(
Γ̃ 1 ∪ Γ̃ 2

)
= 0

and

k2

(
Γ̃ 1 ∪ Γ̃ 2

)
= min

(
k1

(
Γ̃ 1

)
, k1

(
Γ̃ 2

))
(6.9)

and conclude

k1 (Γ ) ≤ min
(
k1

(
Γ̃ 1

)
, k1

(
Γ̃ 2

))
= min

(
k1 (Γ 1)

L
,
k1 (Γ 2)
1 − L

)
. (6.10)

We consider the right-hand side of (6.10) as a function of L. The minimal value
of this function is k1 (Γ1)+k1 (Γ2) and it is obtained at L = k1(Γ1)

k1(Γ1)+k1(Γ2)
, which

proves (6.7). In addition, as the minimal value of this function is unique, it
also proves that condition (1) is necessary for equality in (6.7) to hold. From
now on we assume throughout the proof that condition (1) of the proposition
is satisfied, so that k1

(
Γ̃ 1

)
= k1

(
Γ̃ 2

)
.

Next, we examine two ranges of θSG
1 , θSG

2 values and show those values
make the inequality in (6.7) strict.

1. θSG
1 > π and θSG

1 > π.
By (6.6) we have k0(Γ̃i; π) < k1(Γ̃i; 0) for both i = 1, 2. Assume first that
k0(Γ̃1; π) �= k0(Γ̃2; π) and without loss of generality that k0(Γ̃1; π) >

k0(Γ̃2; π).
Examine the function

h (θ) :=

⎧
⎨

⎩
k0

(
Γ̃ 1; θ

)
− k1

(
Γ̃ 2; −θ

)
θ ∈ [0, π)

k0

(
Γ̃ 1; π

)
− k0

(
Γ̃ 2; π

)
θ = π.

(6.11)

By Lemma B.4 we have that h is a continuous non-decreasing function.
In addition, h (0) = −k1(Γ̃2; 0) < 0 and by the assumption k0(Γ̃ 1; π) >

k0(Γ̃ 2; π) we have h (π) > 0. Hence, h vanishes at some value θ̃ ∈ (0, π),
so that we find

k0

(
Γ̃ 1; θ̃

)
= k1

(
Γ̃ 2; −θ̃

)
. (6.12)

Denote by f̃1 the eigenfunction corresponding to k0(Γ̃ 1; θ̃) and by f̃2 the
eigenfunction corresponding to k1(Γ̃ 2; −θ̃). We use f̃1, f̃2 to construct an
eigenfunction on the whole of Γ as follows. First, notice that for both i =
1, 2 , f̃i(vi) �= 0. Assuming otherwise, we obtain that f̃i obeys Dirichlet
condition at vi and as θ̃ �= π we get that f̃i obeys Neumann conditions as
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well at vi. Since θ̃ < θSG
i , the corresponding eigenvalue is strictly lower

than the spectral gap. As f̃i(vi) �= 0 for i = 1, 2, we may normalize the
f̃i’s so that f̃1(v1) = f̃2(v2). Now form an eigenfunction f on Γ by setting

f (x) :=

{
f̃1 (x) x ∈ Γ̃1,

f̃2 (x) x ∈ Γ̃2.
(6.13)

where we consider Γ̃1, Γ̃2 as subgraphs of Γ . The normalization f̃1(v1) =
f̃2(v2) gives that f is continuous at the glued vertex v. In addition, its
sum of derivatives there equals

∑

e∈Ev1

f̃ ′
1

∣∣∣ (v1) +
∑

e∈Ev2

f̃ ′
2

∣∣∣ (v2) = tan

(
θ̃

2

)
f̃1(v1) + tan

(
−θ̃

2

)
f̃2(v2) = 0.

(6.14)
We conclude that f is a Neumann eigenfunction on Γ whose eigenvalue
equals k0(Γ̃ 1; θ̃) = k1(Γ̃ 2; −θ̃). However, this eigenvalue is strictly
smaller than k1

(
Γ̃ i

)
, for both i = 1, 2, as shows the following chain

of inequalities

k0(Γ̃ 1; θ̃) ≤ k0(Γ̃ 1; π) < k1(Γ̃ 1; 0) = k1(Γ̃ 2; 0), (6.15)

where the first inequality is due to eigenvalue monotonicity, the second is
by (6.6) and the last equality results since our current working assumption
is the validity of condition (1), as discussed above. Therefore, we have
found an eigenvalue of Γ strictly smaller than both k1

(
Γ̃ i

)
, so that there

is a strict inequality in (6.10) and therefore strict inequality in (6.7).
We now assume k0(Γ̃1; π) = k0(Γ̃2; π). Denote by f̃1, f̃2 as above the
corresponding eigenfunctions. By (6.6) k0(Γ̃i; π) < k1(Γ̃i; 0) for both
i = 1, 2 and therefore f̃i does not obey Neumann conditions at vi (as
otherwise, its eigenvalue would be the spectral gap). Using that the sum
of derivatives of f̃i at vi differs from zero, we may normalize both f̃1, f̃2 so
that their sums of derivatives are opposite. Now, constructing a function
f on Γ as in (6.13) shows just as above (see (6.15) and the argument
which follows) that inequality (6.10) is strict in this case as well. We
conclude that the inequality in (6.7) is strict if θSG

1 > π and θSG
1 > π.

2. θSG
1 + θSG

2 > 2π and
{
θSG
1 ≤ π < θSG

2 or θSG
2 ≤ π < θSG

1

}
.

Assume without loss of generality that θSG
1 < θSG

2 . We have the following
chain of inequalities

k0(Γ̃2; π) < k1(Γ̃2; 0) = k1(Γ̃1; 0) = k0(Γ̃1; π), (6.16)

where the first inequality comes from (6.6) (keeping in mind that θSG
2 >

π), the first equality is our working assumption (assuming the validity
of condition (1)) and the second equality comes from (6.5) (keeping in
mind that θSG

1 ≤ π). Therefore, defining the function h as in (6.11) we
find that h(0) < 0 and h(π) > 0. As before we conclude that h vanishes
for some value θ̃ ∈ (0, π) and hence k0(Γ̃1; θ̃) = k1(Γ̃2; −θ̃). Similarly
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to the previous case, we may use this equality to construct a Neumann
eigenfunction on Γ whose eigenvalue equals k0(Γ̃1; θ̃) and to show that
strict inequality happens in (6.7) for this case.

Notice that condition (2) of the proposition forms the complement of the
two cases examined above. Therefore, we have proven so far that this con-
dition is necessary for the equality in (6.7) to hold. We proceed to show that
conditions (1), (2) are sufficient as well. Recall that assuming condition (1)
implies k1(Γ̃ 1; 0) = k1(Γ̃ 2; 0). We further assume by contradiction that
k1 (Γ ) < k1(Γ̃ 1; 0), and consider the following two cases for the θSG

1 , θSG
2

values:
1. θSG

1 ≤ π and θSG
2 ≤ π.

First, we note that by (6.5) we have k1(Γ̃i; 0) = k0(Γ̃i; π) for both
i = 1, 2.
Let f be the eigenfunction corresponding to k1 (Γ ). Denote f̃i = f

∣∣
Γ̃i

for

i = 1, 2. We find that there exists some θ̃ such that kn1(Γ̃1; θ̃) = k1 (Γ ),
for some n1. We cannot have θ̃ = π, as otherwise we get

kn1(Γ̃1; π) = k1 (Γ ) < k1(Γ̃ 1; 0) = k0(Γ̃1; π) (6.17)

and contradiction. We find that as f̃1 satisfies the δ-type condition at
v1 with the parameter θ̃, f̃2 satisfies the δ-type condition at v2 with the
parameter −θ̃ (since the total sum of derivatives is zero and see (6.14)).
Assume without loss of generality that θ̃ > 0. We get that

kn2(Γ̃2; −θ̃) = k1 (Γ ) < k1(Γ̃ 2; 0), (6.18)

which implies either n2 = 0 or n2 = 1. We rule out n2 = 0 as it renders
the left-hand side of (6.18) negative, while k1(Γ ) > 0. We also rule out
n2 = 1, as by (6.5) the left- and right-hand sides of (6.18) are equal.
Hence, in this case, we get a contradiction to the assumption k1 (Γ ) <

k1(Γ̃ 1; 0).
2. θSG

1 + θSG
2 ≤ 2π and

{
θSG
1 ≤ π < θSG

2 or θSG
2 ≤ π < θSG

1

}
.

We repeat the construction of f̃1, f̃2 as in the previous case to get that
there exists some θ̃ �= π such that kn1(Γ̃1; θ̃) = k1 (Γ ), for some n1 and
kn2(Γ̃2; −θ̃) = k1 (Γ ), for some n2. Assume without loss of generality
θSG
1 < θSG

2 . Combining

kn1(Γ̃1; θ̃) = k1 (Γ ) < k1(Γ̃ 1; 0) (6.19)

with (6.5) shows that n1 = 0 and 0 < θ̃ < θSG
1 . Similarly, we have for

Γ̃2,

kn2(Γ̃2; −θ̃) = k1 (Γ ) < k1(Γ̃ 2; 0), (6.20)

where the positivity of the left-hand side implies n2 = 1. Together with
(6.6) we get −θ̃ < θSG

2 − 2π. Combining that with θ̃ < θSG
1 gives θSG

1 +
θSG
2 > 2π and contradiction to the assumption in this case.

Thus, we have shown that conditions (1), (2) of the proposition are also suffi-
cient for equality in (6.7) to hold.
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Finally, we show the necessity of conditions (a), (b) of the proposition.
We have seen that necessary conditions for equality in (6.7) are {θSG

1 ≤ π
and θSG

2 ≤ π} or {θSG
1 +θSG

2 ≤ 2π and
{
θSG
1 ≤ π < θSG

2 or θSG
2 ≤ π < θSG

1

}}.
Under those conditions we have both θSG

1 �= 2π and θSG
2 �= 2π and by Lemma

6.3, (3) we get k1(Γ̃i) ∈ Δ(Γ̃i) for both i = 1, 2, which is condition (a). Now, in
order to show that k1 (Γ ) is a non-simple eigenvalue we construct two linearly
independent eigenfunctions. As k1(Γ̃i) ∈ Δ(Γ̃i), by Lemma B.5 there exists
an eigenfunction corresponding to k1(Γ̃i) which vanishes at vi and its sum of
derivatives vanishes there as well. Extend this function to an eigenfunction of
Γ , whose eigenvalue is k1(Γ̃i) = k1 (Γ ) by setting it to be equal zero on the
complementary subgraph, Γ̃3−i. Performing this for both i = 1 and i = 2 we
get two linearly independent eigenfunctions on Γ , which shows the necessity
of condition (b). �

We use Proposition 6.5 to study the supremizers of graphs whose vertex
connectivity equals one. Let G be such a graph which is obtained by taking
two graphs G1,G2 and identifying two of their vertices v1, v2. An immediate
guess is that a supremizer of G may be obtained by taking the supremizers of
G1,G2 and identifying their vertices corresponding to v1, v2. This holds under
some conditions, as stated in Theorem 2.6 and proved below.

Proof of Theorem 2.6. We start by formulating the Dirichlet criterion in terms
of the SGP, θSG, used in the conditions of Proposition 6.5. Let Γ be a graph
which obeys the Dirichlet criterion. This means that k0(Γ ; π) = k1(Γ ; 0)
and by Lemma 6.3 we deduce θSG ≤ π. Hence, condition (3) of Theorem 2.6
implies condition (2) of Proposition 6.5.

Assuming conditions (1), (3) of the theorem we may now apply Proposi-
tion 6.5 and get

k1 (Γ ) = k1 (Γ1) + k1 (Γ2) . (6.21)

Let Γ̂ be a supremizer of G. In particular, k1(Γ ) ≤ k1(Γ̂ ). Denote by Γ̂1, Γ̂2

the subgraphs of Γ̂ corresponding to G1,G2 and rescaled such that the total
length of each of them equals 1. By Proposition 6.5

k1

(
Γ̂
)

≤ k1

(
Γ̂1

)
+ k1

(
Γ̂2

)
. (6.22)

Hence, we get

k1

(
Γ̂
)

≤ k1

(
Γ̂1

)
+ k1

(
Γ̂2

)
≤ k1 (Γ1) + k1 (Γ2) = k1 (Γ ) , (6.23)

where the second inequality holds as Γ1, Γ2 are supremizers. We therefore get
that k1(Γ ) = k1(Γ̂ ), so that Γ is a supremizer of G as Γ̂ is a supremizer of G
(and possibly Γ = Γ̂ ).

We now further assume that either for both i = 1, 2 Γi is the unique
supremizer of Gi or that both Γ1, Γ2 obey the strong Dirichlet criterion and any
other supremizer violates the Dirichlet criterion. Assume that Γ̂ is a supremizer
of G so that k1(Γ ) = k1(Γ̂ ). From (6.21), (6.22) we get

k1 (Γ1) + k1 (Γ2) ≤ k1

(
Γ̂1

)
+ k1

(
Γ̂2

)
. (6.24)
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As Γ1, Γ2 are supremizers of G1,G2, we have an equality in (6.24) and get that
for both i = 1, 2, k1 (Γi) = k1

(
Γ̂i

)
, so that Γ̂1, Γ̂2 are supremizers of G1,G2

as well. If both Γ1, Γ2 are unique supremizers of G1,G2 then Γi = Γ̂i for both
i = 1, 2. Hence, Γ̂ = Γ .

We carry on by assuming that both Γ1, Γ2 obey the strong Dirichlet cri-
terion and any other supremizer violates the Dirichlet criterion. From Lemma
6.3 we deduce that a graph violates the Dirichlet criterion if and only if its
spectral gap parameter satisfies θSG ∈ (π, 2π]. If for both i = 1, 2, Γ̂i is differ-
ent than Γi, then we have θSG

1 , θSG
2 ∈ (π, 2π] and by Proposition 6.5 we have

the strict inequality

k1

(
Γ̂
)

< k1

(
Γ̂1

)
+ k1

(
Γ̂2

)
, (6.25)

which together with

k1

(
Γ̂1

)
+ k1

(
Γ̂2

)
= k1 (Γ1) + k1 (Γ2) = k1 (Γ ) (6.26)

contradicts Γ̂ being a supremizer. From Lemma 6.6 which follows this proof
we deduce that a graph obeys the strong Dirichlet criterion if and only if its
SGP equals π. Therefore, if Γ̂i = Γi for either i = 1 or i = 2, say Γ̂1 = Γ1, then
we have θSG

1 = π and θSG
2 ∈ (π, 2π] and once again we get by Proposition 6.5

the inequality (6.25) which contradicts Γ̂ being a supremizer. �

Lemma 6.6. Let k ∈ Δ(Γ ). Let n ∈ N and θ ∈ (−π, π] such that k = K(θ +
2nπ). Assume that k has multiplicity m+1 in the spectrum σ(Γ ; θ). Then, for
any θ′ �= θ, k has a multiplicity m as an eigenvalue in the spectrum σ(Γ ; θ′).

Proof. Since Δ(Γ ) is a discrete set, for k′ < k sufficiently close to k, k′ does not
belong to Δ(Γ ). Thus, for θ′ < θ sufficiently close to θ, K(θ′ + 2nπ) is not in
Δ(Γ ). We define a ∈ N as the unique integer satisfying K(θ′+2nπ) = ka(Γ, θ′)
for all θ′ < θ sufficiently close to θ. Since K(·+2nπ) and k(Γ, ·) are continuous
functions of their arguments (see Lemmas 6.1 and B.4), letting θ′ go to θ gives

k = ka(Γ, θ). (6.27)

If θ �= π, we may argue similarly with θ′ > θ sufficiently close to θ to find that

k = kb(Γ, θ) < kb(Γ, θ′). (6.28)

Notice that since a and b are, respectively, minimal and maximal integers such
that k = ka(Γ, θ) = kb(Γ, θ), the multiplicity assumption on k in σ(Γ ; θ)
entails b = a + m. As K is strictly increasing and by Lemma B.2, we get

∀θ′ ∈ (−π, θ), ka(Γ ; θ′) < k = ka+1(Γ ; θ′)
= · · · = kb(Γ ; θ′) < kb+1(Γ ; θ′) (6.29)

and

∀θ′ ∈ (θ, π], ka−1(Γ ; θ′) < k = ka(Γ ; θ′)
= · · · = kb−1(Γ ; θ′) < kb(Γ ; θ′). (6.30)
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We conclude from these inequalities that k has multiplicity m in σ(Γ ; θ′) for
all θ′ �= θ.

If θ = π, we have

∀θ′ �= π, k = kb(Γ, π) < kb+1(Γ, θ′), (6.31)

and once again

∀θ′ �= π, ka(Γ ; θ′) < k = ka+1(Γ ; θ′)
= · · · = kb(Γ ; θ′) < kb+1(Γ ; θ′), (6.32)

from which the result follows. �

7. Symmetrization of Dangling Edges and Loops

Proposition 7.1. Let G be a graph with E ≥ 3 edges. Let v be a vertex of G
and e1, e2 either two dangling edges or two loops connected to v. Let l1, l2 be
the lengths of those edges and denote their average by � := 1

2 (l1 + l2).
Denoting Γ̃ := Γ (G; (l1, l2, l3, . . . , lE)), Γ := Γ (G; (�, �, l3, . . . , lE)), we

have
k1

(
Γ̃
)

≤ k1 (Γ ) . (7.1)

Moreover, if either k1 (Γ ) = π
2� in the dangling edges case (respectively,

k1 (Γ ) = π
� in the loops case) or alternatively both the following conditions

are satisfied

1. Γ is a supremizer of some graph.
2. k1(Γ̃ ) is a simple eigenvalue.

then equality above holds if and only if l1 = l2.

Proof. Let f be an eigenfunction of Γ corresponding to k1 (Γ ). The proof for
both cases—dangling edges and loops—is by constructing a test function f̃ on
Γ̃ , whose Rayleigh quotient obeys R(f̃) ≤ R(f) = k1 (Γ )2, from which (7.1)
follows.

We start with the dangling edges case. First, we get a bound on k1 (Γ )
using a test function,

g|e1∪e2
= cos

(πx

2�

)
, g|Γ\(e1∪e2)

= 0, (7.2)

where e1 ∪e2 is considered as single interval. We have R(g) =
(

π
2�

)2 and hence
k1 (Γ ) ≤ π

2� .
Assume that k1 (Γ ) = π

2� . Let f̃ be the following test function on Γ̃ .

f̃
∣∣∣
ẽ1∪ẽ2

= cos
(πx

2�

)
, f̃
∣∣∣
Γ̃\(ẽ1∪ẽ2)

= f̃ (v) , (7.3)

where f̃ (v) in the right equation is determined from the value f̃
∣∣∣
ẽ1∪ẽ2

on the

left attains at v. As f̃ is not necessarily orthogonal to the constant function,
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we actually take f̃ −
〈
f̃
〉

to be the test function, where
〈
f̃
〉

:=
∫

Γ̃
f̃dx. By

Lemma C.1

R
(
f̃ −

〈
f̃
〉)

=

(
π
2�

)2
�

� +
∣∣∣f̃ (v)

∣∣∣
2

2� (1 − 2�)
<
( π

2�

)2
= (k1 (Γ ))2 , (7.4)

where we use that l1 �= l2 ⇒ f̃ (v) = cos(πl1
2� ) �= 0 to get the inequality.

Next, assume k1 (Γ ) < π
2� and also that f(v) = 0. Then f has to identi-

cally vanish on both e1 and e2. We may then choose the test function f̃ = f

and get R
(
f̃
)

= R (f), as required.
Finally, assume k1 (Γ ) < π

2� and f(v) �= 0. This results in f |e1
= f |e2

.
Assume without loss of generality that l1 < l2. We define the test function f̃
on Γ̃ as follows.

f̃
∣∣∣
Γ̃\(ẽ1∪ẽ2)

= f |Γ\(e1∪e2)
, f̃
∣∣∣
ẽ1

= f |e1(0,l1)
, (7.5)

where e1 (0, l1) denotes a subset of e1 in Γ whose origin is v. On ẽ2 we set

f̃
∣∣∣
ẽ2

(x) =

{
f |e2

(x) x ∈ (0, �)
f |e1

(l1 + l2 − x) x ∈ (�, l2) .
(7.6)

This is a valid continuous test function and by construction, R(f̃) = R(f).
We have therefore shown inequality (7.1) and also that assuming k1(Γ ) =

π
2� assures equivalence between l1 = l2 and equality in (7.1). It is therefore left
to show that under assumptions (1), (2) of the proposition, l1 �= l2 implies
k1(Γ̃ ) < k1(Γ ). Assume by contradiction that l1 �= l2 and also k1(Γ̃ ) = k1(Γ ).
As Γ is a supremizer of some graph, Γ̃ is also a supremizer of the same graph.
Since k1(Γ̃ ) is simple we deduce from Lemma 5.5 that its spectral gap is a
critical value and by Lemma 5.3 we get

∣∣∣ ∂
∂xẽ1

f̃ (v)
∣∣∣ =

∣∣∣ ∂
∂xẽ2

f̃ (v)
∣∣∣, where f̃ is

the eigenfunction corresponding to k1(Γ̃ ). If f̃(v) = 0 we get that f̃ has at
least three nodal domains (at least one nodal domain on each of ẽ1, ẽ2 and
Γ̃\{ẽ1 ∪ ẽ}), which contradicts Courant’s nodal theorem ([3,10,18]). Assume
without loss of generality f̃(v) > 0. As l1 �= l2 and as the derivative of f̃
vanishes at the endpoints of ẽ1, ẽ2, we get that at least one of ẽ1, ẽ2 should
contain two nodal domains of f̃ . In addition, by Courant’s bound it is not
possible for both derivatives, ∂

∂xẽ1
f̃ (v) , ∂

∂xẽ2
f̃ (v) to be negative as this results

in a total of at least three nodal domains. If one derivative is positive and
the second is negative, i.e., ∂

∂xẽ1
f̃ (v) = − ∂

∂xẽ2
f̃ (v), we get that f |ẽ1∪ẽ2 is

proportional to cos( π
2�x), so that k1(Γ̃ ) = π

2� , which is a contradiction, to what
we have shown above [see (7.4)]. If both derivatives are positive, ∂

∂xẽ1
f̃ (v) =

∂
∂xẽ2

f̃ (v), then we get contradiction as
〈
f̃
〉

�= 0. Indeed, assuming without

loss of generality l1 < l2, the restriction of f̃ on an interval of length l2 − l1 at
the end of edge ẽ2 is of zero mean, but the f̃ ′s restriction to the rest of the
graph is positive, as f̃ has only two nodal domains and therefore.
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We turn to deal with the loops case. Just as above, we start by getting
an upper bound on the spectral gap. Choose the following test function on Γ

g|e1∪e2
= cos

(πx

�

)
g|Γ\(e1∪e2)

= 0, (7.7)

where e1∪e2 is considered as single cycle (self-intersecting itself at its middle).
In this case, R (g) =

(
π
�

)2 so that k1 (Γ ) ≤ π
� .

The proof now splits into three cases exactly as it was for the dangling edges:
1. If k1 (Γ ) = π

� , we may construct a test function f̃ on Γ̃ , such that R(f̃) ≤
R(f) and with equality only if l1 = l2.

2. If k1 (Γ ) < π
� and f (v) = 0, we conclude that f identically vanishes on

the edges e1, e2 and we may construct a test function f̃ on Γ̃ , such that
R(f̃) = R(f).

3. If k1 (Γ ) < π
� and f (v) �= 0, we conclude that both f |e1

and f |e2
are

symmetric functions and write

f |ei
= Ai cos (k1 (Γ ) · x) , (7.8)

for x ∈ (− �
2 , �

2

)
and Ai ∈ R. Construct a test function f̃ on Γ̃ by setting

f̃
∣∣∣
Γ̃\(ẽ1∪ẽ2)

= f |Γ\(e1∪e2)
, (7.9)

and

f̃
∣∣∣
ei

(x) = Ai cos
(

k1 (Γ )
∣∣∣∣x − li − �

2

∣∣∣∣

)
for x ∈

(
− li

2
,

li
2

)
. (7.10)

This last relation pictorially means that if ẽ1 is the shorter edge, f̃
∣∣
ẽ1

is a symmetric function which equals f |e1
up to a piece of length � − l1

around the middle of the edge e1 which is glued to the middle of the edge
e2. Overall, f̃ has zero mean and R(f̃) = R(f), as required.

Just as above, assumptions (1), (2) of the proposition together with assuming
l1 �= l2 and k1(Γ̃ ) = k1(Γ ), enable to use Lemmata 5.3 and 5.5 together with
Courant’s bound to arrive at a contradiction. �

An immediate generalization of this proposition is the following.

Corollary 7.2. Let G be a graph with E ≥ 3 edges. Let n ≥ 2 be an integer. Let v
be a vertex of G and e1, . . . , en be either n dangling edges or n loops connected
to v. Denote by l1, . . . , ln the lengths of those edges and by ln+1, . . . , lE the
lengths of all other edges. Defining

� :=
1
n

n∑

i=1

li, (7.11)

and denoting

Γ̃ := Γ (G; (l1, . . . , ln, ln+1, . . . , lE)) , Γ := Γ (G; (�, . . . , �, ln+1, . . . , lE)) ,

we have
k1(Γ̃ ) ≤ k1(Γ ). (7.12)
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Moreover, if either k1(Γ ) = π
2� in the dangling edges case (respectively, k1(Γ ) =

π
� in the loops case) or alternatively both the following conditions are satisfied

1. Γ is a supremizer of some graph;
2. k1(Γ̃ ) is a simple eigenvalue,

then equality above holds if and only if lj = �, for all 1 ≤ j ≤ n.

Proof. Denote by 	L the vector of lengths (l1, . . . , ln), and by k1(l1, . . . , ln) the
corresponding spectral gap, keeping all the other E − n edge lengths fixed.
Assume without loss of generality that l1 ≥ . . . ≥ ln. If l1 > ln, we replace
these two lengths by 1

2 (l1 + ln) and get by Proposition 7.1 that

k1(l1, . . . , ln) ≤ k1

(
1
2
(l1 + ln), l2, . . . , ln−1,

1
2
(l1 + ln)

)
. (7.13)

Repeating this process infinitely many times, we get a sequence of vectors
{

	L(m)
}∞

m=1
:=
{

(l(m)
1 , . . . , l(m)

n )
}∞

m=1
(7.14)

such that
• l

(m)
1 ≥ . . . ≥ l

(m)
n (up to reordering the lengths),

• 1
n

∑n
i=1 l

(m)
i = �,

• l
(m)
1 − l

(m)
n → 0 as m → ∞,

• the sequence
{

k1(�
(m)
1 , . . . , �

(m)
n )
}

∞
m=1 is non-decreasing.

From the first three claims we deduce that, l
(m)
j → � as m → ∞, for any

1 ≤ j ≤ n. Therefore, the continuity of eigenvalues with respect to edge
lengths (see “Appendix A”) gives

k1(l
(m)
1 , . . . , l(m)

n ) → k1(�, . . . , �) as m → ∞. (7.15)

As the sequence
{

k1(�
(m)
1 , . . . , �

(m)
n )
}

∞
m=1 is non-decreasing it follows that

k1(l1, . . . , ln) ≤ k1(�, . . . , �), (7.16)

as desired.
We now turn to the strict inequality conditions. In the dangling edge case,

if the spectral gap satisfies k1(�, . . . , �) = π
2� , then particular eigenfunctions are

given by that of the equilateral star with n edges and total length n�. Among
them, we choose one supported only on two edges and repeat the argument
given in Proposition 7.1 to deduce the strict inequality if li �= lj for some i �= j.
We argue similarly if k1(�, . . . , �) = π

� in the dangling loops case. Alternatively,
we may assume by contradiction that there exist i �= j such that li �= lj and
k1(Γ̃ ) = k1 (Γ ). This together with assumptions (1), (2) enables to proceed
exactly as in the proof of Proposition 7.1 in order to get a contradiction. �

8. Applications of Graph Gluing and Symmetrization

This section applies the techniques of graph gluing and edge symmetrization
developed in the previous two sections in order to prove the next few corollaries.
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Proof of Corollary 2.7. This proof is a direct application of Theorem 2.6 once
we observe the following

1. The glued vertices, v1, v2 become the central vertices of the supremizing
stowers.

2. Every equilateral stower obeys the Dirichlet criterion with respect to
its internal vertex, assuming the numbers of its petals and leaves obey
Ep + El ≥ 2.

3. Denoting the supremizing stowers by Γ1, Γ2, their spectral gaps are

k1 (Γi) =
π

2

(
2E(i)

p + E
(i)
l

)
. (8.1)

4. Gluing Γ1, Γ2 with the length parameter

L =
k1 (Γ1)

k1 (Γ1) + k1 (Γ2)
=

2E
(1)
p + E

(1)
l

2E
(1)
p + E

(1)
l + 2E

(2)
p + E

(2)
l

(8.2)

results in an equilateral stower whose all petals are of length
2

2E
(1)
p +E

(1)
l +2E

(2)
p +E

(2)
l

and all dangling edges are of length
1

2E
(1)
p +E

(1)
l +2E

(2)
p +E

(2)
l

. �

Remark. We note that an equilateral stower obeys the strong Dirichlet crite-
rion. Therefore, by Theorem 2.6, if we assume for G1,G2 that all their supremiz-
ers other than the stower violate the Dirichlet criterion, we also get uniqueness
in Corollary 2.7.

Proof of Corollary 2.8. We show that equilateral stars and flowers (with E ≥
2) satisfy condition (b) of Theorem 2.6, when considered as supremizers of
the corresponding stowers. This allows to employ Theorem 2.6 in order to
glue a star with a flower and to show the statement of the Corollary for all
stowers with El ≥ 2 and Ep ≥ 2 (note that when gluing an equilateral flower
and equilateral star according to condition (1) of Theorem 2.6, the stower
obtained is equilateral). The rest of the stowers will be dealt with, at the end
of the proof.

Start by noting that Theorem 2.2 implies that the statement of the corol-
lary holds for all star graphs, which are stowers with Ep = 0, El ≥ 2. The
spectral gap of equilateral star is Eπ

2 and it remains the same after imposing
Dirichlet condition at their central vertex, so that it obeys the Dirichlet crite-
rion. Furthermore, the multiplicity of its spectral gap is E − 1 and it increases
to E after imposing Dirichlet condition, so that it obeys the strong Dirichlet
criterion. As equilateral stars are unique maximizers of stars, we conclude that
they obey condition (b) of Theorem 2.6.

Among the flower graphs, we start with the two-petal and three-petal
flowers. An easy calculation reveals that the spectral gap of a flower with two
petals equals 2π. Note that this spectral gap is independent of the edge lengths,
so that this give a continuous family of (trivial) maximizers. In particular,
the equilateral flower with two petals is a non-unique maximizer. Yet, this
equilateral two-petal flower is the only maximizer in this family which obeys
the Dirichlet criterion and it further obeys the strong Dirichlet criterion, as
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we show next. Consider a two-petal flower whose edge lengths are l1 �= l2
and assume l1 > l2. Imposing Dirichlet condition at the vertex lowers the
spectral gap of the graph from 2π to π/l1, so that it does not obey the Dirichlet
criterion. The equilateral flower, on the other hand, maintains the spectral gap
of 2π even after imposing a Dirichlet condition at its vertex. In addition, its
spectral gap with Neumann condition at the vertex is a simple eigenvalue, but
once imposing Dirichlet at the vertex, the spectral gap becomes of multiplicity
two. By this we have shown that the two-petal flower satisfies condition (b) of
Theorem 2.6.

Let Γ be a flower with three petals and denote its vertex by v. Let Γ̃ be
the two-petal subgraph which consists of the largest two petals of Γ . Denote
the total length of Γ̃ by l̃ (so that l̃ ≥ 2

3 ). Let f̃ be the first non-constant
eigenfunction on Γ̃ . Construct the following test function on Γ

f |Γ̃ = f̃ , f |Γ\Γ̃ = f̃ (v) . (8.3)

By Lemma C.1

R (f − 〈f〉) =

(
2π
l̃

)2
l̃
2

l̃
2 + |f̃ (v) |2 l̃

(
1 − l̃

) ≤
(

2π

l̃

)2

≤ (3π)2 , (8.4)

where equality holds if and only if l̃ = 2/3 and f̃ (v) = 0. Conversely, it is easy
to show that the spectral gap of the equilateral three-petal flower equals 3π.
Hence, the equilateral three-petal graph is a unique maximizer. In addition,
imposing a Dirichlet condition at the vertex maintains a spectral gap of 3π, so
that the three-petal equilateral flower obeys the Dirichlet criterion. It further
obeys the strong Dirichlet criterion as the multiplicity of its spectral gap is
2 and it increases to 3 after imposing Dirichlet condition at central vertex.
Therefore, a three-petal flower satisfies condition (b) of Theorem 2.6.

From the above, we may glue two flowers of those types (each either with
two petals or three petals) and get a four-, five- or six-petal flower. Applying
Theorem 2.6 shows that the equilateral version of each of these graphs serves
as the unique maximizer. Furthermore, it is easy to show that any equilateral
flower obeys the strong Dirichlet criterion (as shown for the two-petal and
three-petal flower above). This together with the uniqueness of four-, five- and
six-petal flowers implies that they obey condition (b) of Theorem 2.6. Repeat-
ing this gluing process as many times as needed shows that any equilateral
flower is both a unique maximizer (except for E = 2 ) and obeys condition (b)
of Theorem 2.6 (which holds also for E = 2).

By this, we have both proved the corollary for all stars and flowers with
E ≥ 2 and also conclude the validity of the corollary for all stowers with El ≥ 2
and Ep ≥ 2, as claimed in the beginning of this proof. It is left to treat stowers
with either Ep = 1 or El = 1. In order to do that, we state in Lemmata
8.1, 8.2, 8.3, 8.4 (which follow this proof) that the current corollary is valid
for the following small stowers (Ep, El) ∈ {(1, 2) , (1, 3) , (2, 1) , (3, 1)} and that
in addition, the equilateral versions of those stowers all obey condition (b)
of Theorem 2.6. Hence, each stower with either Ep = 1 or El = 1 may be
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obtained by gluing one of those small stowers with an appropriate flower or
star and applying Theorem 2.6 for such a gluing finishes the proof. �

Remark. We note that the proof above might have been simplified if we were
after a weaker result. Namely, using the more elementary methods of Rayleigh
quotient calculations one can prove the statement in the Corollary for all
stowers except those with Ep = 1 or El = 1 and without the uniqueness
part of the result.

Proof of Corollary 2.9. Let G be a graph with E edges out of which El are
leaves and E − El are internal edges. Let l ∈ LG and denote Γ := Γ (G; l).
Identifying all internal (i.e., non-leaf) vertices of Γ we get a stower graph with
El leaves and E − El petals which we denote by Γ̃ and by Lemma B.3 we get

k1(Γ ) ≤ k1(Γ̃ ). (8.5)

From Corollary 2.8 we have

k1(Γ̃ ) ≤ π

(
(E − El) +

El

2

)
= π

(
E − El

2

)
(8.6)

if E ≥ 2 and (E,El) �= (2, 1) which are exactly the conditions in this corollary
and this proves its first part.

Assuming equality in (2.2) we have equality in (8.6). If we further assume
(E,El) /∈ {(2, 0) , (3, 2)}, we satisfy the uniqueness conditions in Corollary 2.8.
Namely, we conclude that equality in (8.6) is possible only if Γ̃ is equilateral
in the stower sense: leaves are of half length than petals. We conclude that Γ
is also equilateral in the following sense: all of its leaves are of length 1

2E−El

each and all the rest (inner) edges are of length 2
2E−El

each. We carry on
by conditioning on the number of internal (i.e., non-leaf) vertices of Γ and
keeping in mind that k1(Γ ) = π

(
E − El

2

)
.

If Γ has a single internal vertex then it is a stower graph and we are done.
Assume that Γ has at least two internal vertices. Choose two such internal
vertices. In the following we described a recursive process which marks some set
of edges of the graphs, to be denoted by E0. Choose a path on Γ connecting v+
with v− without going through graph leaves. This is possible as Γ is connected.
Choose an arbitrary edge, e, on this path and add it to E0. Next, if Γ\e
is connected repeat the step above on Γ\e. Namely, choose a path on Γ\e
connecting v+ and v− not going through graph leaves (with the exception
of v+, v− which might have now turned themselves into leaves). Repeat this
process until Γ\E0 is a disconnected graph. We may then write Γ = Γ+ ∪Γ− ∪
E0, where Γ+ is a connected subgraph of Γ containing v+, and similarly for
Γ− and v−. Set the following test function on Γ :

f (x) =

⎧
⎪⎨

⎪⎩

1 x ∈ Γ+

−1 x ∈ Γ−
cos (k1(Γ ) · x) x ∈ e s.t. e ∈ E0.

(8.7)

By construction, this test function is continuous. It is easy to verify by (C.2)
(alternatively, by an easy extension of Lemma C.1) that R(f) < k1(Γ ) if
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Γ+ ∪ Γ− �= ∅. As R(f) < k1(Γ ) contradicts the equality in (2.2) we conclude
that Γ+ ∪ Γ− �= ∅, which implies that Γ = E0 and hence Γ is a mandarin
graph. It is actually an equilateral mandarin, as we have shown above. �

The lemmata needed in the proof of Corollary 2.8 are now stated. Their
proofs involve some technical computations and appear in “Appendix D.”

Lemma 8.1. Let G be a stower with Ep = 1 petal and El = 2 leaves. Then G
has a continuous family of maximizers whose spectral gap is 2π. Those are all
the stowers with both leaf lengths equal and not greater than 1/4. Furthermore,
the equilateral stower obeys condition (b) of Theorem 2.6.

Lemma 8.2. Let G be a stower graph with Ep = 1 petal and El = 3 leaves.
Then the equilateral stower graph is the unique maximizer of G, and the cor-
responding spectral gap equals 5π

2 . Furthermore, the equilateral stower obeys
condition (b) of Theorem 2.6.

Lemma 8.3. Let G be a stower graph with El = 1 and Ep = 2. Then G has a
unique maximizer, which is the equilateral stower graph with spectral gap equal
to 5π

2 . Furthermore, the equilateral stower obeys condition (b) of Theorem 2.6.

Lemma 8.4. Let G be a stower graph with El = 1 and Ep = 3. Then G has a
unique maximizer, which is the equilateral stower graph with spectral gap equal
to 7π

2 . Furthermore, the equilateral stower obeys condition (b) of Theorem 2.6.

The stower with Ep = El = 1 was not mentioned in the theorem above,
as it is not maximized by the equilateral stower. Its unique supremizer is the
single-loop graph (Ep = 1, El = 0), as we state in the following in order to
complete the picture.

Lemma 8.5. Let G be a stower graph with one leaf and one petal. Then G has
a unique maximizer, which is the unit circle, with spectral gap equal to 2π.

9. Summary

This work investigates the problem of optimizing a graph’s spectral gap in
terms of its edge lengths. We start by providing a natural formulation of this
problem (Definitions 1.1,1.2 and adjacent discussion). Our formalism allows
both to state the optimization questions in utmost generality (for all graph
topologies and all edge length values) and, moreover, to determine when such
a question is fully answered. For example, this is the case with the infimiza-
tion problem for which both the optimal bounds and all the possible infimizing
topologies are found, with no more room for improvement (see the discussion
which follows Theorem 2.1). Contrary to the infimization problem, we point
out that the supremization problem is not solved in full generality. We show
its complete solution for tree graphs and for a family of graphs whose vertex
connectivity equals one. In addition, a global upper bound is provided (Corol-
lary 2.9), improving the upper bound known so far, by taking into account the
number of graph leaves. Furthermore, we provide a set of techniques to tackle
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the supremization problem. Among those are the gluing graphs approach, the
symmetrization of dangling edges and loops and the characterization of local
maximizers. Those tools are applicable in the current work and might assist
in further exploration of the problem. The techniques and the results of the
current work lead to forming a few conjectures regarding the maximization
problem.

First, the supremizer graph families known so far are stower graphs
(including stars and flowers as particular cases) and mandarin graphs. The
spectral gap of these graphs is highly degenerate due to their large symmetry
groups. The symmetry groups corresponding to the stower and the mandarin
are correspondingly SEp

× SEl
and SE , where E is the number of mandarin

edges and Ep, El numbers of stower petals and leaves. The corresponding spec-
tral gap multiplicity of both a stower and a mandarin is E −1, which is indeed
high. In the other extreme of spectral gaps which are simple eigenvalues, we
show that those are unlikely to be supremizers. In Theorem 2.4 we prove that
a supremizer whose spectral gap is simple can never have a spectral gap higher
than a mandarin and in some cases than a flower (Corollary 5.6). In Proposi-
tion 6.5 we prove that if a supremizer is obtained by the gluing method then
its spectral gap is necessarily a multiple eigenvalue. As high multiplicities of
eigenvalues is related to large-order symmetry groups (or even to large dimen-
sion of their representations), the discussion above leads to the following two
conjectures:

1. A supremizer of a graph is obtained by choosing edge lengths which
maximize the order of the symmetry group of the resulting graph.7

2. A supremizer of a graph is obtained by choosing edge lengths which
maximize the multiplicity of the spectral gap.

We note that the conjectures above are not necessarily correlated. We demon-
strate this by mandarin chains, which are M copies of n-mandarin graphs glued
serially, as presented in Proposition 5.8. The symmetry group of those graphs is
(Sn)M whose order is (n!)M . Yet, a mandarin chain with n ≥ 2, M ≥ 2 always
has a simple spectral gap, as proved in Proposition 5.8. Hence, the large order
of the symmetry group does not guarantee large multiplicity of the spectral
gap. Seeking for supremizers for those graphs, we observe that turning such
a graph into an equilateral flower with m(n − 1) petals, increases its spectral
gap from nπ to M(n − 1)π. The symmetry group of this flower is SM(n−1),
which is of order (M(n − 1))!. For most values of n,M , the flower’s symmetry
group is of larger order than that of the mandarin chain, which is correlated
to its spectral gap being of higher multiplicity. However, for n = 3, M = 2,
the symmetry group of the flower is of order 24, while that of the mandarin
chain is of order 36. This flower possesses a higher spectral gap (3π) than
the mandarin chain (4π) despite its lower-order symmetry group. On the one
hand, this example serves in the favor of the second conjecture over the first
one. On the other hand, we still do not know what is the supremizer in this
example and feel that at this stage, both conjectures are equally appealing.

7 We thank Gregory Berkolaiko for raising this conjecture in a private communication.
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Finally, we state a more explicit conjecture: the supremizer of a certain
graph is either a stower graph (in its generalized sense) or a mandarin. These
are indeed the only supremizers this work revealed. Given a certain graph,
the maximal spectral gap among all stowers which may be obtained from that
graph equals π(β+ El

2 ), where β is the graph’s first Betti number and El is the
number of its dangling edges. The maximal spectral gap among all possible
mandarins has a less explicit expression, and we describe it next. Let G be a
graph and let G1,G2 be two connected subgraphs, sharing neither an edge nor
a vertex and such that each vertex of G belongs to G1 ∪ G2. Let E(G1,G2) be
the number of edges connecting a vertex of G1 to a vertex of G2. Contracting
all edges of G1and G2 we get a mandarin of E(G1,G2) edges. The maximal
spectral gap among all mandarins is therefore given by

π · max
G1,G2

E(G1,G2). (9.1)

We note that the expression above is curiously related to the Cheeger constant,
but do not further elaborate on that. For the allowed (G1,G2) partitions among
which we maximize we may also write E(G1,G2) = β +1− (β1 + β2), where βi

is the first Betti number of Gi. This expression allows for a comparison with
the optimal stower spectral gap, π(β + El

2 ). For example, it is seen that for a
graph with at most one dangling edge, the mandarin achieves a strictly higher
spectral gap than the stower (or flower in this case) only if there is a partition
where both G1,G2 are tree graphs. On the other hand, if the graph has at least
three dangling edges, any mandarin has a lower spectral gap than the optimal
stower. Does the conjecture above hold or are there supremizers other than
stowers and mandarins? This question remains open.
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Appendix A: Eigenvalue Continuity with Respect to Edge
Lengths

In this section we sketch a proof for the continuity of all the graph’s eigenvalues
(not only the spectral gap) with respect to the graph’s edge lengths. The con-
tinuity (and even differentiability) of eigenvalues with respect to edge lengths
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is proven in [5,11]. Yet, those proofs deal only with positive edge lengths,8

whereas in the current work we are interested in particular in l ∈ ∂LG , when
we distinguish between supremizers and maximizers (see Definition 1.2). We
claim that eigenvalue continuity indeed carries over to the zero edge length
case. We do not prove this in full rigor, but rather point out the general lines
for forming a proof for this statement. We start by introducing the scattering
approach for quantum graphs (see also [5,17]).

A.1. The Scattering Approach to the Graph Spectrum

Let Γ be a Neumann graph. The eigenvalue equation,

− d2f

dx2
= k2f(x) , (A.1)

has a solution on each directed edge e, written as (assuming k �= 0)

fe(xe) = ain
e e−ikxe + aout

e eikxe . (A.2)

We may consider the edge ê, which is the same as e, but with a reverse direction
(resulting in different parametrization of the coordinate, xê = le−xe) and write
the same function as above in the following form

fê(xê) = ain
ê e−ikxê + aout

ê eikxê . (A.3)

Comparing both expressions above we arrive at

ain
e = eikleaout

ê and ain
ê = eikleaout

e . (A.4)

Fixing a vertex v and using the Neumann vertex conditions to relate solutions
fe for all edges whose origin is v one arrives at

	a out
v = σ(v)	a in

v , (A.5)

where 	a out
v and 	a in

v are vectors of the outgoing and incoming coefficients
(ain

e , aout
e ) at v and σ(v) is a dv × dv unitary matrix, dv being the degree

of the vertex v. The matrix σ(v) is called the vertex-scattering matrix and its
entries were first calculated in [22]:

σ
(v)
e,e′ =

2
dv

− δe,e′ . (A.6)

We collect all coefficients ain
e from the whole graph into a vector 	a of size 2E

such that the first E entries correspond to edges which are the inverses of the
last E entries. We can then define the matrix J acting on 	a by requiring that
it exchanges ain

e and ain
ê for all e such that,

J =
(

0 I
I 0

)
. (A.7)

Then, collecting equations (A.5) for all vertices into one system and using
(A.4) we have,

Je−ikL	a = Σ	a , (A.8)

8 It is possible that the proof in Sect. 4 of [11], which is based on test functions, may be
adapted for the zero edge length case. Nevertheless, we provide here a different argument
based on the scattering approach.
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where L = diag{l1, . . . , lE , l1, . . . , lE} is a diagonal matrix of edge lengths and
Σ is block-diagonalizable with individual σ(v) as blocks. This can be rewritten
as (note that J−1 = J),

	a = eikLJΣ	a , (A.9)
and hence all the nonzero eigenvalues of the graph are the solutions of

det (I − U (k)) = 0 , (A.10)

where U(k) := eikLJΣ.

A.2. Continuity of Eigenvalues via Scattering Approach

The scattering approach allows for a reduction in the dimensions of the matrix
U(k) by reducing a subgraph into a single composite vertex with some (non-
trivial) vertex conditions (see Sect. 3.3 in [17]). We pick a certain edge, e, to
be the mentioned subgraph and turn it into a single (composite) vertex by
shrinking it to zero length.

The length of this edge, le, will show up only in the scattering matrix of
this composite vertex and will allow to examine how the eigenvalues depend
on this length. We carry on with an explicit computation. Let e be an edge
connecting two vertices, v1, v2, of degrees d1, d2. Hence, the new composite
vertex, v, would be of degree d1 + d2 − 2. We calculate a reflection coefficient
of this vertex (i.e., an on-diagonal entry of its vertex-scattering matrix). The
calculation may be done by summing infinitely many trajectories on the orig-
inal graph all starting by entering v1 from some edge e1 (different than e)
and eventually leaving v1 along the same edge, e1 (see section 3.3 in [17], for
further details).

σ(v)
e1,e1

=
2 − d1

d1
+

2
d1

· eik2le · 2 − d2
d2

·
∞∑

n=0

(
eik2le

2 − d2
d2

2 − d1
d1

)n

· 2
d1

= −1 +
2
d1

(
1 +

4 − 2d2
e−ik2led1d2 − (2 − d1) (2 − d2)

)

−→
le→0

−1 +
2

d1 + d2 − 2
. (A.11)

where the continuity of the expression above in le is apparent and allows to
take the limit le → 0. We calculate just another entry of the composite vertex-
scattering matrix—the entry which corresponds to entering at vertex v1 and
leaving at v2. The calculation is similar to the one above and gives

σ(v)
e1,e2

=
2
d1

· eikle ·
∞∑

n=0

(
eik2le

2 − d2
d2

2 − d1
d1

)n

· 2
d2

=
4

e−ikled1d2 − eikle (2 − d1) (2 − d2)
−→
le→0

2
d1 + d2 − 2

. (A.12)

There is just another computation which is similar in nature and will not be
repeated here. All the rest of the composite vertex-scattering matrix entries
may be obtained by symmetry. We hence get that the resulting scattering
matrix when taking the limit le → 0 is the same as the one obtained by
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considering Neumann conditions at the composite vertex. As the scattering
matrix continuously determines the graph’s eigenvalues (see (A.10)) we get
the desired continuity result.

Appendix B: δ-Type Conditions and Interlacing Theorems

We present here the so-called δ-type conditions, of which both Neumann and
Dirichlet conditions form special cases.

Definition B.1. We say that f satisfies the δ-type condition with the coefficient
α ∈ R at vertex v if

1. f is continuous at v:
fe1(v) = fe2(v), (B.1)

for all edges e1, e2 ∈ Ev, where Ev is the set of edges incident to v.
2. The derivatives of f at v satisfy

∑

e∈Ev

df

dxe
(v) = αf(v). (B.2)

We consider the following transformations

α �→ θ = arg
(

i + α

i + α

)
, (B.3)

and

θ �→ α = i
1 − exp (iθ)
1 + exp (iθ)

= tan
(

θ

2

)
. (B.4)

The transformations (B.3), (B.4) are the inverses one of the other and
allow to write the condition (B.2) in the form (6.1), which is the one used
throughout the paper. We denote by kn(Γ ; θ) the nth k-eigenvalue of such a
graph and possibly omit either Γ or θ from this notation whenever it is clear
what they are from the context. Similarly, the spectrum is denoted σ(Γ ; θ)
(see (6.2)).

We quote below some useful results from [5] as lemmata.
The following lemma is a slight rephrasing of Theorem 3.1.8 from [5].

Lemma B.2. Let Γ be a compact (not necessarily connected) graph. Let v be a
vertex of Γ endowed with the δ-type condition and arbitrary self-adjoint vertex
conditions at all other vertices of Γ . If −π < θ < θ′ ≤ π, then

kn (θ) ≤ kn (θ′) ≤ kn+1 (θ) . (B.5)

If the eigenvalue kn (θ′) is simple and its eigenfunction f is such that
either f (v) or

∑
f ′ (v) is nonzero, then the inequalities above are strict,

kn (θ) < kn (θ′) < kn+1 (θ) . (B.6)

The following lemma is a slight rephrasing of Theorem 3.1.10 from [5].
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Lemma B.3. Let Γ be a compact (not necessarily connected) graph. Let v1 and
v2 be vertices of Γ endowed with the δ-type conditions with corresponding coef-
ficients α1, α2 and arbitrary self-adjoint vertex conditions at all other vertices
of Γ . Let Γ ′ be the graph obtained from Γ by gluing the vertices v1 and v2
together into a single vertex v, so that Ev = Ev1 ∪ Ev2 and endowed with δ-type
condition at v, with the coefficient α1 + α2.

Then the eigenvalues of the two graphs satisfy the inequalities

kn (Γ ) ≤ kn (Γ ′) ≤ kn+1 (Γ ) . (B.7)

We apply the lemma above in the case α1 = −α2, for which Γ ′ satisfies
Neumann conditions at v.

The following lemma is a rephrasing of part of lemma 3.1.14 from [5] and
the discussion which precedes it.

Lemma B.4. kn (θ) is a continuous non-decreasing function of θ ∈ (−π, π] and
obeys the following continuity relation

kn (π) = lim
θ→−π+

kn+1 (θ) . (B.8)

The following lemma contains a statement which is proved in the course
of the proof of Lemma 3.1.15 in [5]. We state here the lemma we need and its
proof for completeness.

Lemma B.5. Let Γ be a graph and let v be a vertex of Γ . Let θ1 �= θ2 and let
k ∈ σ (Γ ; θ1)∩σ (Γ ; θ2). Then there exists an eigenfunction corresponding to
k which vanishes at v and its sum of derivatives vanish at v. Therefore, this
eigenfunction satisfies the δ-type condition at v for every θ ∈ (−π, π]. Hence,
k ∈ Δ(Γ ).

Proof. Let f1, f2 the eigenfunctions corresponding to k ∈ σ (Γ ; θ1)∩σ (Γ ; θ2),
with coefficients θ1, θ2, respectively. Assume first that either k ∈ σ (Γ ; θ1) or
k ∈ σ (Γ ; θ2) is a multiple eigenvalue. Assume without loss of generality that
it is k ∈ σ (Γ ; θ1). Further assume that θ1 �= π. As the eigenvalue is multiple,
we can choose a corresponding eigenfunction which vanishes at v and denote
it by f1. We deduce from the δ-type condition that the sum of derivatives of
f1 at v vanishes as well and conclude that f1 satisfies δ-type condition at v
for any value of θ. If we assume θ1 = π, then we may use the multiplicity
of the eigenvalue to choose an eigenfunction f1 whose sum of derivatives at v
vanishes and once again conclude that f1 satisfies δ-type condition at v for any
value of θ. We have shown that the lemma holds if one of the eigenvalues is
multiple. Otherwise, assume that k ∈ σ (Γ ; θ1) and k ∈ σ (Γ ; θ2) are simple
eigenvalues. Assume without loss of generality that θ1 �= π. Let f1 be the
eigenfunction corresponding to k and satisfying the δ-type condition with θ1.
If f1 (v) �= 0, then the strict eigenvalue interlacing (Lemma B.2) contradicts
k ∈ σ (Γ ; θ1) ∩ σ (Γ ; θ2). Therefore, f1 (v) = 0 and the sum of derivatives of
f1 vanishes at v, due to the δ-type condition. �
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Appendix C: A Basic Rayleigh Quotient Computation

In the current section, we develop a basic but useful bound on the Rayleigh
quotient, which is used throughout the paper. We define the mean of a function
on a graph as

〈f〉 :=
∫

Γ

f dx, (C.1)

and observe that

R (f − 〈f〉) =

∫
Γ

|f ′|2 dx
∫

Γ
f2 dx − 〈f〉2 , (C.2)

which is useful as the test functions for which the Rayleigh quotient is com-
puted ought to be of zero mean.

Lemma C.1. Let Γ be a graph of length 1. Assume that Γ = Γ1∪Γ2 where Γ1,2

are subgraphs of Γ such that Γ1 ∩ Γ2 is a single vertex, denoted by v. Choose
an eigenfunction f on Γ1 corresponding to k1(Γ1) and extend it to Γ2 by the
constant f(v). The resulting test function on Γ , denoted f̃ , satisfies

R(f̃ −
〈
f̃
〉
) =

k1(Γ1)2
(∫

Γ1
f2dx

)

(∫
Γ1

f2dx
)

+ |f(v)|2l2(1 − l2)
, (C.3)

where l2 denotes the total length of Γ2.

Proof. We compute the mean and the L2 norm of f̃ :

〈f̃〉 =
∫

Γ2

f(v)dx = f(v)l2 (C.4)

and ∫

Γ

|f̃ |2dx =
(∫

Γ1

f2dx

)
+
∫

Γ2

|f(v)|2dx =
(∫

Γ1

f2dx

)
+ |f(v)|2l2.

(C.5)

As f̃ is constant on Γ2 and f is an eigenfunction on Γ1, we have
∫

Γ

|f̃ ′(x)|2dx =
∫

Γ1

|f ′(x)|2dx = k1(Γ1)2
(∫

Γ1

f2dx

)
. (C.6)

Plugging the above in (C.2) gives the desired result. �

An immediate corollary of Lemma C.1 is the following.

Corollary C.2. With the notations above we have k1(Γ ) ≤ k1(Γ1). This
inequality is strict if there exists an eigenfunction of k1(Γ1) not vanishing
at v.

In the decomposition discussed above, Γ = Γ1 ∪ Γ2, we call Γ1 the main
subgraph of Γ and Γ2 the attached subgraph. Note that when the main subgraph
is a single loop, we may rotate its eigenfunction so that it achieves its maximal
value at v. We exploit this in the sequel when applying Lemma C.1, since this
choice leads to a low value of the Rayleigh quotient.
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Appendix D: Proofs for Small Stowers (Lemmata 8.1–8.5)

In this more technical appendix, we extensively use Lemma C.1. Namely, we
consider the decomposition Γ = Γ1 ∪ Γ2 and refer to Γ1,2 as either the main
or the attached subgraph of Γ (see “Appendix C”).

Proof of Lemma 8.1. Let us denote by l1, l2 and lp the lengths of the two
leaves and the petal, respectively, and by v the vertex of degree three. Denote
by k1(l1, l2, lp) the spectral gap corresponding to these edge lengths. First, if
l1+l2 > 1

2 , we use the interval made of the two leaves as the main subgraph and
the petal as the attached subgraph. We thus get, in this case, the inequality
k1(l1, l2, lp) < 2π. Now, if l1 + l2 ≤ 1

2 and l1 = l2, explicit calculations show
that the spectral gap is equal to 2π. Applying the symmetrization principle on
the leaves (Proposition 7.1) shows that whenever l1 + l2 ≤ 1

2 and l1 �= l2, we
have k1(l1, l2, lp) ≤ 2π. We further wish to prove that this inequality is strict
and do so by checking the assumptions in Proposition 7.1. Assumption (1) is
valid as we have shown above that the stower with l1 = l2 ≤ 1

4 is a supremizer.
We now check assumption (2) that whenever 0 ≤ l1 < l2 and l1 + l2 ≤ 1

2
the corresponding spectral gap is simple. In turn, thanks to Proposition 7.1,
we will get the strict inequality k1(l1, l2, lp) < 2π for l1 �= l2 and l1 + l2 ≤ 1

2 .
Assume by contradiction that there exist 0 ≤ l1 < l2 with l1+ l2 ≤ 1

2 such that
the spectral gap k1(l1, l2, lp) is not simple. Thanks to the multiplicity, we may
choose an eigenfunction vanishing at v. Since l1 < 1

4 , such an eigenfunction has
to vanish on the whole edge e1 for otherwise, the spectral gap would satisfy
k1(l1, l2, lp) ≥ π

2l1
> 2π. Furthermore, the eigenfunction does not identically

vanish neither on e2 (again, this would contradict the bound on k1) nor on ep

(because of the Neumann condition at v). Thus, there exist two integers α, β

with α odd such that k1(l1, l2, lp) = απ
2l2

= βπ
lp

. From the bound on k1(l1, l2, lp)
and the conditions on the lengths, we get α = β = 1. But as k1(l1, l2, lp) = π

2l2
and l1 �= l2, all eigenfunctions should vanish at v. Using again multiplicity, we
may choose another eigenfunction which vanishes at v and at another point
on e2, call it w. But this contradicts the equality k1(l1, l2, lp) = π

2l2
, hence the

simplicity. We have therefore found a continuous family of maximizers - all
stowers with l1 = l2 ≤ 1

4 . It is easy to check that among all those, only the
equilateral stower satisfies the Dirichlet criterion. In addition, the multiplicity
of the spectral gap increases from two to three when imposing the Dirichlet
condition at the central vertex, which is exactly the strong Dirichlet criterion.
Hence, the equilateral stower satisfies condition (b) of Theorem 2.6. �

Proof of Lemma 8.2. Denote by Γ the metric graph corresponding to G, whose
length of the petal is lp and lengths of the leaves are l1, l2, l3 (so that lp + l1 +
l2 + l3 = 1). Assume, for instance, that l1 ≥ l2 ≥ l3 and denote � := l1+l2+l3

3 .
Using the three leaves a main subgraph and the petal as an attached subgraph,
we get the inequality

k1 (Γ ) ≤ π

2�
. (D.1)



Vol. 18 (2017) Quantum Graphs which Optimize the Spectral Gap 3319

On the other hand, using the petal and the longest two leaves as a main
subgraph and the shortest leaf as an attached subgraph, we use Lemma 8.1 to
get

k1 (Γ ) ≤ 2π

1 − l3
. (D.2)

Combining these two inequalities,

k1 (Γ ) ≤ min
(

π

2�
,

2π

1 − l3

)
≤ min

(
π

2�
,

2π

1 − �

)
. (D.3)

This immediately yields, for any choice of ll,

k1 (Γ ) ≤ 5π

2
, (D.4)

with equality possible only if � = 1
5 and l3 = �. These two conditions together

imply l1 = l2 = l3 = 1
5 and lp = 2

5 . Conversely, for this specific choice of
lengths, it is straightforward to point out the eigenfunction whose k-eigenvalue
equals 5π

2 . Furthermore, it is also easy to check that in this case, the spec-
tral gap indeed equals 5π

2 , with multiplicity three. Furthermore, imposing the
Dirichlet condition at the central vertex increases the multiplicity of the spec-
tral gap from three to four. Hence, the equilateral stower satisfies the strong
Dirichlet criterion and is a unique supremizer, which proves that the equilateral
stower satisfies condition (b) of Theorem 2.6. �

Proof of Lemma 8.3. Let us denote by l1, l2 and ll the lengths of the two petals
and the leaf, respectively. Denote � := l1+l2

2 . From Proposition 7.1, we have the
inequality k1(l1, l2, ll) ≤ k1(�, �, ll). We now focus on the case where l1 = l2 = �.
Let v be the central vertex of the stower. Using the two petals as a main
subgraph and the leaf as an attached subgraph, we get

k1(�, �, ll) ≤ 2π

1 − ll
. (D.5)

Thus, for 0 ≤ ll ≤ 1
5 , we have k1(�, �, ll) ≤ 5π

2 , with equality possible only
if ll = 1

5 . Now, using the leaf as a main subgraph and the two loops as an
attached subgraph, we get

k1(�, �, ll) ≤ π

2ll
√

3 − ll
. (D.6)

In particular, we have k1(�, �, ll) < 5π
2 for 0.26 ≤ ll ≤ 1. To cover the remaining

values of ll, we construct the following test function. Take the function x �→
cos(πx

ll
) on the leaf, so that it vanishes at v. On each petal, take the function

x �→ ll
1−ll

sin( 2πx
1−ll

). Denoting the resulting function by h, we have

R(h) = π2 (1 − ll)3 + 16l3l
4l2l (1 − ll)2

. (D.7)

In particular, we have k1(�, �, ll) ≤ 5π
2 for 1

5 ≤ ll ≤ 2
5 , with equality possible

only if ll = 1
5 . Gathering the information given by these three test functions, we
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conclude that for all ll values we have k1(�, �, ll) ≤ 5π
2 , with equality possible

only if ll = 1
5 .

Moreover, it is easy to show that k1( 25 , 2
5 , 1

5 ) = 5π
2 with multiplicity two.

This multiplicity increases to three when imposing the Dirichlet condition at
the central vertex, so that the equilateral stower satisfies the strong Dirich-
let criterion. It only remains to show that if ll = 1

5 and l1 �= l2, we have
k1(l1, l2, ll) < 5π

2 . This is obtained by applying Corollary C.2 to the two loops
as the main subgraph and the leaf as the attached subgraph. Thus, the equi-
lateral stower is a unique maximizer and satisfies in particular condition (b)
of Theorem 2.6. �

Proof of Lemma 8.4. Denote by l1, l2, l3 and ll the lengths of the three petals
and the leaf. Assume without loss of generality that l1 ≥ l2 ≥ l3 and define
� := l1+l2+l3

3 . Using the three petals as a main subgraph and the leaf as an
attached subgraph, we have k1(l1, l2, l3, lp) ≤ π

2� . Moreover, equality is possible
only if l1 = l2 = l3 = �. Using the longest two petals and the leaf as a main
subgraph and the shortest petal as an attached subgraph we further have

k1(l1, l2, l3, ll) ≤ 5π

2(1 − l3)
≤ 5π

2(1 − �)
. (D.8)

Combining the two bounds we got on k1, it follows that k1(l1, l2, l3, lp) ≤ 7π
2 ,

with an equality possible only if � = 2
7 and l3 = �. These two equalities

together entail that l1 = l2 = l3 = 2
7 and ll = 1

7 . With this choice of lengths,
it is easy to show that the spectral gap equals 7π

2 and of multiplicity three.
This multiplicity increases to four when imposing the Dirichlet condition at
the central vertex, which means that the equilateral stower satisfies the strong
Dirichlet criterion. As the equilateral stower is a unique supremizer, it also
satisfies condition (b) of Theorem 2.6. �

Proof of Lemma 8.5. Let � ∈ [0, 1] be the length of the leaf and 1−� the length
of the petal. Using the leaf as a main subgraph and the petal as an attached
subgraph, we get

k1(�, 1 − �) ≤ 2π

2�
√

3 − 2�
. (D.9)

In particular, we have k1(�, 1 − �) ≤ 2π as long as 2�
√

3 − 2� ≥ 1. This is
satisfied for � ≥ 1

3 , and in this case the inequality is strict. Next, we refer
to the scattering approach described in “Appendix A” and more precisely to
Eq. (A.10), whose zeros are the graph’s eigenvalues. This equation is equiva-
lent, in our case, to F (k, �) = 0, where

F (k, �) := 2 cos(k�) sin
(

k
1 − �

2

)
+ sin(k�) cos

(
k

1 − �

2

)
. (D.10)

Substituting k = 2π, and using basic trigonometric identities, we get

F (2π, �) = 2 cos(2π�) sin (π(1 − �)) + sin(2π�) cos (π(1 − �)) (D.11)

= 2 sin (π�)
(
cos(2π�) − cos2 (π�)

)
= 2 sin (π�)

(
cos2 (π�) − 1

)
. (D.12)
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We notice that F (k, �) > 0 for small positive values of k and that F (2π, �) < 0
for � ∈ (0, 1

3

]
. As F is continuous in k, we deduce that there exists some

k < 2π such that F (k, �) = 0. This means that for � ∈ (0, 1
3

]
, the spectral

gap is strictly below 2π. As we have seen above that this is also the case for
� > 1

3 and since the spectral gap is 2π for � = 0 (single-cycle graph), the result
follows. �
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