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Abstract We find the Courant-sharp Neumann eigenvalues of the Laplacian on some
2-rep-tile domains. In R

2, the domains we consider are the isosceles right triangle
and the rectangle with edge ratio

√
2 (also known as the A4 paper). In R

n , the
domains are boxes which generalize the mentioned planar rectangle. The symme-
tries of those domains reveal a special structure of their eigenfunctions, which we call
folding\unfolding. This structure affects the nodal set of the eigenfunctions, which,
in turn, allows to derive necessary conditions for Courant-sharpness. In addition, the
eigenvalues of these domains are arranged as a lattice which allows for a comparison
between the nodal count and the spectral position. The Courant-sharpness of most
eigenvalues is ruled out using those methods. In addition, this analysis allows to esti-
mate the nodal deficiency—the difference between the spectral position and the nodal
count.

Keywords Nodal domains · Courant nodal theorem · Nodal set

Mathematics Subject Classification 35B05 · 58C40 · 58J50

1 Introduction

It is nearly a century, since Courant proved his famous nodal result, stating that the nth
Laplacian eigenfunction cannot have more than n nodal domains [16]. Eigenfunctions
which achieve this upper bound are calledCourant-sharp and itwas Pleijelwho showed
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822 R. Band et al.

that there are only finitely many of them [37]. Muchmore recently, Polterovich proved
a similar result for domains with Neumann boundary conditions [38]. In his paper,
Pleijel also pointed out the Courant-sharp eigenfunctions of the square with Dirichlet
boundary conditions. What started in this early work of Pleijel is recently revived
as a systematic search of Courant-sharp eigenfunctions of various domains. Part of
this analysis owes to the broad interest in the general subject of nodal domains, but
this line of research in particular stems from the latest works on nodal partitions.
The search for Courant-sharpness was pioneered by Helffer, Hoffmann-Ostenhof, and
Terracini, who found that minimization of some energy functional over a set of domain
partitions is connected to nodal patterns of eigenfunctions [21]. In particular, they have
shown that if the minimum of this functional over domain partitions of k subdomains
is equal to the kth eigenvalue, then the kth eigenvalue is Courant-sharp. In addition,
the nodal partition of the corresponding Courant-sharp eigenfunction is a minimizing
partition.1 This led to a particularized search for Courant-sharp eigenfunctions of
various domains over just the last couple of years. Among the domains that were
treated are the square, the disk, the annulus, irrational rectangles, the torus, and some
triangles, where the analysis in those cases is specialized to the considered boundary
conditions (either Dirichlet or Neumann). Most of those investigations are done by
Helffer collaborating with Hoffmann-Ostenhof and Terracini [23–25], with Bérard
[7,8], and with Sundqvist [26,27]. Additional results for various tori are proved by
Léna [31,32]. For further details and references, we refer the reader to the recent
reviews by Bonnaillie-Noël and Helffer [14] and by Laugesen and Siudeja [30]. While
these reviews came out and afterwards, three additional results, which for the first
time concern high-dimensional domains, were proven. Helffer and Kiwan determined
the Courant-sharp eigenfunctions of the cube [22], Léna found them for the three-
dimensional square torus [31] and Helffer with Sundqvist solved the problem for
Euclidean balls in any dimension [26]. Finally, in another direction, Helffer and Bérard
and also van den Berg and Gittins provided bounds on the largest Courant-sharp
Dirichlet eigenvalue and on the total number of them for a general domain [6,9].

In the present work, we determine the Courant-sharp eigenfunctions of certain 2-
rep-tile domains with Neumann boundary conditions. A domain is said to be rep-tile
(replicating figure, a name coined by Golomb [19]) if it can be decomposed into k
isometric domains, each of which is similar to the original domain. According to
the number of its subdomains (k), the domain is called rep-k or a k-rep-tile. The
convex polygonal 2-rep-tiles in the plane are known to be the isosceles right triangle
and parallelograms with edge length ratio

√
2 [35,36]. In this paper, we find the

Courant-sharp eigenfunctions of such Neumann triangle (Theorem 1.1) and Neumann
rectangle, together with all the 2-rep-tile high-dimensional boxes, which generalize
this rectangle (Theorem 1.2). In addition to being 2-rep-tiles, they all have the special
property that the cut which separates them into the mentioned two subdomains serves

1 It is worthwhile to mention that a similar variational approach was recently developed by Berkolaiko,
Kuchment, and Smilansky. Their results also characterize the nodal sets of non-Courant-sharp eigenfunc-
tions [11].
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Courant-sharp eigenvalues of Neumann 2-rep-tiles 823

also as a symmetry axis2 (or hyperplane for the boxes). Thus, for an eigenfunction
which is even with respect to the symmetry axis, its restriction to the subdomain, when
rescaled, yields again an eigenfunction of the same eigenvalue problem. This allows
us to identify a special structure, ordering all of the eigenfunctions, which we call the
folding (unfolding) structure.Using this classification,we prove that all eigenfunctions
within a certain class vanish on the same subset.3 This property allows to rule out
Courant-sharpness of eigenfunctions without using the Faber–Krahn inequality [18,
29] or similar isoperimetric inequalities. Such isoperimetric inequalities form the first
step in ruling out Courant-sharpness in most of the works mentioned above (with the
exception of irrational rectangles, the disk, and Euclidean balls, where properties of
minimal partitions were used for that purpose). We present our result for the rectangle
in a general form (Theorem 1.2), valid for all n-dimensional (n ≥ 2) boxes which
are 2-rep-tiles and symmetric with respect to their hyperplane cut (see Fig. 8). It is
interesting to note that the case of the rectangle goes beyond the irrational rectangles
which were explored so far, as its square of edge ratio is rational (it equals two). Its
spectrum is, therefore, not simple as in the case of the irrational rectangles (treated in
[21]). Yet, the folding structure mentioned above allows to quickly rule out all of its
multiple eigenvalues, and the same goes for all high-dimensional boxes.

The outline of the paper is as follows. This section continues by providing useful
notations and exact statements of our main results. We then present the so-called fold-
ing structure for eigenfunctions of the isosceles right triangle in Sect. 2. In Sect. 3, we
complete the investigation of the triangle’s eigenfunctions and prove Theorem 1.1. In
Sect. 4, we present the folding structure for the box eigenfunctions and prove Theorem
1.2. In Appendix A, we present some identities concerning eigenvalue multiplicities
for the boxes, connecting those to the two-dimensional problem of the rectangle.
Finally, in Appendix B, we go beyond Courant-sharpness by describing some results
on the nodal deficiency, and in Appendix C, we point out how some of our methods
apply for the same domains, but with Dirichlet boundary conditions.

1.1 Notations and preliminaries

We consider the Laplacian eigenvalue problem on a bounded domain�withNeumann
boundary conditions

− �ϕ = λϕ,
∂ϕ

∂ �n
∣
∣
∣
∂�

= 0. (1.1)

We denote the corresponding spectrum by σ (�) and note that it can be described by
an increasing sequence of eigenvalues

0 = λ1 < λ2 ≤ λ3 ≤ · · · ↗ ∞.

2 Using involution symmetry for studying nodal counts may be found already in the early studies of
Leydolod [33,34].
3 This connects nicely to the recent works [1,15], though those do not concern Courant-sharpness.
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824 R. Band et al.

We define the following spectral counting functions:

N (λ) := ∣∣{ j
∣
∣ λ j ≤ λ

}∣
∣ , (1.2)

N (λ) := ∣∣{ j
∣
∣ λ j < λ

}∣
∣ , (1.3)

N (λ) :=
{

N (λ) λ /∈ σ (�)

N (λ) + 1 λ ∈ σ (�)
(1.4)

and denote the multiplicity of an eigenvalue by

d (λ) := N (λ) − N (λ) . (1.5)

For an eigenfunction ϕ on�, we denote by ν (ϕ) the number of connected components
of �\ϕ−1 (0), also known as nodal domains.

In terms of those definitions, the celebrated Courant bound reads ν (ϕ) ≤ N (λ),
where ϕ is an eigenfunction of the eigenvalue λ [16].
Let ϕ be an eigenfunction on � with eigenvalue λ. We say that ϕ is a Courant-sharp
eigenfunction if ν (ϕ) = N (λ). In this case, we also say that λ is a Courant-sharp
eigenvalue.

1.2 Main results

Theorem 1.1 The Courant-sharp eigenvalues of the Neumann Laplacian on the
isosceles right triangle are λ1, λ2, λ3, λ4, λ6.

Theorem 1.2 Let n ∈ N, n ≥ 2, and let B(n) be an n-dimensional box of measures

l1 × l2 × · · · × ln, where the ratios of edge lengths are given by
l j

l j+1
= 2

1
n (1 ≤

j ≤ n − 1). The Courant-sharp eigenvalues of the Neumann Laplacian on B(n)are
λ1, λ2, λ4, λ6 for n = 2 and λ1, λ2 for n ≥ 3.

2 Eigenfunction folding structure of the triangle

We consider the following scaling for the isosceles right triangle:

D = {(x, y) ∈ [0, π ] × [0, π ] ∣∣ y ≤ x}.

For geometric convenience to be exploited later, D denotes the closed domain and the
Laplacian is defined on its interior � = D◦.
Denote N0 := N ∪ {0} and define the set

Q := { (m, n) ∈ N0 × N0| m ≥ n} , (2.1)
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Courant-sharp eigenvalues of Neumann 2-rep-tiles 825

which we call the set of quantum numbers. A complete orthogonal basis of eigenfunc-
tions is given by

ϕm,n(x, y) = cos(mx) cos(ny) + cos(my) cos(nx) ; (m, n) ∈ Q, (2.2)

and the spectrum is given by

σ (D) =
{

λm,n = ‖(m, n)‖2 ∣∣ (m, n) ∈ Q
}

,

where

‖(m, n)‖2 = m2 + n2.

It is useful to define

Q(λ) :=
{

(m, n) ∈ Q
∣
∣ ‖(m, n)‖2 < λ

}

and observe that

N (λ) = |Q(λ)| .

The isosceles right triangle D is symmetric with respect to the median to the
hypotenuse

L = { (x, y) ∈ D| x + y = π}

and the symmetry is expressed by

R (x, y) = (π − y, π − x).

Wedescribe, in the following, a special feature of eigenfunctions on the triangle, which
is based on the symmetry above.

Lemma 2.1 Let λ ∈ σ (D), then its corresponding eigenfunctions are odd (even) with
respect to L if and only if λ is odd (even).

Proof Let λm,n ∈ σ (D), we get

ϕm,n (R (x, y)) = ϕm,n(π − y, π − x)

= cos(mπ − my) · cos(nπ − nx)

+ cos(mπ − mx) · cos (nπ − ny)

= (−1)m+n [cos(mx) cos(ny) + cos(my) cos(nx)]

= (−1)m+nϕm,n (x, y) ,
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826 R. Band et al.

so thatϕm,n is odd if and only ifm �= n (mod 2) and even if and only ifm = n (mod 2).
As λm,n = m2 + n2, we get that ϕm,n is odd if and only if λm,n is odd and even if and
only if λm,n is even. The lemma now follows, since the elements of

{

ϕm,n
}

m2+n2=λ
form a basis for the eigenspace. �

Lemma 2.1 motivates the following definition.

Definition 2.2 We define the subsets of Q that correspond to the odd and even eigen-
values

O := {(m, n) ∈ Q | m �= n (mod 2)}
E := {(m, n) ∈ Q | m = n (mod 2)} (2.3)

and we denote the corresponding sets of eigenvalues by

σodd (D) := {λm,n
∣
∣ (m, n) ∈ O

}

σeven (D) := {λm,n
∣
∣ (m, n) ∈ E

}

,

where in those sets, each eigenvalue appears as many times as its multiplicity.

Denote

1

2
D :=

{

(x, y) ∈ D
∣
∣ (x + y, x − y) ∈ [0, π ]2

}

,

and observe that L partitions D into the two isometric triangles 1
2D and

(

D\ 1
2D
)∪L,

each is a scaled version ofD by a factor
√
2. The following defines the transformations

which describe the similarity relation between D and 1
2D.

Definition 2.3 We define the coordinate folding transformation

F : 1
2D → D

F (x, y) := (x + y, x − y)
(2.4)

and the coordinate unfolding transformation as the inverse of F by

U : D → 1
2D

U (u, v) = ( u+v
2 , u−v

2

)

.
(2.5)

Remark The mappings F and U are, indeed, similarity transformations between D
and 1

2D as

F(x, y) = √
2

︸︷︷︸

scaling

(

cos π
4 − sin π

4
sin π

4 cos π
4

)(

0 1
1 0

)

︸ ︷︷ ︸

isometry

(

x
y

)
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Courant-sharp eigenvalues of Neumann 2-rep-tiles 827

and

U (x, y) = 1√
2

︸︷︷︸

scaling

(

cos π
4 − sin π

4
sin π

4 cos π
4

)(

0 1
1 0

)

︸ ︷︷ ︸

isometry

(

x
y

)

.

The next definition introduces the notion of folding and unfolding of an eigenfunction.

Definition 2.4 Let ϕ be an eigenfunction corresponding to λ ∈ σ (D),

(1) Assume λ ∈ σeven (D), we define the folded function, Fϕ : D → R, as

Fϕ (x, y) = ϕ ◦ U (x, y) , (x, y) ∈ D. (2.6)

(2) We define the unfolded function, Uϕ : D → R, as

Uϕ (x, y) =
{

ϕ ◦ F (x, y) (x, y) ∈ 1
2D

(ϕ ◦ F) ◦ R (x, y) (x, y) ∈ D\ 1
2D

. (2.7)

Note that only folding of an even eigenfunction gives a new function whose normal
derivative vanishes on ∂D. Therefore, it follows that only folding of an even eigen-
function results with another eigenfunction. Unfolding of any eigenfunction always
results with another eigenfunction. Hence, we consider the foldings for the even eigen-
functions and the unfoldings for all eigenfunctions. We also remark that the folded
(unfolded) eigenfunction is of an eigenvalue which is twice as small (large), since
the coordinate folding (unfolding) transformation is a similarity transformation with
a scaling factor of

√
2 (1/

√
2). Those results are stated and proved below.

Lemma 2.5 Let

ϕ =
∑

k2+l2=λ

αk,lϕk,l

be an eigenfunction corresponding to the eigenvalue λ, then the following holds:

A

U(A)

Fig. 1 Unfolding of a set
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828 R. Band et al.

(1) If λ ∈ σeven (D), then the folded function Fϕ is an eigenfunction corresponding
to the eigenvalue λ

2 and is given by

Fϕ = ∑

k2+l2=λ

αk,lϕFQ(k,l) , where FQ (k, l) = ( k+l
2 , k−l

2

)

. (2.8)

(2) The unfolded function Uϕ is an eigenfunction corresponding to the eigenvalue 2λ
and is given by

Uϕ = ∑

k2+l2=λ

αk,lϕUQ(k,l) , where UQ (k, l) = (k + l, k − l) . (2.9)

Proof First, consider the case that ϕ = ϕk,l . A simple calculation of Fϕk,l and Uϕk,l

involving the trigonometric identity

2 cos (α) cos (β) = cos (α + β) + cos (α − β) ,

yields

Fϕk,l = ϕFQ(k,l)

and

Uϕk,l = ϕUQ(k,l).

To conclude that Fϕk,l and Uϕk,l are eigenfunctions, we need to verify that
FQ (k, l) , UQ (k, l) ∈ Q. This is obvious for UQ (k, l), and as for FQ (k, l), we
use that λk,l ∈ σeven (D) implies (k, l) ∈ E , and thus,

( k+l
2 , k−l

2

) ∈ Q. The last part of
the claim is that Fϕk,l and Uϕk,l correspond to eigenvalues 1

2λk,l and 2λk,l . Indeed,
we have

∥
∥FQ (k, l)

∥
∥
2 = 1

2

(

k2 + l2
)

= 1

2
λk,l ,

and

∥
∥UQ (k, l)

∥
∥
2 = 2

(

k2 + l2
)

= 2λk,l .

Finally, using the linearity of F and U, we conclude that the claim holds for

ϕ =
∑

k2+l2=λ

αk,lϕk,l .

�
The last lemma allows for a useful characterization of all eigenvalues.

Corollary 2.6

(1) Let 0 �= λ ∈ σ (D). Then, there exist unique λ(0) ∈ σodd (D) and k ∈ N0, such
that λ = 2kλ(0). Furthermore, d (λ) = d

(

λ(0)
)

.
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Courant-sharp eigenvalues of Neumann 2-rep-tiles 829

(2) Let λ(0) ∈ σodd (D) and k ∈ N0. Then, 2kλ(0) ∈ σ (D).

Proof

(1) Let 0 �= λ ∈ σ (D). As σ (D) ⊆ N0, we can write uniquely

λ = 2kλ(0) with k ∈ N0, λ(0) ∈ N0 odd. (2.10)

To show λ(0) ∈ σodd (D), consider ϕ to be an eigenfunction of λ = 2kλ(0).
By Lemma 2.5, it follows that Fkϕ is an eigenfunction and its corresponding
eigenvalue equals 2−kλ = λ(0). Hence, λ(0) ∈ σ (D), but as it is odd, we further
have λ(0) ∈ σodd (D). The equality of multiplicities of λ and λ(0) arises as Fk is a
linear isomorphism (its inverse is Uk) from the eigenspace of λ to the eigenspace
of λ(0).

(2) Let λ(0) ∈ σodd (D) and k ∈ N0. By Lemma 2.5, Uk maps an eigenfunction of
λ(0) to an eigenfunction of 2kλ(0). �

The last corollary implies that the spectrumhas the following hierarchical structure:

σ (D) =
∞
⊔

k=0

⎛

⎝
⋃

λ(0)∈σodd(D)

{

2kλ(0)
}

⎞

⎠ =
∞
⊔

k=0

⎛

⎝
⋃

(m,n)∈O

{

λU k
Q(m,n)

}

⎞

⎠ , (2.11)

where the second equality follows, since

λ(0) ∈ σodd (D) ⇐⇒ λ(0) = λm,n s.t. (m, n) ∈ O
⇐⇒ 2kλ(0) = λU k

Q(m,n) s.t. (m, n) ∈ O.

We will use this structure to divide the spectrum into three subsets and rule out sep-
arately the Courant-sharpness of the eigenvalues in each of those subsets (the three
parts of Proposition 3.1).

In the following, we will show for a given k ∈ N0 and any λ(0) ∈ σodd (D) that
the eigenfunctions corresponding to the eigenvalue 2kλ(0) all vanish on a specific
(k-dependent) subset of D.

Definition 2.7 Let A ⊆ D, we define the unfold of A as (Fig. 1)

U (A) =
{

(x, y) ∈ 1

2
D
∣
∣ F (x, y) ∈ A

}

∪
{

(x, y) ∈ D\1
2
D
∣
∣ F ◦ R (x, y) ∈ A

}

.

(2.12)

For k ≥ 0, we define the k-frame as (see Fig. 2)

S(0) = L and ∀k ≥ 1, S(k) = U k (L) . (2.13)

Proposition 2.8 Let k ∈ N0 and λ(0) ∈ σodd (D), then any eigenfunction correspond-
ing to 2kλ(0) vanishes on the k-frame.
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830 R. Band et al.

0-frame

−→
U

1-frame

−→
U

2-frame

−→
U

3-frame

−→
U

4-frame

Fig. 2 The first five k-frames indicated by black solid lines

Proof Let λ(0) ∈ σodd (D), we shall prove the claim for 2kλ(0) by induction on k. For
k = 0, by Lemma 2.1, we get that any eigenfunction ϕ of λ(0) is anti-symmetric with
respect to L, and therefore

ϕ|
S(0)

= 0.

Next assume that the claim holds for k−1, and let ϕ be an eigenfunction corresponding
to 2kλ(0). By Lemma 2.5, we have that Fϕ is an eigenfunction corresponding to the
eigenvalue 2k−1λ(0), and hence

Fϕ|
S(k−1)

= 0.

Now, let (x, y) ∈ S(k). Since S(k) = U
(

S(k−1)
)

, we get that F (x, y) ∈ S(k−1) or
F ◦ R (x, y) ∈ S(k−1) [see (2.12)]. If F (x, y) ∈ S(k−1), then

ϕ (x, y) = ϕ ◦ U ◦ F (x, y) = Fϕ (F (x, y)) = 0.

If F ◦ R (x, y) ∈ S(k−1), we note that ϕ is symmetric as 2kλ(0) is even and hence

ϕ (x, y) = ϕ (R (x, y)) = ϕ ◦ U ◦ F (R (x, y)) = Fϕ (F ◦ R (x, y)) = 0.

Therefore, ϕ|
S(k)

= 0. �

3 Proof of Theorem 1.1

Using the definitions of Sect. 2, the set of Courant-sharp eigenvalues according to
Theorem 1.1 can be written as

C = {0} ∪
{

λU k
Q(1,0)

}3

k=0
. (3.1)
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Courant-sharp eigenvalues of Neumann 2-rep-tiles 831

We divide the remaining eigenvalues, σ (D)\C, into three subsets and rule out their
Courant-sharpness by the following proposition.

Proposition 3.1 The eigenvalues of each of the following sets are not Courant-sharp:

(1)

�(1) :=
⋃

(m, n) ∈ O\ {(1, 0)}

{

λm,n
}

(2)

�(2) :=
∞
⊔

k=1

⎛

⎝
⋃

(m,n)∈O: n �=0

{

λU k
Q(m,n)

}

⎞

⎠

(3)

�(3) :=
∞
⊔

k=1

⎛

⎝
⋃

(m,0)∈O\{(1,0)}

{

λU k
Q(m,0)

}

⎞

⎠
⋃{

λU k
Q(1,0)

}∞
k=4

.

The proofs of the three parts of the proposition are essentially different and each
appears in a designated subsection.

3.1 Proving Proposition 3.1(1)

We start by providing some additional constructions, needed for the proof.

Definition 3.2 We define the following subsets of the lattice Q:

(1) For 0 ≤ λ ∈ R, we define

O (λ) = Q (λ) ∩ O,

E (λ) = Q (λ) ∩ E .
(3.2)

(2) Let A ⊆ Q, define ∂−→A to be the set of points in A, such that their right neighbor
is outside A, that is

∂−→A = {(m, n) ∈ A | (m + 1, n) /∈ A} . (3.3)

We consider the following auxiliary eigenvalue problem on 1
2D with mixed

Dirichlet–Neumann boundary conditions:

− �ϕ = λϕ, ϕ

∣
∣
∣
L

= 0,
∂ϕ

∂ �n
∣
∣
∣
∂
(
1
2D
)

\L
= 0. (3.4)
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832 R. Band et al.

Denote the corresponding spectrum by σ
( 1
2D
)

and the spectral counting functions of
(3.4) by Ñ (λ) , Ñ (λ) as in (1.3)–(1.4).

Lemma 3.3 Let 0 ≤ λ ∈ R, then

Ñ (λ) = |O (λ)| . (3.5)

Proof Note that if λp,q ∈ σodd (D) and ϕ̃ is any of its eigenfunctions, then by Lemma
2.1, it follows that ϕ̃

∣
∣ 1
2D

is an eigenfunction of (3.4) whichmeans that λp,q ∈ σ
( 1
2D
)

.

This motivates to consider the mapping

Φ : O (λ) →
{

λ̃ ∈ σ

(
1

2
D
)∣
∣
∣
∣
λ̃ < λ

}

Φ : (p, q) �−→ λp,q ,

where we note that the set
{

λ̃ ∈ σ
( 1
2D
)
∣
∣
∣ λ̃ < λ

}

contains each eigenvalue as many

times as its multiplicity in σ
( 1
2D
)

. Showing thatΦ is a bijection proves the lemma. To

show thatΦ is onto, let λ̃ ∈
{

λ̃ ∈ σ
( 1
2D
)
∣
∣
∣ λ̃ < λ

}

and extend one of its corresponding

eigenfunctions ϕ̃ anti-symmetrically along L, i.e., consider

ϕ (x, y) =
{

ϕ̃ (x, y) (x, y) ∈ 1
2D

−ϕ̃ ◦ R (x, y) (x, y) ∈ D\ 1
2D

.

By the reflection principle (see [28] for example), ϕ is an odd eigenfunction of (1.1).
By Lemma 2.1, we deduce λ̃ ∈ σodd (D), and so there exists (p, q) ∈ O (λ), such
that λp,q = λ̃. To show that Φ is an injection, take (p1, q1) �= (p2, q2), and observe
that the eigenfunctions ϕp1,q1 , ϕp2,q2 are linearly independent and anti-symmetric, and
hence, ϕp1,q1

∣
∣ 1
2D

, ϕp2,q2

∣
∣ 1
2D

are linearly independent and are eigenfunctions of (3.4),

which means that Φ (p1, q1) �= Φ (p2, q2). �
We are now able to prove Proposition 3.1(1).

Proof of Proposition 3.1(1) Let λm,n be such that (m, n) ∈ O\ {(1, 0)} and ϕ be any
eigenfunction corresponding to λm,n , Lemma 2.1 gives

ν (ϕ) = 2 · ν

(

ϕ|
1
2D

)

. (3.6)

Since ϕ|
1
2D

is an eigenfunction of (3.4) with an eigenvalue λm,n , we get by Courant’s

nodal theorem [16] that

ν

(

ϕ|
1
2D

)

≤ Ñ
(

λm,n
)

, (3.7)
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Fig. 3 Red disks correspond to
E
(

λ6,3
)

and the black squares
correspond toO

(

λ6,3
)

. The
empty disks and squares
correspond to ∂−→Q

(

λ6,3
)

(color
figure online) (6,3)

m

n

so that

ν (ϕ) ≤ 2 · Ñ
(

λm,n
)

and by (3.5), we obtain

ν (ϕ) ≤ 2 · (O (λm,n
)+ 1

)

. (3.8)

Next, observe that the following mapping:

B : O
(

λm,n
)→ E

(

λm,n
)\
(

∂−→Q
(

λm,n
) ∩ E

)

B(p, q) = (p − 1, q),
(3.9)

is a bijection (see Fig. 3), and thus, we obtain

∣
∣O
(

λm,n
)∣
∣ = ∣∣E (λm,n

)∣
∣−
∣
∣
∣ ∂−→Q

(

λm,n
) ∩ E

∣
∣
∣ . (3.10)

We now have

ν (ϕ) ≤
︸︷︷︸

(3.8)

2
(∣
∣O
(

λm,n
)∣
∣+ 1

) =
︸︷︷︸

(3.10)

∣
∣O
(

λm,n
)∣
∣+ ∣∣E (λm,n

)∣
∣+ 1

+
(

1 −
∣
∣
∣ ∂−→Q

(

λm,n
) ∩ E

∣
∣
∣

)

. (3.11)

Note that

Q
(

λm,n
) = E

(

λm,n
)⊔

O
(

λm,n
)

,

hence

N
(

λm,n
) = ∣∣O (λm,n

)∣
∣+ ∣∣E (λm,n

)∣
∣ . (3.12)

Combining (3.11) with (3.12), we get

ν (ϕ) ≤ N
(

λm,n
)+
(

1 −
∣
∣
∣ ∂−→Q

(

λm,n
) ∩ E

∣
∣
∣

)

. (3.13)
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Therefore, to rule out the Courant-sharpness of λm,n , we only require that

∣
∣
∣ ∂−→Q

(

λm,n
) ∩ E

∣
∣
∣ > 1. (3.14)

Indeed, since (m, n) ∈ O, we get (m − 1, n) ∈ ∂−→Q
(

λm,n
) ∩ E and we are left with

finding onemore point (p, q) ∈ ∂−→Q
(

λm,n
)∩E . As we consider (m, n) ∈ O\{(1, 0)},

a simple calculation shows that if n ≥ 1, then (m, n − 1) ∈ ∂−→Q
(

λm,n
) ∩ E , and if

n = 0, we have (m − 1, 2) ∈ ∂−→Q
(

λm,0
) ∩ E . �

Remark It is easy to see that the last argument does not work for (m, n) = (1, 0).
Indeed, we show later that this is a Courant-sharp eigenvalue (Lemma 3.9).

3.2 Proving Proposition 3.1(2)

The k-frame structure divides the triangle into k-dependent number of subdomains.
This is defined below and is used in the proofs of the current subsection.

Definition 3.4 Define the k-frame partition as

P(k) := D◦\S(k) =
M(k)
⊔

i=1

D(k)
i ,

where
{

D(k)
i

}M(k)

i=1
denote the subdomains of this partition and M (k) is their number.

Consider the following eigenvalue problems with the boundary conditions induced by
the k-frame:

− �ϕ = λϕ, ϕ

∣
∣
∣
S(k)
⋂

∂D(k)
i

= 0,
∂ϕ

∂ �n
∣
∣
∣
∂D⋂ ∂D(k)

i

= 0. (3.15)

We denote the corresponding spectra by σ
(

D(k)
i

)

and define the corresponding spec-

tral counting functions, and multiplicities

N
(k)

i (λ) , N (k)
i (λ) , N (k)

i (λ) , d(k)
i (λ) ,

as in (1.2)–(1.5).

Next, we bring two lemmata, the second of which provides necessary conditions
for an eigenvalue to be Courant-sharp.

Lemma 3.5 Let k ∈ N0 and λ(0) ∈ σodd (D). We have that

d
(

2kλ(0)
)

≤ d(k)
i

(

2kλ(0)
)

i ∈ {1, . . . , M (k)} . (3.16)
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Proof Let λ = 2kλ(0)and let

B = {ϕ1, . . . , ϕd(λ)

}

be a basis for the eigenspace of λ. Let i ∈ {1, . . . , M (k)}, by Proposition 2.8, we have
thatB′ =

{

ϕ1

∣
∣
∣D(k)

i
, . . . , ϕd(λ)

∣
∣
∣
D(k)

i

}

are eigenfunctions of (3.15) on the domainD(k)
i .

Assume by contradiction that the set B′ turns out to be linearly dependent, then we
have scalars αl ∈ R not all zero, such that

∑

l

αlϕl |D(k)
i

≡ 0.

However, then the eigenfunction
∑

l αlϕl of (1.1) vanishes on the open subset D(k)
i ,

and by the unique continuation property [4], we obtain that

∑

l

αlϕl ≡ 0,

contradicting the linear independence of B. Thus, it follows that the dimension of the

eigenspace that corresponds to λ ∈ σ
(

D(k)
i

)

is at least d (λ) . �
Remark The strict inequality in (3.16) may, indeed, occur. This can be demonstrated
by applying Corollary 2.6(1) and Lemma 3.25 to some simple eigenvalue λm,n ∈
σodd (D), such that n �= 0.

Lemma 3.6 Let k ∈ N0 and λ(0) ∈ σodd (D). If 2kλ(0) is a Courant-sharp eigenvalue
of D, then both of the following hold:

(1) The eigenvalue 2kλ(0) is a simple eigenvalue inσ
(

D(k)
i

)

for all i ∈{1, . . . , M (k)}.
(2) The eigenvalue 2kλ(0) is a simple eigenvalue in σ (D).

Proof Let ϕ be a Courant-sharp eigenfunction of 2kλ(0) ∈ σ (D), then

N
(

2kλ(0)
)

= ν (ϕ) . (3.17)

By Proposition 2.8, we have

ν (ϕ) =
M(k)
∑

i=1

ν

(

ϕ|
D(k)

i

)

. (3.18)

For all i ∈ {1, . . . , M(k)}, we have that ϕ|
D(k)

i

is an eigenfunction of the eigenvalue

problem (3.15), and therefore, by Courant’s nodal theorem, we have

M(k)
∑

i=1

ν

(

ϕ|
D(k)

i

)

≤
M(k)
∑

i=1

N (k)
i

(

2kλ(0)
)

. (3.19)
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Rewriting the right-hand side of (3.19) and combining (3.17) and (3.18), we arrive at

N
(

2kλ(0)
)

≤
M(k)
∑

i=1

N
(k)

i

(

2kλ(0)
)

+
M(k)
∑

i=1

[

N (k)
i

(

2kλ(0)
)

− N
(k)

i

(

2kλ(0)
)]

.

If we consider the eigenvalue problem on
⋃

i D(k)
i and use the variational principle to

compare with the eigenvalue problem on D, we obtain

M(k)
∑

i=1

N
(k)

i

(

2kλ(0)
)

≤ N
(

2kλ(0)
)

. (3.20)

The conclusion above appears, for example, in [17], page 408, Theorem 2 for Dirichlet
boundary conditions. Having Neumann boundary conditions, as in our case, brings to
the same conclusion.

It follows that

M(k)
∑

i=1

[

N
(k)

i

(

2kλ(0)
)

− N (k)
i

(

2kλ(0)
)]

≤ N
(

2kλ(0)
)

− N
(

2kλ(0)
)

. (3.21)

By Lemma 3.5, we have

N
(

2kλ(0)
)

− N
(

2kλ(0)
)

≤ N
(k)

i

(

2kλ(0)
)

− N (k)
i

(

2kλ(0)
)

∀i ∈ {1, . . . , M (k)} .

(3.22)

Plugging this in (3.21), we get

M(k)
∑

l=1

[

N
(k)

l

(

2kλ(0)
)

− N (k)
l

(

2kλ(0)
)]

≤ N
(k)

i

(

2kλ(0)
)

− N (k)
i

(

2kλ(0)
)

∀i ∈ {1, . . . , M (k)} ,

and as M(k) ≥ 2, it has to be that

N
(k)

i

(

2kλ(0)
)

− N (k)
i

(

2kλ(0)
)

= 0 ∀i ∈ {1, . . . , M (k)} ,

which proves the first part of the lemma. The second part follows immediately from a
combination of the first part with Lemma 3.5. �
Remark The first claim of Lemma 3.6 is not restricted to the domains dealt with so
far and, indeed, appears in a more general form in Corollary 3.5(ii) of [2], where it
is proven for domains with Dirichlet boundary conditions. Yet, the second claim of
Lemma 3.6 does not hold for arbitrary domains, as it is based on the inequality (3.16)
which is not satisfied, in general.
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SS

Fig. 4 Subdomain S as it appears in the 1-frame partition, P1

Remark Lemma 3.6(2) may be also obtained as a direct corollary of Lemma B.1
(appears in Appendix B) and Corollary 2.6(1). In fact, Lemma B.1 is a generalization
of Lemma 3.6(2).

With Lemma 3.6 at hand, it is now possible to rule out the Courant-sharpness of
manymore eigenvalues. This is done by applying the lemma to the following particular
subdomains of the triangle (see Figs. 4, 5).

Definition 3.7 We define the following subdomains of the k-frame partition:

(1) A square subdomain S ∈ P(1) expressed by

S =
(π

2
, π
)

×
(

0,
π

2

)

. (3.23)

(2) Rectangular subdomains R(k) ∈ P(k) ,∀k ≥ 2, expressed recursively by

R(2) = (U (S))◦ and R(k) =
({

(x, y) ∈ D
∣
∣ F (x, y) ∈ R(k−1)

})◦
.

(3.24)

Lemma 3.8 Let (m, n) ∈ O , n �= 0. Then, the following holds:

(1) Consider the eigenvalue problem (3.15) on S. Then, λUQ(m,n) ∈ σ (S) is a non-
simple eigenvalue.

(2) Let k > 1 and consider the eigenvalue problem (3.15) on R(k).
Then, λU k

Q(m,n) ∈ σ
(

R(k)
)

is a non-simple eigenvalue.

Proof We start by giving explicit expressions for the eigenvalues and the eigenfunc-
tions of (3.15) on the domains S and R(k). To do that, we choose the following
convenient parametrizations for the domains. First, we consider S, which we write as

S =
(

0,
π

2

)

×
(

0,
π

2

)

.

R(2)

R(3) R(4)

Fig. 5 Subdomain R(k) as it appears in the k-frame partition, P(k), for k = 2, 3, 4
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The boundary conditions induced by the 1-frame are expressed by

ϕ̂
∣
∣{x=0 or y=0} ≡ 0 ; ∂ϕ̂

∂n

∣
∣
∂S\{x=0 or y=0} ≡ 0.

The eigenvalues are

λ̂p,q = (2p + 1)2 + (2q + 1)2 (p, q) ∈ N0 × N0 (3.25)

and the orthogonal set of eigenfunctions is given by

ϕ̂p,q (x, y) = sin ((2p + 1) x) sin ((2q + 1) y) ; (p, q) ∈ N0 × N0. (3.26)

We proceed with R(k). The edges have ratio 1 : 2 and the longest one is of length
l = π

2
k−1
2
, thus we may write

R(k) = (0, l) ×
(

0,
l

2

)

.

The boundary conditions induced by the k-frame are expressed by

ϕ̂
∣
∣
∂R(k)\

{

y= l
2

} ≡ 0 ; ∂ϕ̂

∂n

∣
∣{

y= l
2

} ≡ 0.

The eigenvalues are given to be

λ̂p,q = 2k−1
(

p2 + q2
)

; (p, q) ∈ N × [2N0 + 1] (3.27)

and the orthogonal set of eigenfunctions is given by

ϕ̂p,q (x, y) = sin
(π · p · x

l

)

sin
(π · q · y

l

)

(p, q) ∈ N × [2N0 + 1] . (3.28)

We proceed to prove both parts of the lemma by pointing out on two linearly inde-
pendent eigenfunctions which correspond to the relevant eigenvalue. Recall that we
consider (m, n) ∈ O, with n �= 0.

(1) Define

(p1, q1) =
(

m + n − 1

2
,

m − n − 1

2

)

,

(p2, q2) = (q1, p1) .

As m �= n (mod 2), we get (p1, q1) , (p2, q2) ∈ N0 × N0, and since n �= 0,
we get (p1, q1) �= (p2, q2). By (3.26), we get that ϕ̂p1,q1 and ϕ̂p2,q2 are linearly
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independent and by (3.27), we obtain

2
(

m2 + n2
)

= λUQ(m,n) = λ̂p1,q1 = λ̂p2,q2 .

Thus, the eigenvalue λUQ(m,n) ∈ σ (S) is non-simple.
(2) Define

(p1, q1) = (m + n, m − n) ,

(p2, q2) = (q1, p1) .

Asm �= n (mod2), we get (p1, q1) , (p2, q2) ∈ N×[2N0 + 1], and since n �= 0,
we get (p1, q1) �= (p2, q2). By (3.28), we get that ϕ̂p1,q1 and ϕ̂p2,q2 are linearly
independent, and by (3.25), we obtain

2k
(

m2 + n2
)

= λU k
Q(m,n) = λ̂p1,q1 = λ̂p2,q2 .

Thus, the eigenvalue λU k
Q(m,n) ∈ σ

(

R(k)
)

is non-simple.

Proposition 3.1(2) follows immediately by combining Lemma 3.6(1) with Lemma
3.25.

3.3 Proving Proposition 3.1(3)

By Lemma 3.6(2), it follows that we only need to rule out the Courant-sharpness of
the simple eigenvalues of �(3).

Proof of Proposition 3.1(3) To show that the simple eigenvalues of �(3) are not
Courant-sharp, we find, in the following, a subset TQ

(

λm,n
)

� Q
(

λm,n
) ∪ {(m, n)},

such that
∣
∣TQ
(

λm,n
)∣
∣ = ν

(

ϕm,n
)

. This will rule out Courant-sharpness of a simple
eigenvalue, since then

N
(

λm,n
) = ∣∣Q (λm,n

) ∪ {(m, n)}∣∣ > ∣∣TQ
(

λm,n
)∣
∣ = ν

(

ϕm,n
)

.

Before proceeding, we rewrite �(3) as an expression that is more adjusted to the
following arguments:

�(3) = {λ2m,0
}∞

m=3 ∪ {λm,m
}∞

m=3 .

First, we treat the case of a simple eigenvalue λm,m for m ≥ 3. Its nodal set is

ϕ−1
m,m {0} = {(x, y) ∈ D

∣
∣ cos (mx) cos (my) = 0

}

.
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(a) (b)

(3,3)

m

n

Fig. 6 a Nodal set of ϕ3,3. b Blue points correspond to TQ
(

λ3,3
)

and the empty square corresponds to
the point (4, 0) (color figure online)

Thus, we deduce that there are m nodal lines inside D parallel to the x-axis and m that
are parallel to the y-axis (Fig. 6a). The number of nodal domains is, therefore,

ν
(

ϕm,m
) =

m
∑

i=0

(i + 1) . (3.29)

Denote

TQ
(

λm,m
) := {(i, j)

∣
∣ 0 ≤ j ≤ i ≤ m

}

,

and observe that

∣
∣TQ
(

λm,m
)∣
∣ =

m
∑

i=0

(i + 1) = ν
(

ϕm,m
)

. (3.30)

A simple calculation shows that (see Fig. 6b)

TQ
(

λm,m
) ⊆ Q

(

λm,m
) ∪ {(m, m)} .

In addition, for m ≥ 3, we have (m + 1, 0) ∈ Q
(

λm,m
)\TQ

(

λm,m
)

, since

‖(m + 1, 0)‖2 = m2 + 2m + 1 < 2m2 = λm,m .

Thus, we showed

TQ
(

λm,m
)

� Q
(

λm,m
) ∪ {(m, m)} .

Next, we treat the case of a simple eigenvalue λ2m,0 ∈ σ (D) for m ≥ 3. This
eigenvalue is the unfolding of λm,m which we treated above (and, therefore, their
multiplicity is equal). Its nodal set is, therefore, determined easily (Fig. 7a) and the
nodal count is given by
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(a) (b)
(6,0) m

n

Fig. 7 a Nodal set of ϕ6,0. b Blue points correspond to TQ
(

λ6,0
)

and the empty square corresponds to
the point (5, 2) (color figure online)

ν
(

ϕ2m,0
) = 2ν

(

ϕm,m
)− (m + 1) =

m
∑

i=0

(2i + 1) . (3.31)

Denote

TQ
(

λ2m,0
) = {(m + j, m − i)

∣
∣ 0 ≤ i ≤ m , −i ≤ j ≤ i

}

.

Observe that

∣
∣TQ
(

λ2m,0
)∣
∣ =

m
∑

i=0

i
∑

j=−i

1 =
m
∑

i=0

(2i + 1) = ν
(

ϕ2m,0
)

, (3.32)

and a simple calculation shows that (see Fig. 7b)

TQ
(

λ2m,0
) ⊆ Q

(

λ2m,0
) ∪ {(2m, 0)} .

Observe that for m ≥ 3, we have (2m − 1, 2) ∈ Q
(

λ2m,0
)\TQ

(

λ2m,0
)

, since

‖(2m − 1, 2)‖2 = 4m2 − 4m + 5 < 4m2 = λ2m,0.

Thus, we showed

TQ
(

λ2m,0
)

� Q
(

λ2m,0
) ∪ {(2m, 0)} .

�
3.4 Concluding the Proof of Theorem 1.1

Finally, Theorem 1.1 is proved once we show that the eigenvalues we have not ruled
out are, indeed, Courant-sharp.

Lemma 3.9 The eigenvalues of C = {0} ∪
{

λU k
Q(1,0)

}3

k=0
are Courant-sharp
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Proof By Courant’s bound and orthogonality, the first two eigenvalues, λ0,0 = 0
and λ1,0 = 1, are Courant-sharp. Next, note that the eigenvalue λ1,0 is simple,

and therefore, all of the eigenvalues in
{

λU k
Q(1,0)

}3

k=1
are simple as well. It is now

straightforward to find the number of nodal domains of the eigenfunctions in the set
{

ϕU k
Q(1,0)

}3

k=1
(see (3.29), (3.31)) and verify that those three eigenvalues are Courant-

sharp as well. �
We end by noting that the nodal sets of the non-constant Courant-sharp eigenfunc-

tions are exactly the first four k-frames (see Fig. 2).

4 Proof of Theorem 1.2

We start by developing the eigenfunction folding structure of an n-dimensional box,

B(n), whose edge length ratio is given by
l j

l j+1
= γn := 2

1
n (1 ≤ j ≤ n − 1). For

convenience, we choose a scaling according towhich l1 = π .We start by following the
construction from Sect. 2 and present the folding structure of the B(n) eigenfunctions.

The set of quantum numbers in this case is

Q := { �m ∈ N
n
0

}

. (4.1)

The orthogonal basis of eigenfunctions is

ϕ �m(�x) =
n
∏

j=1

cos(γ j−1
n m j x j ) ; �m ∈ Q (4.2)

and the corresponding eigenvalues are

λ �m =
n
∑

j=1

(

γ
j−1

n m j

)2 ; �m ∈ Q. (4.3)

We use the notations

σ
(

B(n)
)

:= {λ �m
∣
∣ �m ∈ Q

}

,

Q(λ) := { �m ∈ Q
∣
∣ λ �m < λ

}

and have as before that

N (λ) = |Q(λ)| .

The box B(n) is symmetric with respect to the following hyperplane:

L =
{

�x ∈ B(n)
∣
∣
∣ x1 = π

2

}

, (4.4)
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and the reflection transformation is

R (�x) = (π − x1, x2, . . . , xn) . (4.5)

As opposed to the case of the triangle, the eigenvalues of B(n) are not integers (with
the exception of the case n = 2, where they are), but rather belong to Z

[

γ 2
n

]

, a finite
ring extension of Z. We consider Z

[

γ 2
n

]

as a free module with the following basis:

G(n) =

⎧

⎪⎨

⎪⎩

{

γ
j

n

}n−1

j=0
n is odd

{

γ
2 j
n

} n
2−1

j=0
n is even.

(4.6)

Furthermore, in the unique representation of λ ∈ σ
(

B(n)
)

as a linear combination of
this basis, the coefficients are taken from N0. This is used to define the parity of an
eigenvalue.

Definition 4.1 Denoting by p (λ) the coefficient multiplying γ 0
n = 1 when spanning

λ ∈ σ
(

B(n)
)

by G(n), we call λ an odd (even) eigenvalue if p (λ) is odd (even).

Hence, we adopt here the dichotomy to even and odd eigenvalues, similarly to
the one we had in Sect. 2. The parity of an eigenvalue dictates the parity of all of its
eigenfunctions with respect to the reflection across L, which is proved in the following
(analogously to Lemma 2.1).

Lemma 4.2 Let λ ∈ σ
(

B(n)
)

, then any eigenfunction of λ is odd (even) with respect
to L if and only if λ is an odd (even) eigenvalue.

Proof Let �m ∈ Q, such that ϕ �m is an eigenfunction corresponding to λ. Writing λ as
∑n

j=1

(

γ
j−1

n m j

)2
and using that G(n) is a basis, we have that

p (λ) =
⎧

⎨

⎩

m2
1 n is odd

m2
1 + 2m2

n
2+1 n is even,

(4.7)

and in both cases, the parity of λ equals the parity of m1. From the explicit expression
of the eigenfunction, (4.2), we see that ϕ �m is odd (even) with respect to L if and only
if m1 is odd (even). If λ is a multiple eigenvalue and it is odd (even), the argument
above gives that the basis,

{

ϕ �m
∣
∣ λ �m = λ

}

, of its eigenspace consists of odd (even)
eigenfunctions, and therefore, so is any eigenfunction of λ. �
As in Sect. 2, Lemma 4.2 motivates the following definition (compare with Definition
2.2).

Definition 4.3 We define the subsets of Q that correspond to the odd and even eigen-
values

O := { �m ∈ Q | m1 = 1 (mod 2)} ,

E := { �m ∈ Q | m1 = 0 (mod 2)} (4.8)
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l1

l2
l3

l2

l31
2 l1L

1
2B(3)

B(3)

Fig. 8 Illustration of B(3) decomposed into two similar boxes, one of which is 1
2B

(3) (up to rotation)

and we denote the corresponding sets of eigenvalues by

σodd

(

B(n)
)

:= {λ �m
∣
∣ �m ∈ O

}

,

σeven

(

B(n)
)

:= {λ �m
∣
∣ �m ∈ E

}

.

Denote

1

2
B(n) =

{

�x ∈ D : x1 ≤ π

2

}

.

Observe that L partitionsB(n) into the two isometric boxes 1
2B(n) and

(

B(n)\ 1
2B(n)

)∪L,
each is a scaled version of B(n) by a factor γn . Namely,

(l1, . . . , ln−1, ln) = γn ·
(

l2, . . . , ln,
l1
2

)

, (4.9)

where the left-hand side gives the edge lengths of B(n) and the right-hand side gives
the edge lengths of 1

2B(n) (see Fig. 8).

Remark Equation (4.9) may be perceived as a generalization of the A series (A3, A4,
etc.) paper sizes to higher dimensions.

This similarity reveals the folding structure of the B(n) eigenfunctions. Indeed, the
following two definitions and lemma are analogous to Definitions 2.3 and 2.4, and
Lemma 2.5 of the triangle case.

Definition 4.4 The coordinate folding transformation is

F : 1
2B(n) → B(n)

F (x1, x2, . . . , xn) := γn · (x2, x3, . . . , xn, x1)
(4.10)
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and the coordinate unfolding transformation U is the inverse of F and is expressed
by

U : B(n) → 1
2B(n)

U (x1, x2, . . . , xn) = γ −1
n · (xn, x1, . . . , xn−1) .

(4.11)

Definition 4.5 Let ϕ be an eigenfunction corresponding to the eigenvalue λ ∈
σ
(

B(n)
)

.

(1) Assume λ is even. Then, the folded function Fϕ is defined by

Fϕ (�x) = ϕ ◦ U (�x) , �x ∈ B(n). (4.12)

(2) The unfolded function, Uϕ, is

Uϕ (�x) =
{

ϕ ◦ F (�x) �x ∈ 1
2B(n)

(ϕ ◦ F) ◦ R (�x) �x ∈ B(n)\ 1
2B(n)

. (4.13)

Lemma 4.6 Let ϕ = ∑ �m; λ �m=λ α �m · ϕ �m be an eigenfunction corresponding to the

eigenvalue λ ∈ σ
(

B(n)
)

.

(1) If λ is even, then the folded function is Fϕ = ∑ �m; λ �m=λ α �m · ϕFQ( �m) and corre-

sponds to the eigenvalue λFQ( �m) = γ −2
n λ �m, with

FQ ( �m) := (m2, m3, . . . , mn, m1
2

)

. (4.14)

(2) The unfolded function is Uϕ = ∑ �m; λ �m=λ α �m · ϕUQ( �m) and corresponds to the

eigenvalue λUQ( �m) = γ 2
n λ �m, with

UQ ( �m) := (2mn, m1, m2, . . . , mn−1) . (4.15)

Proof (1) Letλbe an even eigenvalue ofB(n). Let �m ∈ Qbe such thatλ �m = λ.Asp (λ)

is even, we conclude thatm1 is even aswell [see (4.7)], and therefore, FQ ( �m) ∈ Q,
so that ϕFQ( �m) is well defined and it is an eigenfunction of B(n). Combining the
form of the eigenfunction ϕ �m , (4.2), with the definition of its folding, (4.12), we
get

Fϕ �m (�x) = ϕ �m ◦ U (�x)

= cos
(

m1γ
−1
n xn

) n
∏

j=2

cos
(

γ
j−1

n m jγ
−1
n x j−1

)

= cos

(

γ n−1
n

1

2
m1xn

) n−1
∏

j=1

cos
(

γ
j−1

n m j+1x j

)

= ϕFQ( �m) (�x) .
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If λ is a multiple eigenvalue, the calculation above is valid for any eigenfunction
of the form ϕ �m , and by linearity, it extends to Fϕ = ∑

�m; λ �m=λ α �m · ϕFQ( �m).
Calculating the eigenvalue corresponding to ϕFQ( �m), we get

λFQ( �m) = γ −2
n m2

1 +
n−1
∑

j=1

(

γ
j−1

n m j+1

)2 = γ −2
n

n
∑

j=1

(

γ
j−1

n m j

)2 = γ −2
n λ �m .

(4.16)

(2) Let λ ∈ σ
(

B(n)
)

and let �m ∈ Q, such that λ �m = λ. Let �x ∈ 1
2B(n).

Uϕ �m (�x) = ϕ �m ◦ F (�x)

= cos
(

γ n−1
n mnγn x1

) n−1
∏

j=1

cos
(

γ
j−1

n m jγn x j+1

)

= cos (2mn x1)
n
∏

j=2

cos
(

γ
j−1

n m j−1x j

)

= ϕUQ( �m) (�x) .

For �x ∈ B(n)\ 1
2B(n), we have

Uϕ �m (�x) =
︸︷︷︸

(4.13)

Uϕ �m (R (�x)) =
︸︷︷︸

R(�x)∈ 1
2B(n)

ϕUQ( �m) (R (�x)) =
︸︷︷︸

Lemma 4.2

ϕUQ( �m) (�x) .

Just as in thefirst part of the proof,wemayuse linearity to extend the relation above
to the whole eigenspace of λ. In addition, it is easily verified that λUQ( �m) = γ 2

n λ �m .

�
The last lemma allows to show that the eigenvalues inherit the folding structure.

This is shown in the following, which is analogous to Corollary 2.6.

Corollary 4.7 (1) Let 0 �= λ ∈ σ
(

B(n)
)

. Then, there exist unique λ(0) ∈ σodd
(

B(n)
)

and k ∈ N0, such that λ = γ 2k
n λ(0). Furthermore, d (λ) = d

(

λ(0)
)

.
(2) Let λ(0) ∈ σodd

(

B(n)
)

and k ∈ N0. Then, γ 2k
n λ(0) ∈ σ

(

B(n)
)

.

Proof We start by observing that the second claim may be proven similarly to the
second claim of Corollary 2.6—start from any eigenfunction of λ(0) and by unfolding
it k times get an eigenfunction whose eigenvalue is γ 2k

n λ(0).
Next, we prove the first claim and start by proving the uniqueness of the represen-

tation λ = γ 2k
n λ(0). Assume by contradiction that γ 2k1

n λ
(0)
1 = γ

2k2
n λ

(0)
2 , with different

k1, k2 ∈ N0 and λ
(0)
1 , λ

(0)
2 ∈ σodd

(

B(n)
)

. Without loss of generality, k1 > k2, and

hence, λ(0)
2 = γ

2(k1−k2)
n λ

(0)
1 . Pick an eigenfunction of λ

(0)
1 and unfold it k1 − k2 times

to get an eigenfunction of the eigenvalue λ
(0)
2 . By (4.13), this unfolded eigenfunction
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is even, and by Lemma 4.2, we deduce that its eigenvalue, λ(0)
2 is also even and arrive

at a contradiction.
It remains to show the existence of k ∈ N0, λ(0) ∈ σodd

(

B(n)
)

, such that λ =
γ 2k

n λ(0). There exists some �m ∈ Q, such that λ = λ �m . If λ ∈ σodd
(

B(n)
)

, then the
statement holds with k = 0. Otherwise, by Lemma 4.6, we get that λFQ( �m) = γ −2

n λ �m
is an eigenvalue. We keep applying FQ to �m until we get that λFk

Q( �m) = γ −2k
n λ �m is

an odd eigenvalue. Once we get that the lemma is proved and it only remains to show
that this process terminates after a finite (k) number of steps.

To see this, we may present the �m entries as m j = p j2k j , with k j being the
largest possible (and formally, set p j = 0, k j = ∞ if m j = 0). The subsequent
applications of FQ cyclically shift the vector and divide the first entry by two [see
(4.14)]. Eventually, one of the entries would be odd and the process stops (unless
λ = 0).

Finally, the equality of multiplicities of λ and λ(0) arises as Fk is a linear isomor-
phism (its inverse is Uk) from the eigenspace of λ to the eigenspace of λ(0). �

Defining the k-frameexactly as in (2.13) (see alsoFig. 9) allows toprove an analogue
of Proposition 2.8, namely that for λ(0) ∈ σodd

(

B(n)
)

, its k-unfolded eigenvalue,
λ = γ 2k

n λ(0) vanishes on the k-frame. This, in turn, shows that Lemmata 3.5 and 3.6
are valid for the high-dimensional boxes as well (with the k-frame partition defined
just as in Definition 3.4). All we need to use now is Lemma 3.6(2), according to which
multiple eigenvalues4 cannot be Courant-sharp. Alternatively, we may use Lemma
B.1 which is a generalization of Lemma 3.6(2).

We are left to check the Courant-sharpness of simple eigenvalues. Since the nodal
set of the basis eigenfunctions, ϕ �m , is determined by

n
∏

j=1

cos(γ j−1
n m j x j ) = 0; 0 ≤ x j ≤ π/γ

j−1
n ,

it is straightforward to deduce that

ν(ϕ �m) =
n
∏

j=1

(m j + 1).

This is compared with the spectral position in the next proposition which rules out the
Courant-sharpness of all eigenvalues not appearing in Theorem 1.2.

Proposition 4.8

(1) For n ≥ 3 and N ≥ 2, λN is not a Courant-sharp eigenvalue of B(n).
(2) For n = 2 and N /∈ {1, 2, 4, 6}, λN is not a Courant-sharp eigenvalue for B(2).

4 See “Appendix A”, where we discuss the possible eigenvalue multiplicities of the problem.
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U U U

Fig. 9 The first four k-frames of B(2)

Proof By the analogue of Lemma 3.6(2) (see discussion before this proposition), we
only need to rule out the Courant-sharpness of simple eigenvalues. Let λ �m ∈ σ

(

B(n)
)

be a simple eigenvalue.

LetBQ (λ) = Q∩{( (m̃1, . . . , m̃n)| m̃ j ≤ m j , ∀ j
)}

. Note thatBQ (λ) contains allQ-
points contained in an n-dimensional box and Q (λ) forms all the Q points contained
within an n-dimensional ellipsoid (see Fig. 10 for the n = 2 case).
In the sequel, we show BQ (λ) � Q (λ) ∪ (m1, . . . , mn) which rules out Courant-
sharpness, since it gives

N (λ) = |Q (λ) ∪ (m1, . . . , mn)| >
∣
∣BQ (λ �m)

∣
∣ = ν (ϕ �m) .

It is easily seen that

BQ (λ) ⊆ Q (λ) ∪ (m1, . . . , mn) ,

and to show that

BQ (λ) � Q (λ) ∪ (m1, . . . , mn) ,

we point out �m′ ∈ Q, such that �m′ ∈ Q (λ)\BQ (λ). Note that this proof technique
resembles the one which is used in the proof of Proposition 3.1(3) and the set BQ (λ)

plays the same role as the set TQ (λ) there.
Start by assuming that �m is such that there exists k for whichmk < mk+1. Choosing

�m′ = (0, . . . , 0, mk + 1
︸ ︷︷ ︸

k−th posi tion

0, . . . , 0), (4.17)

Fig. 10 Illustration of
BQ
(

λ4,3
)

m = (4,3)�

�m′ = (0, 4)

m1

m2
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satisfies

λ �m′ < λ(0,...,0, mk+1
︸ ︷︷ ︸

k+1−th posi tion

0,...,0) ≤ λ �m .

We may, therefore, proceed by assuming that the entries of �m form a non-increasing
ordered set.

We distinguish the non-increasing sequences by setting

I := min

{

j
∣
∣m j = min

1≤q≤n
mq

}

,

so that I is the first index starting from which all entries are equal.

(1) I = 1. In this case, �m is a constant sequence, that is

�m = (m1, . . . , m1) .

Choose

�m′ = (m1 + 1, 0, . . . , 0) .

We have

λ �m = m2
1

n
∑

j=1

γ
2( j−1)
n = m2

1
3

γ 2
n − 1

and λ �m′ = (m1 + 1)2 .

An easy calculation shows that λ �m′ < λ �m holds for all values of n and m1 with
the only exceptions being �m = (1, 1) and �m = �0. Indeed, we see later (Lemma
4.9) that those are Courant-sharp.

(2) I ≥ 3. With

�m = (m1, . . . , m I
︸︷︷︸

I−th posi tion

. . . , m I ),

choose

�m′ = (0, . . . , 0, m I + 1
︸ ︷︷ ︸

I−th posi tion

0, . . . , 0)

and consider an auxiliary point

�m′′ := (m I + 1, . . . , m I + 1, 0
︸︷︷︸

I

. . . , 0).

123



850 R. Band et al.

Clearly, we have

λ �m′′ ≤ λ �m,

and it is left to show

λ �m′ < λ �m′′ . (4.18)

To get (4.18), simply note that

γ 2(k−1)
n (m I + 1)2 <

1 − γ
2(k−1)
n

1 − γ 2
n

(m I + 1)2 =
k−1
∑

j=1

γ
2( j−1)
n (m I + 1)2 ,

for all n ≥ k ≥ 3.

(3) I = 2. With

�m = (m1, m2, . . . , m2),

choose

�m′ = (0, m2 + 1, 0, . . . , 0)

and consider an auxiliary point

�m′′ := (m2 + 1, m2, . . . , m2).

As

λ �m′′ ≤ λ �m,

it is left to show

λ �m′ < λ �m′′ . (4.19)

We get that (4.19) is equivalent to

m2 >

√

γ 2
n − 1

⎛

⎝

√
√
√
√

n
∑

j=2

γ
2( j−1)
n −

√

γ 2
n − 1

⎞

⎠

−1

. (4.20)

This inequality holds if either n ≥ 3 and m2 ≥ 1 or n = 2 and m2 ≥ 3 (the case
n = 2, m2 = 3 is demonstrated in Fig. 10).
The remaining subcases are as follows:
(a) For n ≥ 3, m2 = 0, we have that �m = (m1, 0, . . . , 0) and

λ �m′ = λ(0,1,0,...,0) < λ(m1,0,...,0) = λ �m,
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for all m1 ≥ 2.
Note that n ≥ 3, m2 = 0, m1 ∈ {0, 1} correspond to Courant-sharp eigen-
values (Lemma 4.9).

(b) For n = 2, m2 ∈ {0, 1, 2}, we have the following subcases:
(i) If m2 = 2 and m1 > 3, then λ �m′ = λ(0,3) = 18 < m2

1 + 8 = λ(m1,2).

(ii) If m2 = 2 and m1 = 3, then λ �m′ = λ(4,0) = 16 < 17 = λ(3,2).

(iii) If m2 = 1 and m1 ≥ 3, then λ �m′ = λ(0,2) = 8 < m2
1 + 2 = λ(m1,1).

(iv) If m2 = 0 and m1 ≥ 2, then λ �m′ = λ(0,1) = 2 < m2
1 = λ(m1,0).

Note that λ(1,0) and λ(2,1) correspond to Courant-sharp eigenvalues (Lemma
4.9). �

Finally, Theorem1.2 is proven by validating theCourant-sharpness of the remaining
eigenvalues.

Lemma 4.9

(1) Let n ≥ 3. λ1 and λ2 are Courant-sharp eigenvalues of B(n).
(2) For n=2 (the rectangle case), λ1, λ2, λ4, and λ6 are Courant-sharp eigenvalues

of B(2).

Proof By Courant’s bound and orthogonality of eigenfunctions, λ1 and λ2 are always
Courant-sharp. For the rectangle, B(2), one counts that the eigenfunction ϕ(1,1), which
corresponds to λ4 has four nodal domains and the eigenfunction ϕ(2,1) which corre-
sponds to λ6 has six nodal domains. �
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Neftin for his algebraic remarks. Sebastian Egger is warmly acknowledged for the careful reading of the
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Appendix A: On multiplicity of eigenvalues of high-dimensional boxes

Westart by relating themultiplicity function to the following classical problem.Denote
the sum of squares function by

r2(z) =
∣
∣
∣{(m, n) ∈ Z

2, such that m2 + n2 = z}
∣
∣
∣ .

The equality d (λ) = d
(

λ(0)
)

in Corollary 2.6 implies that r2(z) = r2(2k z), for all
k ∈ N, (see also [20], Chapter 2, Section 4). This fact nicely generalizes in Corollary
4.7 by the same equality. Indeed, defining the following quadratic form:

q(x1, . . . xn) =
n
∑

j=1

(

γ
j−1

n x j

)2
,

and denoting

rq
n (z) = ∣∣{(m1, . . . , mn) ∈ Z

n , such that q(m1, . . . , mn) = z}∣∣ ,
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we get rq
n (z) = rq

n (γ 2k
n z) for all k ∈ N. In particular, this relation seems more inter-

esting for even values of n, as can be interpreted from the following.

Proposition A.1

(1) If n is odd, then all eigenvalues λ ∈ σ
(

B(n)
)

are simple.
(2) Let n be even, and let λ ∈ σ

(

B(n)
)

. Then

(a) λ is uniquely written as λ =∑
n
2−1
j=0 λ( j)γ

2 j
n .

(b) Each λ( j) is some eigenvalue of the rectangle problem (λ( j) ∈ σ
(

B(2)
)

).
(c) The multiplicity of λ equals to the product over multiplicities of all λ( j)’s as

eigenvalues of the rectangle problem.

Proof

(1) Assume n is odd. Assume that there exist �m(1), �m(2) ∈ Q, such that λ �m(1) = λ �m(2) .
We get

n
∑

j=1

(

γ
j−1

n m(1)
j

)2 =
n
∑

j=1

(

γ
j−1

n m(2)
j

)2 ⇔

0 =
n
∑

j=1

γ
2( j−1)
n

((

m(1)
j

)2 −
(

m(2)
j

)2
)

=
n+1
2∑

j=1

γ
2( j−1)
n

((

m(1)
j

)2 −
(

m(2)
j

)2
)

+
n−1
2∑

j=1

2γ 2 j−1
n

((

m(1)
n+1
2 + j

)2

−
(

m(2)
n+1
2 + j

)2
)

,

using γ n
n = 2, in the reordering of terms in the last line. The right-hand side of

the above is a linear combination of the basis
{

γ
j

n

}n−1

j=0
, so that we conclude for

all j , m(1)
j = m(2)

j , as required.
(2) Assume n is even. Let �m ∈ Q, such that λ �m = λ. We have

λ =
n
∑

j=1

(

γ
j−1

n m j

)2 =
n
2∑

j=1

γ
2( j−1)
n

(

m2
j + 2m2

j+ n
2

)

, (A.1)

and conclude

∀1 ≤ j ≤ n

2
λ( j−1) = m2

j + 2m2
j+ n

2
. (A.2)

Hence, we have shown (a), where the uniqueness comes from
{

γ
2 j
n

} n
2−1

j=0
being a

basis. From (A.2), it is easily verified that λ( j−1) ∈ σ
(

B(2)
)

, and combining with
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(A.1), we deduce that the multiplicity of λ ∈ σ
(

B(n)
)

is obtained as a product

over all multiplicities of
{

λ( j−1)
} n

2
j=1.

�
Remark The second part of the proposition above may be explained as the following.
Onemay expressB(2k) as a direct product of k scaled copies ofB(2). Denoting the edge
lengths of B(2k) by l1, . . . l2k , the j th copy of B(2k) has edge lengths l j , lk+ j . Each
eigenfunction on B(2k) can be expressed as a product of eigenfunctions on all different
k scaled copies of B(2). Hence, each eigenvalue of B(2k) is a sum over eigenvalues of
all the B(2) copies.

Appendix B: Nodal deficiency

The importance of nodal deficiency of eigenfunctions has been recognized in recent
studies [5,10–13]. It is the nodal deficiency that has been exactly expressed by varia-
tions over partitions and eigenvalues. These recent works concern manifolds, as well
as quantum and discrete graphs. We bring here some interesting bounds on the nodal
deficiencies of the spectral problems studied in this paper.

We define the nodal deficiency of an eigenfunction ϕ of an eigenvalue λ by

δ (ϕ) = N (λ) − ν (ϕ) ,

and the nodal deficiency of an eigenvalue by

δ (λ) := min
ϕ∈E(λ)

δ (ϕ) . (B.1)

Here E (λ) is the eigenspace associated with λ. In the following, we use the analysis of
Sect. 3 to derive lower bounds of the nodal deficiency of eigenvalues. The following
lemmata holds for all the domains treated in the paper. We use the notation � to
indicate both D and B(n) and denote

γ (�) :=
{√

2 � = D
γn � = B(n)

.

The next lemma provides a lower bound on the nodal deficiency of multiple eigenval-
ues.

Lemma B.1 Let λ(0) ∈ σodd (�) and k ∈ N0. The nodal deficiency of the eigenvalue
γ (�)2k · λ(0) obeys

δ
(

γ (�)2k · λ(0)
)

≥
(

d
(

λ(0)
)

− 1
)

· (M (k,�) − 1) ,

where M(k,�) is the number of the subdomains of the k-frame partition of � and
d
(

λ(0)
)

is the multiplicity of λ(0).
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Proof For the sake of convenience, we abbreviate notations by writing γ instead of
γ (�) and M (k) instead of M(k,�). Note that the following arguments below are
similar to those we have used in the proof of Lemma 3.6. We have

ν (ϕ) =
M(k)
∑

i=1

ν
(

ϕ
∣
∣
�

(k)
i

)

≤
︸︷︷︸

Courant’s nodal theorem

M(k)
∑

i=1

N (k)
i

(

γ 2k · λ(0)
)

=
M(k)
∑

i=1

N
(k)

i

(

γ 2k · λ(0)
)

+
M(k)
∑

i=1

(

N (k)
i

(

γ 2k · λ(0)
)

− N
(k)

i

(

γ 2k · λ(0)
))

≤
︸︷︷︸

variational principle (3.20)

N
(

γ 2k · λ(0)
)

+
M(k)
∑

i=1

(

N (k)
i

(

γ 2k · λ(0)
)

− N
(k)

i

(

γ 2k · λ(0)
))

≤
︸︷︷︸

Lemma 3.5

N
(

γ 2k · λ(0)
)

+
M(k)
∑

i=1

(

N
(

γ 2k · λ(0)
)

− N
(

γ 2k · λ(0)
))

= N
(

γ 2k · λ(0)
)

+ (M (k) − 1) ·
(

N
(

γ 2k · λ(0)
)

− N
(

γ 2k · λ(0)
))

.

Thus

N
(

γ 2k · λ(0)
)

− ν (ϕ) ≥ (M (k) − 1) ·
(

N
(

γ 2k · λ(0)
)

− N
(

γ 2k · λ(0)
))

,

and

δ (ϕ) ≥
(

d
(

γ 2k · λ(0)
)

− 1
)

· (M (k) − 1) .

Since the right-hand side does not depend on ϕ, we get

δ
(

γ 2k · λ(0)
)

≥
(

d
(

γ 2k · λ(0)
)

− 1
)

· (M (k) − 1) .

Finally, use

d
(

λ(0)
)

= d
(

γ 2k · λ(0)
)

,

(see Corollary 2.6 for the triangle or Corollary 4.7 for the boxes) to finish the
proof. �
We may obtain even more explicit bounds on the nodal deficiency by computing
M (k,�), as explained in the following. In the case of B(n), we can get an explicit
expression for M

(

k,B(n)
)

, noticing the relations

∀0 ≤ k ≤ n − 1; M
(

k,B(n)
)

= 2

∀k ≥ 0; M
(

k + n,B(n)
)

= 2M
(

k,B(n)
)

− 1.
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Those relations may be obtained by noticing that all k frames are formed by hyper-
planes, all parallel to each other. The number of those hyperplanes determines
M
(

k,B(n)
)

, and this number may be deduced by working out the definition of k-
frames (Definition 3.4 with (4.4), (4.5), and (4.11), and see, as an example, Fig. 7).
From those relations, we obtain

M
(

k,B(n)
)

= 2

⌊
k
n

⌋

+ 1, ∀k ≥ 0.

In the case of the triangle, we may also obtain the explicit expression for M (k,D).
Yet, as the calculation is somewhat cumbersome, we chose to provide the following
estimate. A square subdomain appears on the 4-frame partition (see Fig. 2). Getting
to the next k-frames, each unfolding at least doubles the number of this particular
subdomain (up to scaling), and hence, M (k,D) > c2k , for some constant c. In effect,
the exact calculation gives the same order of magnitude, i.e., M (k,D) = �(2k).

Applying Lemma B.1 for odd eigenvalues, where k = 0 and M (0,�) = 2, we get
δ
(

λ(0)
) ≥ d

(

λ(0)
) − 1. We may actually improve this bound by relating the nodal

deficiency with the count of boundary lattice points, as follows.

Lemma B.2 Let λ(0) ∈ σodd (�), then

δ
(

λ(0)
)

≥
∣
∣
∣ ∂−→Q

(

λ(0)
)

∩ E
∣
∣
∣− 1.

Proof Let ϕ be an eigenfunction that corresponds to λ(0) ∈ σodd (�) . For the triangle,
we have by Eq. (3.13) that

δ (ϕ) ≥
∣
∣
∣ ∂−→Q

(

λ(0)
)

∩ E
∣
∣
∣− 1,

and the same bound for the boxes, defining ∂−→Q
(

λ(0)
)

by generalizing (3.3). The
lemma now follows, since the right-hand side does not depend on ϕ. �

Note that in the course of the proof of Proposition 3.1(1) [see (3.14)], it is shown

that
∣
∣
∣ ∂−→Q

(

λ(0)
) ∩ E

∣
∣
∣ > 1, so that the bound of the lemma above is not trivial. In fact,

by a lattice analysis, one may further get that the size of this set is of order
√

λ(0).

Appendix C: The Dirichlet problem

We shortly discuss below how the methods of this work may be applied to examine
the Dirichlet eigenvalue problem on the domains treated herein. The Courant-sharp
eigenvalues of the Dirichlet right-angled isosceles triangle are already determined in
[8] using the analysis of the corresponding Dirichlet eigenvalue problem [3], done by
two of the authors of the current paper together with Aronovitch and Gnutzmann.
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Let us lay the framework for examining the Dirichlet 2-rep-tiles. The quantum
number set of the Dirichlet triangle is

Q := { (m, n) ∈ N × N| m > n} , (C.1)

and the corresponding eigenvalues are

λm,n = ‖(m, n)‖2 ; (m, n) ∈ Q.

For the boxes, the quantum number set is

Q := { �m ∈ N
n} , (C.2)

and the corresponding eigenvalues are

λ �m =
n
∑

j=1

(

γ
j−1

n m j

)2 ; �m ∈ Q. (C.3)

Note that these sets of quantumnumbers are included in those defined for theNeumann
problems. We exploit this to define O, E , and, in turn, σodd (�) and σeven (�) for �

being eitherD or B(n) exactly in the same manner as we did for the Neumann problem
(seeDefinitions 2.2 and 4.3).We obtain for theDirichlet problem the following lemma,
which may be proved similarly to its Neumann analogues, Lemmata 2.1 and 4.2.

Lemma C.1 Let λ ∈ σodd (�) (λ ∈ σeven (�) ), then its corresponding eigenfunctions
are even (odd) w.r.t. L if and only if λ is odd (even).

One should pay careful attention to the difference in phrasing of this lemma com-
paring to its Neumann analogues. Here, an eigenvalue belongs to the even spectrum
if and only if its eigenfunctions are odd. In turn, the folding transformation may be
applied only on even eigenvalues (alternatively, on odd eigenfunctions).

We use Lemma C.1 to express the nodal deficiency in terms of boundary lattice
points, adopting the notation γ (�) of the previous appendix.

Lemma C.2 Let λ ∈ σeven (�), then we have

δ (λ) = 2 · δ
(

γ (�)−2 · λ
)

+
∣
∣
∣ ∂−→Q (λ) ∩ O

∣
∣
∣− 1.

Proof Start by noting that UQ
∣
∣
Q
(

γ (�)−2·λ) is an injection and its image is E (λ) , thus

|E (λ)| = N
(

γ (�)−2 · λ
)

. (C.4)

In addition, note that

B : E (λ) → O (λ)\
(

∂−→Q (λ) ∩ O
)

B(m1, . . . , mn) = (m1 − 1, . . . , mn),
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with n = 2 in the triangle case, is a bijection [cf. (3.9)], which gives

|O (λ)| = |E (λ)| +
∣
∣
∣ ∂−→Q (λ) ∩ O

∣
∣
∣ . (C.5)

We get

N (λ) = |E (λ)| + |O (λ)| + 1 =
︸︷︷︸

(C.4), (C.5)

2 · N
(

γ (�)−2 · λ
)

+
∣
∣
∣ ∂−→Q (λ) ∩ O

∣
∣
∣− 1.

Choosing some eigenfunction ϕ of λ, we have

N (λ) = ν (ϕ) + δ (ϕ) =
︸︷︷︸

ϕ is odd

2 · ν
(

ϕ
∣
∣ 1
2�

)

+ δ (ϕ) . (C.6)

Hence

2 · N
(

γ (�)−2 · λ
)

+
∣
∣
∣ ∂−→Q (λ) ∩ O

∣
∣
∣− 1 = 2ν

(

ϕ
∣
∣ 1
2�

)

+ δ (ϕ) ,

which, in turn, leads to

δ (ϕ) = 2 · δ
(

ϕ
∣
∣ 1
2�

)

+
∣
∣
∣ ∂−→Q (λ) ∩ O

∣
∣
∣− 1. (C.7)

Since the nodal deficiency of an eigenvalue is the minimal deficiency over all corre-
sponding eigenfunctions, we get

δ (ϕ) ≥ 2 · δ
(

γ (�)−2 · λ
)

+
∣
∣
∣ ∂−→Q (λ) ∩ O

∣
∣
∣− 1.

The right-hand side is independent of ϕ, and therefore

δ (λ) ≥ 2 · δ
(

γ (�)−2 · λ
)

+
∣
∣
∣ ∂−→Q (λ) ∩ O

∣
∣
∣− 1.

We note that the opposite inequality follows by the same method, which finishes the
proof. �

We end by noting that as
∣
∣
∣ ∂−→Q

(

λ(0)
) ∩ E

∣
∣
∣ > 1 (see (3.14) and discussion at the end

of the previous appendix), the result of the lemma both supplies a non-trivial bound
on the deficiency and also rules out all even eigenvalues from being Courant-sharp
(the argument is actually the same as the one used in the proof of Proposition 3.1(1)
to rule out the Courant-sharpness of odd eigenvalues in the Neumann case).
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