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The momentum spectrum of a periodic network (quantum graph) has a band-gap structure.

We investigate the relative density of the bands or, equivalently, the probability that a randomly chosen

momentum belongs to the spectrum of the periodic network. We show that this probability exhibits

universal properties. More precisely, the probability to be in the spectrum does not depend on the edge

lengths (as long as they are generic) and is also invariant within some classes of graph topologies.

DOI: 10.1103/PhysRevLett.111.130404 PACS numbers: 03.65.�w, 73.21.Hb

The spectrum of a Schrödinger operator in a periodic
medium is calculated using the Floquet-Bloch procedure
[1]: the periodic medium is replaced with its fundamental
domain endowed with parameter-dependent quasiperiodic
boundary conditions. The resulting parameter-dependent
spectrum is called the dispersion relation, and the range of
the dispersion relation is precisely the spectrum of the
original structure. The spectrum has a band-gap structure,
and knowing the band location and sizes is of utmost
importance in the theories of condensed matter and of
dielectric and acoustic media [2–6]. Of particular recent
interest is understanding the spectrum of quantum graphs
[7,8], motivated by their applications to solid state physics
[9,10], photonic crystals [11], carbon nanostructures [12],
as well as their use as models for quantum chaos, both in
theoretical [13–18] and experimental [19,20] studies.

In the present Letter, we explore the relative size of
bands and gaps and discover a curious universality. To be
more precise, we ask the following question: what is the
probability p� that a randomly and uniformly chosen
momentum belongs to the spectrum of the graph? For
example, consider the Z1-periodic graphs of Fig. 1. How
does p� change if we change the lengths in the fundamen-
tal cell of the graph, from Fig. 1(b) to Fig. 1(c)? How does
p� change if we change the topological structure to
Fig. 1(d) or Fig. 1(e)?

Denote by p�ðKÞ the probability of a uniformly chosen
momentum k 2 ½0; K� to be in the spectrum and let p� :¼
limK!1p�ðKÞ. We find that the probability p� is well
defined and is independent of many features of the funda-
mental cell. In particular, all choices in Figs. 1(b)–1(d) lead
to the same value of p� (assuming a generic choice of edge
lengths). This is illustrated by a numerical simulation in
Fig. 2. We will derive the limiting value analytically below.
Note that the value of p� for the cell in Fig. 1(e) turns out to
be different from the others and will also be calculated.

Let us put the discussion onto a more formal footing.
We consider a Zd-periodic network of quantum wires on
which we are solving the spectral problem

�d2c

dx2
¼ k2c (1)

for complex valued functions c which are smooth on
the edges and subject to the Kirchhoff-Neumann vertex
conditions

c ðxÞ is continuous atv and
X
e2Ev

dc

dxe
ðvÞ ¼ 0; (2)

where the sum is over the edges Ev incident to the vertex v
and the derivatives are taken into the edge. We denote by �
the set of k values for which there is a solution to Eqs. (1)
and (2); this is the momentum spectrum of the graph. Now,
the definition of p� can be formally written as

p� ¼ lim
K!1p�ðKÞ ¼ lim

K!1
1

K
j� \ ½0; K�j: (3)

In this Letter, we establish several properties of the
probability p�. First of all, the above limit always exists.
In addition, if there is at least one gap in the spectrum, there
are infinitely many gaps and p� < 1. Similarly, if there is
at least one nonflat band, there are infinitely many and
p� > 0. Finally, and perhaps most strikingly, provided the
lengths of edges in the fundamental set are generic, the
value of p� is independent of their precise value. We also
find that the value of p� is independent of some details of
the cell’s topology.

FIG. 1. (a) An example of a Z1-periodic graph and (b) its funda-
mental cell; (c)–(e) are other examples of the fundamental cell.
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Secular equation and dispersion relation.—In the
Floquet-Bloch procedure for quantum graphs (see, e.g.,
Ref. [7]), we identify a set of d generators of the lattice
of periods and assign to each a quasimomentum variable
�j, j ¼ 1; . . . ; d. If the vertices vþ and v� of the funda-

mental cell are identified by the action of the jth generator,
we impose the quasiperiodic conditions

c ðvþÞ ¼ ei�jc ðv�Þ; c 0ðvþÞ ¼ �ei�jc 0ðv�Þ: (4)

We remind the reader that we use the convention of always
taking the derivatives into the edge, which explains the
minus sign in conditions (4). For example, in the funda-
mental cell of Fig. 1(b), the empty circles denote the
vertices connected through the condition of the above
type. Identifying these periodically related vertices creates
new cycles Cj, j ¼ 1; . . . ; d, on the graph, and the resulting

problem is equivalent to a graph with magnetic fluxes �j

through the corresponding cycles. For example, the result
of the Floquet-Bloch procedure for the fundamental cell in
Fig. 1(d) is equivalent to the magnetic graph in Fig. 3(a).
We denote by E the number of edges of the resulting
magnetic graph.

Expanding the solutions to Eq. (1) for the magnetic
graph in the basis of e�ikx and applying the vertex
conditions leads, after some linear algebra (see Ref. [13]),
to the secular equation

Fðk; ~�Þ :¼ detð1� eiðAþkLÞSÞ ¼ 0; (5)

where all matrices act in the space of coefficients on
directed edges; each edge gives rise to two directed edges
of equal length, and therefore all matrices have degree 2E.
The diagonal matrix L is the matrix of lengths of the
directed edges. The diagonal matrix A contains the mag-
netic fluxes �j that are put upon the edges created by

vertex identifications. The magnetic fluxes change sign
when reversing the direction of the corresponding edge.
Finally, the unitary matrix S contains directed edge-to-edge
scattering coefficients, which, for scattering at a Neumann-
Kirchhoff vertex of degree d, is equal to �1þ 2=d
for backscattering and 2=d for forward scattering
[see Eqs. (10) and (11), which show these matrices for
the graph in Fig. 3(b)]. Most importantly, for our vertex
conditions, the matrix S is independent of k [21].
Next, we apply a clever trick originally due to Barra and

Gaspard [22] (see also Ref. [23]): we introduce a new
function �ð ~�; ~�Þ such that

�ð�1 ¼ kl1; . . . ; �E ¼ klE; ~�Þ :¼ Fðk; ~�Þ; (6)

where l1; . . . ; lE are the graph edge lengths. A cursory look
at Eq. (5) reveals that the variables �e, e ¼ 1; . . . ; E need
only be known modulo 2�. For a fixed ~�, define � ~� to be
the set of solutions of

�ð ~�; ~�Þ ¼ 0; (7)

on the torus TE :¼ ½0; 2�ÞE. Then, the roots kn of
the equation Fðk; ~�Þ ¼ 0 can be interpreted as the times
(k values) of piercing of the set � ~� by the flow

~�ðkÞ ¼ kðl1; l2; . . . ; lEÞmod 2�: (8)

We now conclude that k belongs to the spectrum � of the
periodic graph if the corresponding point ~�ðkÞ belongs to
the set � ~� for some value of ~� (which itself belongs to a
d-dimensional torus). For future purposes, we define

� ¼ [
~�2½0;2�Þd

� ~�: (9)

We will now compute the set � in a simple but important
example and then proceed to discuss how the questions
about the band probability p� can be related to the prop-
erties of the set �.
Loop with an edge.—Consider the graph which consists

of a loop pierced by magnetic field with flux � and a single
edge attached; see Fig. 3(b).
The numbering of the directed edges is given in

Fig. 3(b). According to this numbering, the matrices A,
L, and S are given by

FIG. 3 (color online). (a) A graph consisting of a loop pierced
by a magnetic flux and a decoration. (b) Similar graph, but with a
single edge decoration.

FIG. 2 (color online). Numerical simulation of the conver-
gence of p�ðKÞ is shown for the three periodic graphs from
Figs. 1(b)–1(d). The limiting value p� is shown as a dashed line.
The graph lengths are normalized such that K equals the average
number of spectral bands.
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A ¼ diagð�; 0;��; 0Þ; L ¼ diagðl1; l2; l1; l2Þ; (10)

and

S ¼

2
3

2
3 � 1

3 0

0 0 0 1

� 1
3

2
3

2
3 0

2
3 � 1

3
2
3 0

0
BBBBB@

1
CCCCCA: (11)

The secular function� evaluates to (up to some nonzero
factors)

� ¼ 2 cosð�2Þ½cosð�1Þ � cosð�Þ� � sinð�1Þ sinð�2Þ: (12)

The zero sets �� for a range of values of the parameter �
are shown in Fig. 4(a). Note that it is enough to consider the
values � 2 ½0; �� as ��� ¼ �� [see Eq. (12)].

Probability to be in the spectrum.—From the discussion
above, we conclude that the probability p� for a random k
to be in the spectrum � is equal to the proportion of time
the flow defined by Eq. (8) spends in the set �. Depending
on the commensurability properties of the set of the edge
lengths flegEe¼1, the flow covers densely the entire torus or
is restricted to a flat submanifold

L :¼ span½kðl1; l2; . . .ÞmodTE: k 2 R�
¼ fx 2 RE: Mx ¼ 0gmodTE;

where M is a matrix with rational coefficients [it gives the
rational dependencies in the length sequence ðl1; . . . ; lEÞ].
In the latter case, the flow is ergodic on the submanifold L.
The probability p� is therefore the relative volume

p� ¼ volLðL \�Þ
volLðLÞ ; (13)

where the subscript L indicates that the volume should be
taken in the appropriate dimension (equal to E minus the

rank of the matrix M). Formula (13) remains valid in the
case of rationally independent lengths, when we simply
take L to be the entire torus. This immediately implies that
the probability p� remains the same as long as the edge
lengths are rationally independent.
Returning to our example, we calculate p� explicitly.

Using symmetry, we compute the area of 1=8th of the set
�, the part in the lower left corner. It is bounded by the
coordinate axes and the set ��, which from Eq. (12) we
reparametrize as

tanð�2Þ ¼ 2 cotð�1=2Þ: (14)

Therefore, the ratio in Eq. (13) evaluates to

p� ¼ 2

�2

Z �

0
tan�1½2 cotð�=2Þ�d� � 0:64: (15)

We can further prove that this universality of p� extends
to a certain class of decoration structures. These are the
decorations that attach to the base line by means of a single
edge, as in Figs. 1(a)–1(d). Proving the universality is done
by reducing the influence of the decoration on the secular
equation to a single scattering reflection phase located at
the degree one vertex of the graph in Fig. 3(b). The phase
enters the matrix S as follows:

S ¼

2
3

2
3 � 1

3 0

0 0 0 �ð�3; . . . ; �EÞ
� 1

3
2
3

2
3 0

2
3 � 1

3
2
3 0

0
BBBBB@

1
CCCCCA: (16)

While the precise form of the phase �ð�3; . . . ; �EÞ may be
complicated, its effect on the function� gets averaged out
by ergodicity. More precisely, we now assume that the
rational relations (if any) defining the submanifold L do
not involve �1 and �2. In other words, the lengths of edges
1 and 2 are rationally independent of each other and of the
lengths of the decoration’s edges. We need not assume
anything about the lengths of edges of the decoration.
One can now easily read from the determinant [see

Eqs. (5) and (6)] that the function � has the form
�ð�1; �2; . . . ; �E;�Þ ¼ �ð�1; �2 þ 1=2�ð�3; . . . ; �EÞ;�Þ,
where �ð�; �;�Þ in the right-hand side is as in Eq. (12).
Introducing the change of variables

�̂2 ¼ �2 þ 1
2�ð�3; . . . ; �EÞ; (17)

the integrals in Eq. (13) factorize. Namely, denote by T2

the torus with respect to �1 and �̂2 and by TE�2 the torus
with respect to the other variables. Note that the set �
depends only on the variables �1 and �̂2 (and is cylindrical
with respect to the other variables). The submanifold L, on
the other hand, is cylindrical with respect to �1 and �̂2.
Therefore,

p� ¼ volT2
ðT2 \�ÞvolTE�2

ðTE�2 \ LÞ
volT2

ðT2ÞvolTE�2
ðTE�2 \ LÞ ; (18)

FIG. 4 (color online). (a) The zero sets �� of �ð�1; �2;�Þ are
shown for a range of values � 2 ½0; �� using a blue (� ¼ 0) and
red (� ¼ �) color scale. (b) The set� ¼ S

�2½0;2�Þ �� is shaded,

its solid blue boundaries are the zeros of �ð�; �;� ¼ 0Þ, and the
dashed red boundaries are the zeros of �ð�; �;� ¼ �Þ. A flow
~�ðkÞ ¼ kðl1; l2Þ on the torus is indicated. The bands of the
spectrum � are the solid black segments of the flow line; the
gaps are drawn in light gray.
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reducing to the expression in Eq. (13), where L there is
identified as T2 in Eq. (18). We thus proved that for all
decorations of the type discussed above, the probability to
be in the spectrum is given by Eq. (15).

To give a final example of a different nature, for the
fundamental cell depicted in Fig. 1(e), the secular equation
can be shown to be equivalent to

sinð�1 þ �2 þ �3Þ � 1
2 sin�1 sin�2 sin�3

¼ sin�1 þ cos�ðsin�2 þ sin�3Þ; (19)

and the corresponding value of p� was calculated numeri-
cally to be 0.43.

Conclusions.—The arguments presented above apply to
all graphs and result in three general conclusions. First,
given a d-dimensional periodic graph with an arbitrary
fundamental cell, the probability p� is independent of
the specific edge lengths, as long as there are no rational
dependencies between some of them. Even if such depen-
dencies exist, the limit (3) which defines p� exists and its
exact value depends on the nature of the edge length
rational dependencies (as well as the graph’s topology).
Second, we have shown that p� is robust even within some
topological modifications of the graph—attaching a pre-
scribed class of decorations. Third, if there exists at least
one nonflat band (gap) in the spectrum, it must arise from
an open set on the torus which is a subset of � (Tn�). The
ergodic flow on the torus will pass through this set infi-
nitely many times, resulting in an infinite number of non-
flat bands (gaps) of comparable size. From Eq. (13), we can
immediately conclude that p� > 0 (p� < 1).

Our setup calls for comparison with periodic potentials
on the line, in particular, the singular potentials � and �0
[24]. For smooth periodic potentials and � potentials, the
gap sizes decrease as k ! 1, while the band lengths
converge to a constant, resulting in p� ¼ 1 [25,26]. The
�0 potential has an opposite behavior, asymptotically
equivalent to disconnecting the graph: the band lengths
decrease and the gaps approach a constant size, resulting in
p� ¼ 0 [26]. Our results show that a typical nontrivial
periodic graph has an intermediate behavior with 0<
p� < 1, as long as there is at least one gap and at least
one band. This phenomenon can be explained by replacing
the decoration with an equivalent scattering matrix. It
would be a k-dependent unitary matrix, which oscillates
between total reflection and perfect transmission, and
therefore emulates the asymptotic behavior of the � and
�0 potentials. This oscillation results in the intermediate
values 0< p� < 1. We refer the reader to Refs. [9,27,28]
for similar discussions.

One can also consider dressing the network with a
bounded periodic potential and/or changing the vertex
conditions from the ones we considered. This should not
affect our results qualitatively, as the influence of a poten-
tial or vertex conditions decreases in the k ! 1 limit.
However, this case is technically more difficult since the

k dependence in Eq. (5) would become more involved.
To overcome these difficulties, methods developed in
Refs. [29,30] might prove useful.
Some further interesting spectral questions are now

within reach. One may obtain bounds on possible sizes
of bands (gaps) and deduce the specific edge lengths for
which they are attained. Furthermore, the gap opening
mechanism, a well studied subject on its own right
[31,32], can be better understood by examining the
subdomains of the torus which do not intersect �. In
addition, the topological meaning of p� should be further
investigated—does it relate to some other graph invariants
or does it provide a brand new piece of information on the
underlying graph, its periodicity, and the topology of the
fundamental cell?
On the more applied side, it is known that the spectrum

of quantum graphs is a good approximation of the spec-
trum of thin branched structures (such as quantum wires or
photonic crystals) [33–35]. Intuitively, the approximation
remains valid for manifold eigenstates with the first mode
in the transversal direction, i.e., for momentum up to 1=�,
where � is the thickness of the manifold. In this regime, we
expect the local density of the continuous spectrum p� to
be the same as in the graph case. For higher energies, bands
corresponding to different transversal modes overlap, and
the density of gaps should decrease exponentially with
the number of transversal modes present. These heuristic
expectations are still to be verified numerically, analyti-
cally, and experimentally.
Finally, we make another step forward by extending the

discussion to eigenfunction properties. The number of
zeros of an eigenfunction was recently found to be con-
nected with the stability of the corresponding eigenvalue
with respect to magnetic perturbations [36–38]. The stabil-
ity is described by the Morse index of the eigenvalue, and
most strikingly, this Morse index can be shown to be a well
defined function on the torus, not depending on the direc-
tion of the flow (i.e., on graph edge lengths) [39]. This
leads to new and exciting findings on the distribution of
the number of zeros of graph eigenfunctions [40].
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