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a b s t r a c t

We show that the frequency spectrum of two-component elastic laminates admits a
universal structure, independent of the geometry of the periodic-cell and the specific
physical properties. The compactness of the structure enables us to rigorously derive the
maximal width, the expected width, and the density of the band-gaps – ranges of
frequencies at which waves cannot propagate. In particular, we find that the density of
these band-gaps is a universal property of classes of laminates. Rules for tailoring
laminates according to desired spectrum properties thereby follow. We show that the
frequency spectrum of various finitely deformed laminates are also endowed with the
same compact structure. Finally, we explain how our results generalize for laminates with
an arbitrary number of components, based on the form of their dispersion relation.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Wave propagation in heterogeneous media has fascinated the scientific community for decades. The inhomogeneity
causes multiple scattering, and, in turn, wave interferences that give rise to intriguing phenomena in various fields.
Of particular interest are the transition of conducting to isolating behavior of electronic crystals, localization of electro-
magnetic waves in dielectrics (Yablonovitch, 1993), and attenuation of mechanical motions in elastic media (Kushwaha et al.,
1993; Ruzzene and Baz, 1999; Garcia-Pablos et al., 2000; Henderson et al., 2001; Kim and Yang, 2014). The significance of the
latter stems from its central role in numerous applications; transducers (Smith and Auld, 1991), waveguides (Miyashita,
2005), vibration filters (Khelif et al., 2003), acoustic imaging for medical ultrasound and nondestructive testing (Olsson III
and El-Kady, 2009), noise reduction (Elser et al., 2006) and cloaking (Milton et al., 2006; Colquitt et al., 2014) are just a few
examples. The mathematical and physical richness of elastic waves in heterogeneous materials emanates from their vec-
torial nature, and their spatial dependency on additional constituents parameters.

Layered media have been extensively studied (Adams et al., 2008; Willis, 2009; Gomopoulos et al., 2010; Psarobas et al.,
2010; Walker et al., 2010; Nemat-Nasser and Srivastava, 2011; Schneider et al., 2012, 2013; Rudykh and Boyce, 2014), on
account of their relative simplicity of fabrication and theoretical modeling. This work provides new insights on the relation
between their geometry, physical properties, and frequency spectrum. First, we find a universal representation of
the spectrum, independent of the unit-cell geometry and specific constituents properties. This representation is defined
on a compact object, which enables us to rigorously derive the maximal width, the expected width, and the density of the
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band-gaps – ranges of frequencies at which waves cannot propagate. In particular, we find that the gap-density is a universal
property, namely, it is invariant under the change of the geometry of the periodic-cell, and certain changes in the con-
stituents mechanical properties. The spectral characteristics determined are identified with classes of compositions, hence
provide rules for tailoring the laminate according to desired properties of the gaps. Thus far, such calculations would ne-
cessitate the truncation of infinite spectra, thereby leading to estimates rather than accurate results.

The canvas upon which the analysis is presented is of two-component elastic laminates, also termed one-dimensional
phononic crystals. The conclusions we draw, however, extend to additional systems. By virtue of the similarity between
electromagnetic and elastodynamics wave equations for the considered geometry, our insights apply to photonic crystals as
well (Shmuel and Band, 2016). The spectrum of stratified piezoelectrics is also endowed with our compact representation,
owing to a similar dispersion relation (Qian et al., 2004). In certain cases, our analysis further applies to laminates com-
prising soft non-linear materials. Such materials are capable of undergoing finite deformations, thereby their mechanical
properties are changed, and their spectrum is rendered tunable. Our approach facilitates characterizing this tunability, as
demonstrated in the forthcoming. We explain how our results generalize for laminates with an arbitrary number of com-
ponents, based on the form of their dispersion relation.

This paper is composed as follows. Section 2 derives the equation governing elastic wave propagation in two-component
laminates. Section 3 introduces a universal structure for the spectrum of the laminates by means of a dynamic flow on a
compact object. Using this structure, Section 4 analyzes spectral characteristics and provides optimization results of the
band-gaps. The applicability of the analysis to particular cases of elastic waves in finitely deformed laminates is demon-
strated in Section 5. The paper is concluded with a summary of our main results and our future objectives in Section 6.

2. Wave propagation in laminates

The formulation of elastic wave propagation in layered composites is found in various sources in the literature (e.g.,
Ziegler, 1977); the standard approach is summarized here, for completeness.

Consider an infinite laminate made out of two alternating linearly elastic layers (Fig. 1a), repeating periodically in the
direction n. We denote the layers with 1 and 2, and their associated quantities with superscript ( )p , p¼1 and 2, respectively.
In the absence of body forces, Cauchy equations of motion governing the displacement field ( )( ) tu x,p in each layer read (see,
for instance, Graff, 1975)

( )λ μ μ ρ+ ∇∇· + ∇ = ‥
( )( ) ( ) ( ) ( ) ( ) ( ) ( )u u u . 1p p p p p p p2

Herein, λ( )p and μ( )p are the Lamé coefficients of each layer, where ρ( )p is the mass density. Time-harmonic plane waves
propagating along the lamination direction are of the form

( )= ( )( ) ( ) · −( ) ( )eu m , 2p p ik c tn xp p

where ( )k p and ( )c p are the wavenumber and phase velocity in each layer, respectively. The frequency of the waves, ω, is thus
ω = ( ) ( )c kp p . The relation between the phase velocity and the polarization of the waves, ( )m p , is determined through sub-
stituting Eq. (2) into Eq. (1)

Fig. 1. (a) A laminate comprising two alternating layers, repeated periodically in direction n. (b) Propagating waves, associated with frequencies for which
η < 1. (c) Attenuating waves, associated with frequencies for which η > 1. (d) Representative band structure of an exemplary laminate. Colored regions
denote band-gaps. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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( )( ) ( )λ μ μ ρ+ · + − = ( )( ) ( ) ( ) ( ) ( ) ( ) ( )cm n n m 0. 3
p p p p p p p2

Eq. (3) implies that either ( )m p is perpendicular to n, for which

μ
ρ= ≕

( )
( )

( )

( )
( )c c ,

4
p

p

p T
p

or that ( )m p is parallel to n, and then

λ μ
ρ= + ≕

( )
( )

( ) ( )

( )
( )c c2 .

5
p

p p

p L
p

At planes perpendicular to n, the resulting traction is

( )μ= ˜ ( )( ) ( ) ( ) ( ) · −( ) ( )ik et m , 6p p p p ik c tn xp p

where μ μ˜ =( ) ( )p p for the former mode of transverse waves, and μ λ μ˜ = +( ) ( ) ( )2p p p for the latter mode of longitudinal waves.
From Eqs. (2) and (6), the relation between the traction and the displacement at the boundaries of each layer is

μ
μ

( + )
( + )

= ˜
− ˜
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where ( )h p is the thickness of layer p, and the time dependency were omitted, for brevity. The matrix in Eq. (7), which we
denote by ( )T p , is known as the layer transfer matrix. At the interfaces between the layers, the traction and the displacement
fields must be continuous, therefore
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= ( + )
( + ) ( )
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Applying Eq. (7) twice allows to relate the traction and the displacement fields at the boundaries of the repetitive cell,
providing

( + )
( + )
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where = +( ) ( )h h h1 2 . In conjunction with Eq. (9), the fields at the boundaries are also related via the Bloch–Floquet con-
dition, requiring them to be identical up to a phase shift, namely
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where kB is called the Bloch wavenumber. Combining Eqs. (9) and (10) constitutes an eigenvalue problem, whose solution
delivers the following dispersion relation (Rytov, 1956)

η = ( )k hcos , 11B

with

η ω ω γ ω ω= − ( )
( )

( )
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where γ = ( + )ρ
ρ

ρ
ρ

( ) ( )
( ) ( )

( ) ( )
( ) ( )

c
c

c
c

1
2

1 1

2 2

2 2

1 1 quantifies the contrast between the constituents impedance. Eq. (11) governs the motion of the

laminate, by relating the velocity, the length, and the frequency of the Bloch-waves. The frequency spectrum is obtained by
solving Eq. (11) for values of kB in the irreducible 1st Brillouin zone π≤ ≤k h0 B (Farzbod and Leamy, 2011). Waves propagate
without attenuation when η < 1 (Fig. 1b). Conversely, band-gaps correspond to ranges of frequencies of evanescent waves,
for which η > 1 (Fig. 1c). A representative band structure of an exemplary laminate is illustrated in Fig. 1d, where the
colored regions denote the band-gaps. Notwithstanding numerous analyses of Eq. (11), new insights about the spectrum are
found, owing to the following new approach.

3. A universal spectrum structure

Our analysis of the spectrum benefits from a technique developed for the study of Schrödinger operators on metric
graphs (Barra and Gaspard, 2000; Berkolaiko and Winn, 2010; Band and Berkolaiko, 2013). The system we consider

G. Shmuel, R. Band / J. Mech. Phys. Solids 92 (2016) 127–136 129



necessitates a suitable variation of that approach, as follows. Upon defining the variables

ζ ω≔ ( )
( )

( )

( )
h

c
, 13

p
p

p

one can write η as a function of γ, ζ( )1 and ζ( )2 , namely

( )η ζ ζ γ ζ ζ γ ζ ζ≔ − ( )( ) ( ) ( ) ( ) ( ) ( ), ; cos cos sin sin . 141 2 1 2 1 2

Fixing γ, we observe that η is a 2π-periodic function of ζ( )1 and ζ( )2 . Therefore, we can consider η as a function on a torus of
edge length 2π, whose coordinates are ζ ζ( )( ) ( ),1 2 . We note that this function is independent of the thickness of the layers and
their specific physical properties. For illustration, contours of representative level sets of η in the range η < 1 are plotted in
Fig. 2a, at γ = 5, where each curve corresponds to a real value of kB. Whether kB is real and corresponds to a pass-band, or
imaginary and corresponds to a band-gap, depends purely on the absolute value η . Eq. (12) shows that this absolute value
η ζ ζ( )( ) ( ),1 2 is invariant under the transformations ζ ζ π→ +( ) ( )p p . Hence, we exploit this symmetry to make a further re-
duction, and fold the torus into a π-periodic torus. We denote the new torus by 7 , and denote by ' its subdomain where
η ζ ζ( ) >( ) ( ), 11 2 , i.e., where Eq. (11) is satisfied with imaginary kB. Fig. 2b shows this torus as a square whose opposite edges
are identified, and depicts representative domains of ' which correspond to exemplary values of γ. Specifically, the gray,
blue, and orange regions correspond to γ = 2, 5 and 10, respectively. The boundary of ' consists of a lower curve and an
upper curve, which we denote by *l and *u, respectively. On these curves η = − 1. To show that, we get from Eq. (14)

( ) ( )η ζ ζ γ ζ ζ γ ζ ζ ζ ζ ζ ζ ζ ζ= − ≤ − = + ≤ ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ; cos cos sin sin cos cos sin sin cos 1, 151 2 1 2 1 2 1 2 1 2 1 2

bearing in mind that ζ ζ π( ) ∈ [ )( ) ( ), 0,1 2 2 on 7 and γ ≥ 1. By definition, η > 1 on ' and this combined with the last inequality
implies that η < − 1 on '. From the continuity of η we deduce that indeed η = − 1 on *l and *u. Plugging this value into
Eq. (14) provides the following expressions for the curves:

( )ζ π ζ γ γ ζ
γ ζ

= − ± −
+ − ( )

( )
( ) ( )

( )

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥arccos

cos 1 sin
1 1 sin

,
16

2
1 2 2 1

2 2 1

where the upper (resp. lower) curve *u (resp. *l) corresponds to the plus (resp. minus) sign in the numerator. The function η
on 7 is invariant under π-rotation of 7 around its middle, given by the transformation ζ ζ π ζ π ζ( ) → ( − − )( ) ( ) ( ) ( ), ,1 2 1 2 , and
under reflection across the line ζ π ζ= −( ) ( )2 1 , by the transformation ζ ζ π ζ π ζ( ) → ( − − )( ) ( ) ( ) ( ), ,1 2 2 1 . Each of those transfor-
mations leaves the domain ' invariant and exchanges between its boundary curves *l and *u.

The torus structure is endowed with a dynamic flow ζ ω→( ) which characterizes the spectrum, when Eq. (13) is interpreted
as

ζ ω ω π→ = ·
( )

( )

( )

( )

( )
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

h
c

h
c

, mod .
17

1

1

2

2

Fig. 2. (a) Representative contours on the torus at which η ζ ζ( ) <( ) ( ), 11 2 , when γ = 5. Each curve is identified with a real value of kB . (b) Representative
domains of ' over the square-identification of the folded torus. Gray, blue, and orange regions correspond to γ = 2, 5 and 10, respectively. Red dots
designate the intersections of the flow with the boundary of ', when γ = 2. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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The frequency ω has the role of a time-like parameter. Band-gaps are identified with values of ω for which the flow ζ ω→( )
coincides with '. For illustration, the diagonal lines in Fig. 2b represent a part of an exemplary flow; its intersections with
the boundary of ' at γ¼2 are marked with red dots. The direction of the flow on the torus is given by the ratio

= ( )
( )

( )

( )

( )a h
h

c
c

. 18f

2

1

1

2

For the generic case of an irrational ratio, the flow covers the torus ergodically, with a uniform measure (Katok and Has-
selblatt, 1996), as illustrated in the supplementary data available online. Using the ergodicity of the flow, we may replace
spectral averages by averaging over a compact object, namely, the torus.

4. Analysis on the torus

The first question we address is: What is the probability that a randomly chosen frequency is within a band-gap? A
determination of the probability requires the calculation of the relative sizes of the band-gaps and the pass-bands. In the
frequency domain, it is a difficult task, perhaps impossible, to determine how this gap-density converges as the frequency
interval approaches infinity. However, over the compact torus, the density of the gaps is merely the relative area of ' in 7 ; its
calculation is a simple integral of the closed-form expression

∫π ζ− ( )
π

( )*1 2 d . 19l2 0
1

We arrive at a counter-intuitive and peculiar result – at a prescribed γ, the gap-density is completely independent of the
volume fractions of the layers. To illustrate this statement, consider the following example. Compose a laminate of equal
volume fractions of materials ( )1 and ( )2 . Compose a second laminate by introducing an infinitesimal amount of ( )1 into a
bulk of ( )2 . The probability that an arbitrary frequency pertains to a band-gap is identical in the two laminates.

We demonstrate the calculation of the gap-density, with the following example. We evaluate numerically the dispersion
relation in Eq. (11) over increasing segments of frequencies; at each segment, we calculate the ratio between the total length
of its band-gaps and the segment length; we carry out the calculation for four elastic laminates, which differ by the layers
properties and volume fractions. The mass densities, shear moduli and thicknesses of layer (1) are specified in Table 1. The
properties of layer (2) are fixed at ρ =( ) 1000 kg/m2 3 and μ =( ) 200 kPa2 , where ( )h 2 is chosen such that + =( ) ( )h h 1 mm1 2 . The
calculation is illustrated in Fig. 3a. Therein, the gray curve with circle marks, red curve with star marks, green curve with
triangle marks, and the blue curve with diamond marks correspond to layer ( )1 properties in columns a b c, , and d of Table 1,
respectively. We observe the convergence of these curves to the ratio between the subdomain and area of the torus, cal-
culated via Eq. (19) and denoted by the black dashed line. Examination of the flow on the torus reveals that the rate of
convergence becomes slower as af approaches a rational number, zero, or infinity. In the limit of these cases the flow covers
only a one-dimensional subspace of 7 , which depends on af. Once af slightly deviates from these cases, the flow would
deviate from the corresponding one-dimensional subspace, and will eventually cover a dense subset of the torus. The closer
the af is to these values, the slower the flow deviates and the slower the band-gap ratio converges. This is demonstrated by
considering again a laminate whose layer (1) properties are given in column d. We compare the case when

= =( ) ( )h h0.2, 0.81 2 , with the case = =( ) ( )h h0.01, 0.991 2 , denoted Fig. 3b by the blue curve with diamond marks, and the
brown curve with asterisk marks, respectively. The physical properties of layer (2) are again ρ =( ) 1000 kg/m2 3 and
μ =( ) 200 kPa2 .

The widths of the gaps are investigated next. We recognize that these widths, denoted by ωΔ , are related to lengths of
intervals directed along the flow, denoted by ζΔ , whose endpoints lie on *u and *l (see Fig. 2b), via

( ) ( )
ω κ κ

κ κ
ζΔ =

+
Δ

( )

( ) ( )

( ) ( )
,

20

1 2

1 2 2 2

where

κ = ( )( ) ( ) ( )c h/ . 21p p p

Table 1
Mass-densities, shear moduli and thicknesses of layer (1).

Material a b c d

ρ (kg/m3) 2000 500 2000 500
μ (kPa) 7.18 28.7 1392 5571
h (mm) 0.8 0.6 0.4 0.2
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We associate each length ζΔ with the parameters af and bf which characterize the line equation of its corresponding flow
interval

ζ ζ= + ( )( ) ( )a b , 22f f
2 1

with π π∈ [ ∞) ∈ [− ]a b a0, , ,f f f . These observations, together with the derived expressions for the curves *u and *l, enable
determining the width of the gaps, and relating it to the physical and geometrical properties of the laminate. As the whole
spectrum is encapsulated in the torus, we are able, in turn, to formulate optimization problems rigorously.

We start with the 1st gap, whose width maximization is of practical importance, being the one which is most often
realized experimentally (Gomopoulos et al., 2010; Schneider et al., 2012, 2013). We would like to know: given two materials,
what is the microstructure which maximizes the 1st gap? The 1st gap is identified with the flow line emanating from the
origin. Therefore, we seek the slope af which maximizes the right-hand side of Eq. (20), at =b 0f . The problem is interpreted
as a search for an optimal ( ) ( )h h/2 1 at fixed ( )c p .

To that end, the calculation over the torus serves as an alternative to a calculation of the 1st gap-width for all possible
compositions, via a partial spectra evaluation. Calculations over the torus become a necessity when the whole spectrum
needs to be analyzed. Without proving that the spectrum can be encapsulated in the torus, there is not any way to know if
calculations over a necessarily truncated subdomain of an infinite frequency domain are indeed close to the limit. This is the
case for the gap-density, as for what follows, starting with the greatest gap width. We address two different practical
scenarios. The first scenario considers a given laminate, with prescribed geometrical and physical properties. The objective is
delivered by finding the maximal ζΔ within the segments along flows of the prescribed slope af, i.e., maximizing over
translations bf, and plugging it into Eq. (20). We emphasize that this optimization is defined solely over ', in an exact
manner. Contrarily, a direct approach will require the evaluation of an infinite spectrum; since in practice it must be
truncated, such approach provides only an approximation. The second scenario we consider is of a laminate with prescribed
constituents, before choosing their volume fractions. In this case, the maximal gap is obtained by maximizing the right-hand
side of Eq. (20), over all slopes af and translations bf.

We supplement the discussion regarding optimality noting that our approach allows for quick calculation of bounds on
the gaps-width, based on bounding ζΔ . We find that for γ γ< cr, where γ ≈ 5.45cr , the maximal ζΔ , denoted ζΔ max, is obtained
at the intersection of ' with ζ π=( ) /21 . Utilizing Eq. (16), it is expressed in closed-form as

ζ π γ
γΔ = − −

( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟2 arccos

1
.

23
max

2

Eq. (20) yields the following upper bound on the band-gap width:

ω κ κ
κ κ

ζΔ <
+

Δ
( )

( ) ( )

( ) ( )
,

24

1 2

1 2
max

2 2

from which the following two quick bounds are obtained:

( )ω
κ κ

ζ ω κ κ ζΔ < Δ Δ < Δ
( )

( ) ( )
( ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

max ,

2
and min , .

25

1 2

max
1 2

max

Fig. 3. (a) Numerical simulation of the gap-density convergence of four laminates. The gray curve with circle marks, red curve with star marks, green curve
with triangle marks, and the blue curve with diamond marks, respectively, correspond to layer (1) whose properties are given in columns a b c, , and d in
Table 1, respectively. The properties of layer (2) are ρ =( ) 1000 kg/m2 3 and μ =( ) 200 kPa2 , and = −( ) ( )h h12 1 . The black dashed curve corresponds to the
calculation of the ratio between the area of ' and 7 . (b) A comparison of the gap-density convergence of layer (1) whose properties are given in column d,
when =( )h 0.2 mm1 and =( )h 0.01 mm1 , denoted by the blue curve with diamond marks, and the brown curve with asterisk marks, respectively. The
properties of layer (2) are the same as in Fig. 3a. (For interpretation of the references to color in this figure caption, the reader is referred to the web version
of this paper.)
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When γ γ> cr, associated with large impedance contrasts, ζΔ max is attained along the diagonal, for which ζ ζ=( ) ( )1 2 . The
corresponding value for ζΔ max is more cumbersome than the one in (23) and we do not specify it here. Yet, the bounds (24)–
(25) apply in this case as well, once the corresponding value of ζΔ max is plugged in. We note that for γ γ< cr, the bound on the
gap width is obtained as a limiting case of κ → ∞( )p for p¼1 or 2. For γ γ> cr, the bound is actually realizable as a maximal gap
width of laminate with κ κ=( ) ( )1 2 . Eqs. (24)–(25) provide explicit expressions for the maximal gap width in terms of the
laminate properties. To the best of our knowledge, such bounds were not accessible so far.

The analysis is concluded with expressions for statistical characteristics of the spectrum, evaluated exactly using our
representation. Specifically, the expected value of the gap-width of a prescribed system is determined via

κ
+ ( )

( )

a1
E,

26f

1

2

and the variance is calculated by

( )( ) ∫ ( )κ
π

ζ
+ +

Δ −
( )π

π( )

=−

= ⎡⎣ ⎤⎦
a a

b b
1 1

E d ,
27f f b a

b
f f

1

2
2

f f

f
2

with ∫ ζ= Δ ( )π π
π

( + ) =−
=

b bE d
a b a

b
f f

1
1 f f f

f and κ κ= ( ) ( )a /f
1 2 . We emphasize again that deriving these results using a direct approach

involves calculations over truncations of an infinite spectrum, thereby leading to estimates rather than rigorous results.

5. Waves superposed on finite deformations

Soft materials capable of sustaining large strains attract a growing interest by virtue of the ability to control their
functionalities via deformations (Mullin et al., 2007; Wang et al., 2014; Robertson et al., 2015). Interestingly, in certain
setting, our analysis applies to laminates whose layers are made out of such constituents (deBotton, 2005; Rudykh and
Boyce, 2014). Specifically, as shown in the sequel, the dispersion relation of small-amplitude waves superposed on certain
large deformations is endowed with the torus representation. The resultant strains affect the dispersion relation, and thus
render the spectrum tunable. In addition to the applicability of all the results mentioned in previous sections, our re-
presentation further provides a convenient tool for characterizing this tunability. This is demonstrated by way of example,
using the theory of incremental dynamics of pre-deformed elastic materials. The formulation is given concisely, as our focus
is on the dispersion relation; a comprehensive description of the theory is found, e.g., in Ogden (1997) and Destrade and
Saccomandi (2007).

Consider an infinite laminate made out of alternating layers of two soft materials. The laminate is subjected to a pre-
scribed force in the lamination direction, and is free of mechanical loading in the perpendicular directions. We introduce a
Cartesian system in which x1 is along the lamination direction. In these coordinates, the resulting piecewise-homogeneous
deformation is compatible with the following representation of its gradient, F, in each layer:

λ λ λ= ( )
( ) ( ) ( ) ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦F diag , , . 28
p p p p

1 2 3

F transforms line elements between the initial and deformed configurations. Accordingly, the stretch ratio λ( )p
1 relates the

resultant thickness of each layer, i.e., ( )h p , to the thickness before the deformation, say ( )H p , via λ=( ) ( ) ( )h Hp p p
1 . Assuming a

perfect bonding between the layers, the stretch ratios in the plane of the layers are identical, namely

λ λ λ λ λ λ= ≕ = ≕ ( )( ) ( ) ( ) ( ), . 292
1

2
2

2 3
1

3
2

3

Once the constitutive behavior of the constituents is specified in terms of a strain-energy function Ψ ( )F , one can determine
the stretch ratios as follows. The stretches λ( )

1
1 and λ( )

1
2 are related via the continuity of the traction across the interface

between the layers. In turn, these stretches are connected to the prescribed force by the requirement that its area density
equals the traction on that surface. The remaining stretches are determined via the force-free boundary conditions at the
perpendicular directions. Therefore, we treat the stretches henceforth as known quantities.

On top of the deformed configuration, we consider an incremental time-dependent displacement field ( )tu x, . We write
the equations governing for the the field in each layer ( )( ) tu x,p in the form

( ) ρ∇· ∇ = ‥
( )( ) ( ) ( ) ( )* u u , 30p p p p

where, in components, ( )* p is

Ψ= ∂
∂ ∂ ( )α

α β
β

( )
( )

( ) ( ) ( )* F
F F

F
F

1
det

.
31ijkl

p
p j

p
p

i k
l
p

2

The current mass-density is related to the initial density ρ0 via ρ ρ= F/det0 . For simplicity, we focus on transverse motions,
where a similar derivation is feasible for longitudinal motions. Accordingly, ( ) = ( )t u x tu x j, ,2 1 , where j is a unit-vector along
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x2, and Eq. (30) reduces to

ρ= ‥
( )( ) ( ) ( ) ( )* u u . 32

p p p p
2121 2,11 2

Eq. (32) implies that the phase velocity equals

ρ= ( )( ) ( ) ( )*c / , 33p p p
2121

hence depends on the underlying deformation and the constitutive law of the layer. One can now follow precisely the same
scheme described in Section 2 to derive the dispersion relation, and recover Eq. (11). However, the physical and geometrical
quantities therein are now functions of the finite deformation, and hence render the spectrum tunable. The effect of this
dependency is explored next, when considering specific constitutive relations, using our compact representation. While we
use Neo-Hookean and Gentian energy functions, the applicability of our representation is independent of the form of Ψ ( )( ) Fp ,
and relies only on the fact that the bias fields are piecewise-constant.

Neo-Hookean layers are governed by the energy

Ψ μ μ λ= − − + ( )
( )

( )
( )

( )
( )⎛

⎝⎜
⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟F F F F F

2
tr 3 ln det

2
ln det ,

34
p

p
p

p
T 2

for which

λ μ
λ λ λ

=
( )

( )
( ) ( )

( )* .
35

p
p p

p2121
1

1 2 3

2

A simple calculation shows that κ ( )p and the flow direction are unaffected by the deformation, namely,

κ
λ μ ρ

λ
μ ρ

= = =
( )

( )
( )

( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )
c
h H H

/ /
.

36
p

p

p

p p p

p p

p p

p
1 0

1

0

To examine how the domain of ' is changed by the deformation, assume without loss of generality that ρ μ ρ μ>( ) ( ) ( ) ( )1 1 2 2 ; if
λ λ>( ) ( )
1

1
1

2 (resp. λ λ<( ) ( )
1

1
1

2 ), then γ is greater (resp. less) than its value before the deformation, and the area of ' increases
(resp. decreases). Together with the observation made on a and κ ( )p , this implies that the band-gap widths increase (resp.
decrease), while the middle frequency of each band-gap is unchanged.

Gentian layers are governed by Gent (1996)

Ψ μ μ λ= − − − + ( )
( )

( )
( ) ( )

( )
( )

( )⎛
⎝⎜⎜

⎞
⎠⎟⎟

⎛
⎝⎜⎜

⎞
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J
J

F F F F F
2
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for which

λ μ
λ λ λ

λ λ λ=
− + + −

( )

( )
( ) ( )
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J
1

3
/ .

38

p
p p

p

m
p

p
2121

1

1 2
2

3
2 1 2 3

2

2

The dimensionless parameter ∈ ( ∞]J 0,m models the rapid stiffening in elastomers when approaching a limiting strain.
Assume first that = ≕( ) ( )J J Jm m m

1 2 . Also assume that λ λ λ= ≕( ) ( )
1

1
1

2
1, e.g., when the layers are incompressible. In this case, the

deformation does not modify the impedance contrast γ, and hence the gap domain ' remains unchanged. The deformation
also preserves the flow direction af, however it modifies the flow rate, ζ ω→

d /d , which is multiplied by
λ λ λ− ( + + − ) J1 3 / m1

2
2
2

3
2 . Consequently, the pertinent frequencies are multiplied by the inverse of this factor. This factor is a

monotonically decreasing function of F Ftr T with a range ( ]0, 1 , as the limiting strain modeled by Jm reflects
λ λ λ+ + − < J3 m1

2
2
2

3
2 . Therefore, the frequency spectrum is shifted towards higher frequencies, and its gaps are rendered

wider by that factor. When ≠( ) ( )J Jm m
1 2 or λ λ≠( ) ( )1 2 , the flow direction changes with the deformation, and so does the im-

pedance contrast. Thus, the spectrum is rendered tunable in a more intricate manner. The exploration of the specific way it
takes effect depending on the relation between ( )Jm

p and λ = ‥( ) i, 1 3,i
p is beyond our scope. We note, however, that following

the way the aforementioned relations enter Eq. (18), the flow lines will rotate either clockwise or counter-clockwise, and the
length of their intersections with the resultant domain of ' will accordingly change. The analysis of the resultant ωΔ is
rendered simpler, by virtue of the torus universality, as for each γ, the relation between ζΔ and af is unchanged. Therefore,
one can calculate the corresponding slope af in terms of ( )Jm

p and λ = ‥( ) i, 1 3i
p , and employ a fixed calculation of ζΔ + a/ 1 f

2 ,
to evaluate Eq. (20).

There are additional soft systems for which “small on large”waves are described by Eq. (11); Shmuel and deBotton (2012)
have derived a dispersion relation with the same functional form when analyzing the thickness vibrations of finitely de-
formed dielectric elastomers. These materials undergo finite strains and change their physical properties by application of
electric stimuli (Pelrine et al., 2000; Zhao and Suo, 2010). Hence, the torus representation holds in this case as well, and
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subsequently, the validity of our previous observations is established. In particular, our representation provides a platform
for an investigation of the electric field effect on the spectrum.

We argue that under the similar setting to those considered by Shmuel and deBotton (2012), magnetorehological elas-
tomers (Ginder et al., 1999) admit the same dispersion relation. These materials consist of ferromagnetic particles embedded
in a rubber-like matrix. Application of magnetic stimuli induces magnetic forces and moments on the inclusions. This
changes the microstructure of the material, and, in turn, alters its configuration and stiffness. When the particles are dis-
turbed in a chain-like manner, the material admits a laminated structure (Galipeau and Ponte Castañeda, 2013; Rudykh and
Bertoldi, 2013). We argue that our analysis also applies to these materials, in light of the similarly with soft dielectrics. First,
note that under a quasi-magneto/electrostatic approximation, the governing electric and magnetic fields are differentially
similar – the magnetic induction and the electric displacement fields are divergence-free, the magnetic and the electric
fields are curl-free. Second, the mechanical response of both materials is governed by an elastomeric substance. The only
difference is the relation between the magnetic load and the resultant stretch, on account of a different magnetic con-
stitutive behavior. Therefore, under similar settings, the propagation of superposed waves is governed by the same dis-
persion relation. The applicability of our analysis thereby follows.

6. Concluding remarks

We complete this paper with a summary of our main conclusions, and a glance towards future challenges. We found that
the frequency spectrum of periodic laminates admits a universal structure, independent of the geometry of their unit-cell
and specific physical properties. This structure is a two-dimensional torus on which a linear flow is defined. This enabled us
to derive universal properties of the spectrum, and rigorously determine the density of the band-gaps, their expected and
maximal widths, and relate these to particular compositions. Thus far, the quantities above were either unknown, or de-
termined in an approximate manner. We showed that our conclusions successfully apply to various finitely deformed
materials, of tunable spectrum. We utilized our framework to characterize this tunability.

Our future objective is to extend this approach to analyze interesting generalizations of the considered systems. One such
generalization is a laminate consisting of N-constituents (Lekner, 1994). Its dispersion relation is a sum of products of
functions, whose arguments are ω ( ) ( )h c/p p , = ‥p N1 (Shen and Cao, 2000). By change of variables in the form of Eq. (13), we
can write η as a function which is 2π-periodic in N variables. Thus, a universal structure over a N-dimensional torus is
obtained, and we establish a platform for analysis of N-component laminates. Materials which are periodic in more than one
direction are also of interest. In these composites, a closed-form expression for the dispersion relation is not available, and
series-type solutions are sought (Kushwaha et al., 1993; Vasseur et al., 2008). It is an imperative challenge to establish
counterparts of the results reported herein for such materials.
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