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Abstract
We present a method which enables one to construct isospectral objects,
such as quantum graphs and drums. One aspect of the method is based
on representation theory arguments which are shown and proved. The
complementary part concerns techniques of assembly which are both stated
generally and demonstrated. For this purpose, quantum graphs are grist to the
mill. We develop the intuition that stands behind the construction as well as
the practical skills of producing isospectral objects. We discuss the theoretical
implications which include Sunada’s theorem of isospectrality (Sunada 1985
Ann. Math. 121 169) arising as a particular case of this method. A gallery of
new isospectral examples is presented, and some known examples are shown
to result from our theory.

PACS numbers: 02.30.Jr, 02.40.Sf, 02.20.−a
Mathematics Subject Classification: 35P05, 58J32, 58J53

1. Introduction

In 1966, Marc Kac asked his famous question, ‘Can one hear the shape of a drum?’ [1].
This question can be rephrased as ‘does the Laplacian on every planar domain with Dirichlet
boundary conditions have a unique spectrum?’. Ever since the time when Kac posed this
fascinating question, physicists and mathematicians alike have attacked the problem from
various angles. Attempts were made both to reconstruct the shape of an object from its
spectrum and to find different objects that are isospectral, i.e., have the same spectrum. The
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interested reader can find an elaborate summary of these efforts in [1–13]. In 1985, Sunada
presented a theorem that describes a method for constructing isospectral Riemannian manifolds
[2]. Buser and later Berard expanded on this theorem and offered a proof based on the concept
of transplantation, as summarized by Brooks [3–5]. Over the years, several pairs of isospectral
objects were found, but these were not planar domains, and therefore did not serve as an exact
answer to Kac’s question. In 1992, by applying an extension of Sunada’s theorem, Gordon,
Webb and Wolpert were able to finally answer Kac’s question as it related to drums, presenting
the first pair of isospectral two-dimensional planar domains [6, 7]. Buser et al later obtained a
set of 17 isospectral families of planar domains, both Neumann and Dirichlet isospectral [8].
Jakobson et al and Levitin et al extended the choice of boundary conditions by considering
objects with alternating boundary conditions, and found sets of four planar domains that are
mutually isospectral [9, 10]. In the late 1990s, Gutkin and Smilansky reposed and answered
Kac’s question as it applies to quantum graphs [24]. Recently, Band et al have presented a
pair of isospectral quantum graphs [26], whose construction was generalized to the method
described in this paper.

We begin by reviewing the terminology and the relevant definitions for quantum graphs.
In section 3, we rederive the graphs, constructed in [26], to help the reader gain an intuitive
understanding of the method. Once the reader is familiar with the notions used, we formalize
a theorem (section 4) along with a corollary, which together form the crux of the construction
method. With the theorem in hand, we return to the basic example presented in section 3
and show that the isospectral pair can be expanded indefinitely—section 5. After describing
the assembly process rigorously in section 6, we devote section 7 to further investigating the
theoretical implications of the theory. Finally, in sections 8 and 9 we demonstrate how to
apply the construction to other types of objects and present a variety of examples of graphs,
drums and manifolds.

2. Quantum graphs

A graph � consists of a finite set of vertices V = {vi} and a finite set E = {ej } of edges
connecting the vertices. Each edge e can be identified with a pair of vertices {vi, vk}. We
denote by Ev the set of all edges incident to the vertex v. The degree (valency) of the vertex
is dv = |Ev|. This becomes a metric graph if each edge is assigned a finite length le > 0. It is
then possible to identify an edge e with a finite segment [0, le] of the real line having the natural
coordinate xe along it. In this context, a function on the graph is a vector f = (f |e1 , . . . , f |e|E|)

of functions f |ej
: [0, lej

] → C on the edges. Notice that in general it is not required that for
v ∈ V and e, e′ ∈ Ev the functions f |e and f |e′ agree on v.

To obtain a quantum graph, we consider the following Hilbert space: L2(�) = ⊕|E|
j=1

L2([0, lej
]) with the inner product 〈f, g〉 = ∑|E|

j=1

∫ lej
0 f |ej

· g|ej
dxej

. The operator which
draws our interest is the negative Laplacian: −�f = (−f ′′|e1 , . . . ,−f ′′|e|E|

)
. The domain of

definition for this operator is the Sobolev space, W 2,2(�), the space of all functions f such
that f |ej

∈ W 2,2([0, lej
]) for all 1 � j � |E|. In addition, we require the functions to obey

certain boundary conditions stated a priori: for a vertex v ∈ V , we consider homogeneous
boundary conditions which involve the function’s values and derivatives at the vertex of the
form Av · f |v + Bv · f ′|v = 0. Here Av and Bv are dv × dv complex matrices, f |v is the vector(
f |e1(v), . . . , f |edv

(v)
)T

of the vertex values of the function along each edge incident to v and

f ′|v = (
f ′|e1(v), . . . , f ′|edv

(v)
)T

is the vector of outgoing derivatives of f taken at the vertex.
Before stating the boundary conditions, the graph is merely a collection of independent edges
with functions defined separately on each edge. The connectivity of the graph is manifested
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through the boundary conditions, which are local in nature: we relate the values of the function
and its derivatives at each vertex, but no relation is assumed between these values on different
vertices, or along the edges. In summary, a quantum graph is a metric graph equipped with
a differential operator and with homogeneous differential boundary conditions at the vertices.
One can generalize the metric Laplacian by including a potential or a magnetic flux defined
on the edges. However, these generalizations will not be addressed here, and the interested
reader is referred to the reviews [14, 15].

A standard choice of boundary condition which we adopt is the so-called Neumann
boundary condition5:

• agrees on the vertices: ∀ v ∈ V ∀ e, e′ ∈ Ev : f |e(v) = f |e′(v).
• The sum of outgoing derivatives at each vertex is zero: ∀ v ∈ V :

∑
e∈Ev

f ′|e(v) = 0.

It is worth noting that a Neumann vertex of valency 2 can be added at (or removed from)
any point along an edge without changing the eigenspaces of the Laplacian, and thus, from
a spectral point of view, without really changing the graph. Thus, loops (edges connecting a
vertex to itself) and parallel edges (edges with the same endpoints) can be eliminated by the
introduction of such ‘dummy’ vertices—we shall occasionally exploit this to simplify notation
by assuming, without loss of generality, that we deal with graphs with no loops or parallel
edges. A possible choice for matrices that correspond to the Neumann boundary conditions is

Av =

⎛⎜⎜⎜⎝
1 −1

. . .
. . .

1 −1
0 · · · 0 0

⎞⎟⎟⎟⎠ Bv =

⎛⎜⎜⎜⎝
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
1 1 · · · 1

⎞⎟⎟⎟⎠ .

For a vertex of degree 1, the Neumann boundary condition is expressed by the matrices
Av = (0), Bv = (1) and means that the derivative of the function equals zero at this vertex.
Another useful boundary condition for a degree 1 vertex is the Dirichlet boundary condition,
which means that the function vanishes at this vertex: Av = (1), Bv = (0). It can be seen that
the Neumann condition renders the Laplacian self-adjoint, which guarantees that its spectrum
is real. In general, Kostrykin and Schrader provide necessary and sufficient conditions that
ensure the self-adjointness of the Laplacian: for every v ∈ V the dv × 2dv matrix (AvBv)

must be of maximal rank dv , and the matrix Av · B†
v must be self-adjoint [16]. For a quantum

graph �, we shall denote by ��(λ) the space of complex functions on � (i.e., satisfying the
boundary conditions at the vertices) which are the eigenfunctions of �’s (negative) Laplacian
with eigenvalue λ:

��(λ) = {f ∈ W 2,2(�)| − �f = λf }. (2.1)

We define the spectrum of � to be the function

σ� : λ 	→ dimC ��(λ), (2.2)

which assigns to each eigenvalue its multiplicity. Two quantum graphs � and �′ are said to
be isospectral if their spectra coincide, that is, σ� ≡ σ�′ .

Quantum graphs play an important role in the study of quantum chaos. This connection
was first revealed by the work of Kottos and Smilansky [17, 18]. They show that the spectral
statistics of quantum graphs follow the predictions of random-matrix theory very closely.
They propose a derivation of a trace formula for quantum graphs and point out its similarity
to the famous Gutzwiller trace formula [19, 20] for chaotic Hamiltonian systems. The trace
formula for a quantum graph connects the spectrum of the graph’s Laplacian to the total length

5 This boundary condition is sometimes referred to as Kirchhoff condition in the literature.
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(a) (b)

Figure 1. (a) A graph that obeys the dihedral symmetry of the square. The lengths of some edges
are marked. (b) The same graph, showing the axes of the reflection elements in D4.

of the graph and the lengths of its periodic orbits. The main result in the field of isospectrality
of quantum graphs is that of Gutkin and Smilansky [24], where they use the trace formula
to show that under certain conditions a quantum graph can be heard, meaning that it can be
recovered from the spectrum of its Laplacian. The necessary conditions include the graph
being simple and its edges having rationally independent lengths. When these conditions are
not satisfied, isospectral quantum graphs indeed arise. An early example appears in [21], in
which Roth obtains isospectrality exploiting a spectral trace formula. von Below [22] uses
the connection between spectra of discrete graphs and spectra of equilateral quantum graphs
to turn isospectral discrete graphs into isospectral quantum graphs. In [23], isospectrality of
weighted discrete graphs provides isospectral quantum graphs whose edges vary in length.
A wealth of examples is constructed in [24, 25], using an analogy of the isospectral drums
obtained by Buser et al [8]. A recent example is the pair of isospectral dihedral graphs
presented in [26]. Their construction was generalized to obtain the more complete theory
which is presented in this paper.

3. A basic example

Let � be the graph given in figure 1(a). The lengths of the edges are determined by the
parameters a, b, c and we impose Neumann boundary conditions at all vertices. G = D4, the
dihedral group of the square, is the symmetry group of �. G consists of the identity, three
rotations and four reflections. Let τ denote the reflection of � along the horizontal axis and σ

the rotation of � counterclockwise by π/2. The axes of the reflection elements in G are shown
in figure 1(b). We can describe G and two of its subgroups H1,H2 � G by

G = 〈σ, τ 〉 = {e, σ, σ 2, σ 3, τ, τσ, τσ 2, τσ 3}
H1 = 〈τ, τσ 2〉 = {e, τ, τσ 2, σ 2}
H2 = 〈τσ, τσ 3〉 = {e, τσ, τσ 3, σ 2}.

Consider the following one-dimensional representations of H1,H2, respectively:

R1: {e 	→ (1), τ 	→ (−1), τσ 2 	→ (1), σ 2 	→ (−1)}, (3.1)

R2: {e 	→ (1), τσ 	→ (1), τσ 3 	→ (−1), σ 2 	→ (−1)}. (3.2)

We will use these representations to construct two graphs denoted by �/R1 and �/R2

(figure 2) which will be found to be isospectral.
We now explain the process of building the quotient graph �/R1. Let λ ∈ C and f̃ ∈ ��(λ)

be a function which transforms according to the representation R1, i.e.:

∀ g ∈ H1, gf̃ = ρR1(g)f̃ . (3.3)
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(a) (b)

Figure 2. The isospectral graphs (a) �/R1 and (b) �/R2. Neumann boundary conditions are assumed
if nothing else is specified. D stands for Dirichlet boundary conditions and N for Neumann.

(a) (b)

Figure 3. (a) The information we have on f̃ which transforms according to R1. Diamonds mark
the vertices at which the function vanishes and squares the vertices with zero derivative. (b) The
quotient graph �/R1 which encodes this information. D stands for Dirichlet boundary conditions
and N for Neumann.

In the lhs, the action of group H1 on f̃ is by ∀ x ∈ �, (gf̃ )(x) = f̃ (g−1x). We use the
transformation law of f̃ in order to deduce its properties: we know that τ f̃ = −f̃ , which
means that f̃ is an anti-symmetric function with respect to the horizontal reflection. We deduce
that f̃ vanishes at the fixed points of τ (marked with diamonds in figure 3(a)). In a similar
manner, we see that f̃ is symmetric with respect to the vertical reflection, since τσ 2f̃ = f̃ ,
and therefore the derivative of f̃ vanishes at the corresponding fixed points (the squares in
figure 3(a)). Furthermore, it is enough to know the restriction of f̃ on the first quadrant (the
bold subgraph in figure 3(a)) in order to deduce f̃ on the whole graph, using the known action
of the reflections:

τ f̃ = −f̃ , τσ 2f̃ = f̃ . (3.4)

Our construction process is now complete. The quotient graph �/R1 is the subgraph which lies
in the first quadrant, with the boundary conditions of Dirichlet and Neumann in the appropriate
locations, as was found for f̃ (figure 3(b)).

From this example, we conclude that the construction of the quotient graph is motivated
by an encoding scheme. We choose a fundamental domain for the action of G on �, i.e., a
minimal subgraph from which the entire graph can be reached by the action of the group.
We take this domain to be the quotient graph �/R1. We encode a function f̃ ∈ ��(λ), which
transforms according to the representation R1, by a function f ∈ ��/R1

(λ). The encoding is
described by the map 	 : �

R1
� (λ) → ��/R1

(λ), where �
R1
� (λ) is the space of all functions

f̃ ∈ ��(λ) that transform according to the representation R1, and 	 is just the restriction
map to the fundamental domain. An important observation is that given f ∈ ��/R1

(λ), it is
possible to construct a unique function f̃ ∈ �

R1
� (λ) (using (3.4)), whose restriction on the

fundamental domain is f (this is the decoding process). It follows that 	 is invertible and
thus is an isomorphism:

�
R1
� (λ) ∼= ��/R1

(λ). (3.5)
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(a) (b)

Figure 4. (a) The information we have on f̃ ∈ �
R2
� (λ). Diamonds mark the vertices at which the

function vanishes and squares the vertices with zero derivative. (b) The quotient graph �/R2 which
encodes this information. D stands for Dirichlet boundary conditions and N for Neumann.

The quotient �/R2 is constructed similarly. For any λ ∈ C, we consider f̃ ∈ �
R2
� (λ),

which means that f̃ transforms in the following way:

τσ f̃ = f̃ , τσ 3f̃ = −f̃ , (3.6)

and we carry on with the same arguments as above. We do not specify the details of this
process but rather summarize it in figure 4.

The isospectrality of �/R1 and �/R2 is a direct consequence of corollary 4.4 which appears
in the following section.

4. Representation theory and isospectrality

Having informally exposed some of the relations between representations and quantum graphs,
we begin a more precise examination, culminating in a general theorem on isospectrality6.
Let � be a graph that obeys a certain finite symmetry group G; this means that the action of G
preserves the lengths of the edges and the connectivity and boundary conditions at the vertices.
We do not assume that G is the maximal symmetry group of �. For every λ ∈ C,��(λ),
the vector space of all λ-eigenfunctions of the Laplacian on � is a carrier space of some
representation of G. This follows from the Laplacian commuting with the symmetry group,
∀ g ∈ G,− � (gf ) = g(−�f ) = λ(gf ), which renders ��(λ) closed under the action of
G. Let R denote the representation carried by ��(λ) and decompose it into the irreducible
representations of G. Such a decomposition allows us to present ��(λ) as some direct sum
of carrier spaces of the irreducible representations of G. Denote by S1, . . . , Sr the irreducible
representations of G and assume that Si appears ni times in R, i.e., R ∼= ⊕r

i=1 niSi . Then

��(λ) = (
V

S1
1 ⊕ · · · ⊕ V S1

n1

)⊕ · · · ⊕ (
V

Sr

1 ⊕ · · · ⊕ V Sr

nr

)
=

r⊕
i=1

�
Si

� (λ), (4.1)

where, for each i ∈ {1, . . . , r}, {V Si

j

}ni

j=1 are carrier spaces of the irreducible representation
Si (one carrier space for each copy of Si in R), and their direct sum in ��(λ) is denoted by
�

Si

� (λ). �
Si

� (λ) is called the Si-isotypic component of ��(λ); it is the vector space consisting
of all λ-eigenfunctions which transform under the action of G according to the representation
Si . Denoting by 1G the trivial representation of G,�

1G

� (λ) is called the trivial component of
��(λ) and is the space of all λ-eigenfunctions which are invariant under the action of G.

6 See appendix A for a short review of the Algebra used in this section.
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We pause the algebraic discussion for the purpose of reexamining the example from the
previous section. Recall that R1 is a representation of group H1, and that we have constructed
a quotient graph �/R1, such that the following isomorphisms were established:

∀ λ ∈ C, 	 : �
R1
� (λ)

∼=−→��/R1
(λ). (4.2)

By definition, the dimension of ��/R1
(λ) is σ�/R1

(λ), the multiplicity of λ in the spectrum of
�/R1. In analogy, we denote by σ

R1
� (λ) the dimension of �

R1
� (λ). But what does this dimension

tell us? It can be thought of as the spectrum that will be observed by someone who can only
see functions which transform according to R1. We call σ

R1
� the R1-spectrum of �, and note

in particular that it is a subspectrum of �: σ
R1
� � σ� . In terms of dimensions, (4.2) gives

σ
R1
� ≡ σ�/R1

. (4.3)

We thus identify the role of the quotient graph �/R1 as having the same spectrum as the R1-
spectrum of the original graph. This will be the characterizing property of all our quotient
graphs, and it is therefore time to generalize the discussion.

As we have defined the R1-spectrum by σ
R1
� (λ) = dim �

R1
� (λ), we now define the S-

spectrum of �, for any irreducible representation S (not necessarily one dimensional), as

σS
� (λ) := dim �S

�(λ)

dim S
, (4.4)

which can be interpreted as the number of copies of S of which �S
�(λ) consists. This is

also equal to the number of copies of S in ��(λ) (the corresponding ni in (4.1)). Using
the orthogonality relations of irreducible characters, we may rewrite (4.4) as σS

� (λ) =〈
χS, χ��(λ)

〉
G

. We use this equality to generalize the definition:

Definition 4.1. For any representation R, the R-spectrum of � is

σR
� (λ) := 〈

χR, χ��(λ)

〉
G
. (4.5)

Note that (4.4) holds for irreducible representations and is not true for all R (in fact, �R
�(λ)

is not even defined when R is reducible). Equipped with the notion of the R-spectrum of �,
we can now define what is a �/R graph.

Definition 4.2. A �/R-graph is any quantum graph �′ whose spectrum is equal to the R-
spectrum of �:

σ�′ ≡ σR
� .

Since all �/R-graphs have the same spectrum by definition, we allow ourselves, by abuse
of language, to refer to the spectrum of �/R. The following isospectrality theorem then follows:

Theorem 4.3. Let � be a quantum graph equipped with an action of a group G,H a subgroup
of G, and R a representation of H. Then �/R is isospectral to �/IndG

H R.

Proof.

∀ λ ∈ C σ�/R(λ) = σR
� (λ) = 〈χR, χ��(λ)〉H

= 〈
χIndG

H R, χ��(λ)

〉
G

= σ
IndG

H R

� (λ) = σ�/IndG
H R(λ),

where moving to the second line we have used the Frobenius reciprocity theorem. �

7
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Corollary 4.4. If G acts on � and H1,H2 are subgroups of G with the corresponding
representations R1, R2 such that IndG

H1
R1 ∼= IndG

H2
R2, then �/R1 and �/R2 are isospectral.

Remark. This corollary is in fact equivalent to the theorem, as can be seen by taking H2 = G,

R2 = IndG
H1

R1.

The isospectrality of the pair of graphs constructed in section 3 (figure 2) is obtained from
the above corollary. Returning to that example, one first notes that the two graphs presented
there obey definition 4.2. This is true since we have shown that

∀ λ ∈ C ��/R1
(λ) ∼= �

R1
� (λ)

from which follows σ�/R1
≡ σ

R1
� , and therefore the first graph presented in section 3 can honestly

be called a �/R1-graph. The same goes for the second graph, �/R2. The representations R1, R2

used in the construction satisfy the condition IndG
H1

R1 ∼= IndG
H2

R2 and this enables us to apply
corollary 4.4 and conclude that �/R1 and �/R2 are isospectral.

5. Extending the basic example

It is clear that theorem 4.3 and corollary 4.4 would yield isospectral examples only when
the required quotient graphs indeed exist. We saw the existence of two such quotients in
section 3. A proof of the existence of the quotient of any graph by any representation,
along with a rigorous construction technique, is given in [27]. In this section, we present
key examples which enable us to gain insight into this method as well as to understand the
procedure implemented in [27].

We return to the basic example brought forth in section 3, wishing to extend it by
discovering more quantum graphs which are isospectral to the pair of graphs �/R1, �/R2 in
figure 2. Corollary 4.4 offers a method by which this can be achieved: find a subgroup
H3 � G and a representation R3 of it such that IndG

H1
R1 ∼= IndG

H2
R2 ∼= IndG

H3
R3. Then, �/R3 is

isospectral to �/R1 and �/R2. Such a subgroup and a representation indeed exist:

H3 = {e, σ, σ 2, σ 3}
R3 : {e 	→ (1), σ 	→ (i), σ 2 	→ (−1), σ 3 	→ (−i)}. (5.1)

We use the intuitive approach obtained from the basic example in order to construct the
quotient �/R3. Let f̃ be a function that transforms according to the representation R3. The
action of the rotation element σ on f̃ is given by

σ f̃ = if̃ . (5.2)

This means that knowing the values of f̃ on a quarter of the graph (for example, the quarter
marked in bold in figure 5(a)) enables us to deduce the values of f̃ on the whole of �. We
therefore take this subgraph to be our quotient graph and check what boundary conditions we
should impose on it. From (5.2) we obtain

f̃ |ẽ1(ṽ1) = if̃ |ẽ5(ṽ4), (5.3)

f̃ ′|ẽ1(ṽ1) = if̃ ′|ẽ5(ṽ4). (5.4)

These equations suggest that we should identify vertices ṽ1, ṽ4. They merge to become a
single vertex v1 in the quotient (figure 5(b)). Equation (5.3) gives the boundary condition for
the values at this new vertex. The boundary condition for the derivatives at v1 is obtained from
(5.4) by recalling that f̃ obeys Neumann boundary conditions at the vertex ṽ4 of �:

f̃ ′|ẽ4(ṽ4) + f̃ ′|ẽ5(ṽ4) = 0. (5.5)

8
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(a) (b)

Av1 =
1 −i

0 0

Bv1 =
0 0
1 i

Figure 5. (a) The information we have on f̃ ∈ �
R3
� (λ). There is a factor of i between the values

and the clockwise derivatives of f̃ at the marked vertices ṽ1, ṽ4. (b) The quotient graph �/R3 which
encodes this information. The only non-Neumann boundary condition is at v1 and it is specified
by matrices Av1 , Bv1 .

Therefore, the boundary conditions at v1 in �/R3 are described by the matrices given in
figure 5(b), and this concludes the construction of �/R3. The isomorphisms

∀ λ ∈ C, 	 : �
R3
� (λ)

∼=−→ ��/R3
(λ) (5.6)

can easily be deduced from the construction process. Taking dimensions gives σ
R3
� ≡ σ�/R3

,
which proves the validity of this quotient.

We have already obtained an isospectral triple, but this does not cause us to stagnate and
we go further with our isospectral quest. By theorem 4.3, any �/R-graph, where R ∼= IndG

H1
R1,

would be isospectral to our three graphs. A simple calculation (see appendix A) shows that R
is the single two dimensional irreducible representation of G = D4. By choice of basis, we
can describe R as a matrix representation. Such a representation is⎧⎪⎨⎪⎩

e 	→
(

1 0
0 1

)
, σ 	→

(
0 1

−1 0

)
, σ 2 	→

(−1 0
0 −1

)
, σ 3 	→

(
0 −1
1 0

)
,

τ 	→
(−1 0

0 1

)
, τσ 	→

(
0 −1

−1 0

)
, τσ 2 	→

(
1 0
0 −1

)
, τσ 3 	→

(
0 1
1 0

)
⎫⎪⎬⎪⎭ . (5.7)

We now construct the quotient �/R. The graph obtained, which is shown in
figure 6(b), is the same as �/R1 (figure 2(a)), and we elaborate on this phenomenon later
on. The construction process of this ‘new’ graph is now presented for didactic reasons. The
procedure is similar to those already described, although a slight complication arises from R
not being one dimensional.

We consider two functions f̃
(1)
1 , f̃

(1)
2 ∈ ��(λ) (for some λ ∈ C) that transform according

to the matrix representation (5.7). It follows that f̃
(1)
1 , f̃

(1)
2 ∈ �R

�(λ), and that f̃
(1)
1 and f̃

(1)
2

form a basis for a carrier space of the representation R, which we denote by V R
1 . We may

proceed in this manner, choosing f̃
(2)
1 , f̃

(2)
2 , . . . such that each pair,

{
f̃

(i)
1 , f̃

(i)
2

}
, transforms

according to (5.7) and is linearly independent of the previous ones. Therefore, each pair,{
f̃

(i)
1 , f̃

(i)
2

}
, spans a different carrier space of R, which we denote by V R

i and we get that
�R

�(λ) = ⊕n
i=1 V R

i . The number of carrier spaces is

n = dim �R
�(λ)

dim R
= 〈

χR, χ�R
� (λ)

〉
G

= 〈
χR, χ��(λ)

〉
G

= σR
� (λ) (5.8)

(recall that R is irreducible). We wish to construct a quotient �/R such that

dim ��/R(λ) = n, (5.9)

9
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(a) (b)

Figure 6. (a) Two copies of the graph � which assist in the visualization of the functions f̃
(1)
1 , f̃

(1)
2

on �. The fundamental domain is marked in bold. (b) The quotient graph �/R formed as two
copies of the fundamental domain.

which means that σ�/R(λ) = σR
� (λ). If this holds for every λ, then �/R is indeed the desired

quotient graph (definition 4.2). If we again relate the construction process to the encoding
technique, we see that we can achieve (5.9) if each carrier space V R

i is encoded by a single
function f (i) ∈ ��/R(λ), in a manner that {f (i)}ni=1 is a basis for ��/R(λ). We demonstrate
this idea by encoding V R

1 = Span
{
f̃

(1)
1 , f̃

(1)
2

}
. This is done by thinking of the basis functions

f̃
(1)
1 , f̃

(1)
2 as residing on two copies of the graph � (figure 6(a)). Knowing the values of

f̃
(1)
1 and f̃

(1)
2 on a fundamental domain for the action of G on � (e.g., the bold subgraphs in

figure 6(a)) allows one to deduce the values of f̃
(1)
1 and f̃

(1)
2 on the whole graph, using the

known action of the group (5.7). Therefore, the quotient graph is the union of these two copies
of the fundamental domain. Its boundary conditions can be concluded from (5.7), which gives
the relations between the values of f̃

(1)
1 , f̃

(1)
2 and between their derivatives:

τσ 2f̃
(1)
1 = f̃

(1)
1 ⇒ (

f̃
(1)
1

)′∣∣
ẽ1(ṽ1) = (

f̃
(1)
1

)′∣∣
ẽ2(ṽ2) = 0 (5.10)

τσ 2f̃
(1)
2 = −f̃

(1)
2 ⇒ f̃

(1)
2

∣∣
ẽ1(ṽ1) = f̃

(1)
2

∣∣
ẽ2(ṽ2) = 0 (5.11)

τσ 3f̃
(1)
1 = f̃

(1)
2 . (5.12)

We recall that f̃
(1)
1 satisfies Neumann boundary conditions at ṽ4:(
τσ 3f̃

(1)
1

)∣∣
ẽ3(ṽ4) = f̃

(1)
1

∣∣
τσ 3 ẽ3(ṽ4) = f̃

(1)
1

∣∣
ẽ3(ṽ4) (5.13)(

τσ 3f̃
(1)
1

)′∣∣
ẽ3(ṽ4) = (

f̃
(1)
1

)′∣∣
τσ 3 ẽ3(ṽ4) = −(f̃ (1)

1

)′∣∣
ẽ3(ṽ4). (5.14)

Plugging (5.12) into (5.13) and (5.14) gives the following relations:

f̃
(1)
2

∣∣
ẽ3(ṽ4) = f̃

(1)
1

∣∣
ẽ3(ṽ4) (5.15)(

f̃
(1)
2

)′∣∣
ẽ3(ṽ4) = −(f̃ (1)

1

)′∣∣
ẽ3(ṽ4). (5.16)

Equations (5.15) and (5.16) motivate us to glue the two subgraphs at the vertex ṽ4

and supplement the new graph with Neumann boundary conditions at this vertex, which
we denote by v4. Relations (5.10) and (5.11) give Neumann and Dirichlet boundary
conditions, respectively, on the other vertices, and this fully describes the quotient graph �/R

(figure 6(b)).

10
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We now explain how this encoding enables us to prove that σ�/R ≡ σR
� , and ensure the

validity of our �/R. Given f̃
(1)
1 , f̃

(1)
2 as above, we form a function f (1) ∈ ��/R(λ) whose left

half is equal to the restriction of f̃
(1)
1 on the fundamental domain and right half is equal to

the restriction of f̃
(1)
2 on the fundamental domain. The considerations above apply for every

carrier space V R
i , and we can encode its basis

{
f̃

(i)
1 , f̃

(i)
2

}
by a function f (i) ∈ ��/R(λ) in the

same way as was done for i = 1.
The set

⋃n
i=1

{
f̃

(i)
1 , f̃

(i)
2

}
forms a basis for �R

�(λ), and is therefore linearly independent.
We now show that {f (i)}ni=1 are linearly independent as well, which gives 1

2 dim �R
�(λ) �

dim ��/R(λ), i.e., σR
� (λ) � σ�/R(λ). Assume that

∑n
i=1 cif

(i) = 0, so we have
for the restrictions of

{
f̃

(i)
1 , f̃

(i)
2

}n

i=1 on the fundamental domain that
∑n

i=1 ci f̃
(i)
1

∣∣
FD =∑n

i=1 ci f̃
(i)
2

∣∣
FD = 0. Using the known action of group (5.7), which linearly relates the

values of
{
f̃

(i)
1 , f̃

(i)
2

}n

i=1 everywhere on � to their values on the fundamental domain, we

obtain
∑n

i=1 ci f̃
(i)
1 = ∑n

i=1 ci f̃
(i)
2 = 0, hence, ∀ ici = 0.

In order to show the opposite inequality 1
2 dim �R

�(λ) � dim ��/R(λ) we employ the
decoding process, which turns a function g on �/R into a pair of functions {g̃1, g̃2} on � which
transform according to (5.7). This decoding is done in the following way: first, we set g̃1|FD

to be equal to the restriction of g on the left half of �/R and g̃2|FD to the restriction of g on its
right half. Next, since g̃1, g̃2 should transform according to the matrix representation (5.7),
we know how to express the values of each of g̃1 and g̃2 on � as a linear combination of
their values on the fundamental domain. We now show that starting from any set of linearly
independent functions {g(i)}mi=1 on �/R and performing the decoding process on each of them
to obtain the set

{
g̃

(i)
1 , g̃

(i)
2

}m

i=1 of functions on �, the latter set is linearly independent as well.

Assume that
∑m

i=1 c
(i)
1 g̃

(i)
1 + c

(i)
2 g̃

(i)
2 = 0. Since

{
g̃

(i)
j

}
transform according to (5.7), we can

apply the elements of G to this relation in order to find others; for example, from τσ 3 we
obtain

∑m
i=1 c

(i)
2 g̃

(i)
1 + c

(i)
1 g̃

(i)
2 = 0. Since R is irreducible, the matrices in (5.7) additively span

M2(C) ([38], section 3C). Therefore, by applying a suitable combination of G’s elements we
obtain

m∑
i=1

c
(i)
1 g̃

(i)
1 =

m∑
i=1

c
(i)
1 g̃

(i)
2 =

m∑
i=1

c
(i)
2 g̃

(i)
1 =

m∑
i=1

c
(i)
2 g̃

(i)
2 = 0

so that
∑m

i=1 c
(i)
1 g(i) = ∑m

i=1 c
(i)
2 g(i) = 0, and therefore ∀ ic

(i)
1 = c

(i)
2 = 0. Hence

1
2 dim �R

�(λ) = dim ��/R(λ), which gives σR
� (λ) = σ�/R(λ) and finishes the proof (see (5.8)

and (5.9)).
As was already mentioned, the ‘new’ graph �/R we have obtained is in fact one of the

graphs that we saw previously, namely, �/R1 (figure 2(a)). At first sight, one might wonder
whether theorem 4.3 has any practical use, as the isospectral quantum graphs we obtained
from it are isometric. This fear is ungrounded. Note that �/R was constructed according to
a specific matrix representation of R, and we still have not checked how a change of basis
(which changes the matrix representation) affects �/R. There is indeed a dependency on the
choice of basis, as we now show. Another matrix representation of R is{

τσ 2 	→ 1
2

(
−1 −√

3
−√

3 1

)
, τσ 3 	→ 1

2

(√
3 −1

−1 −√
3

) }
. (5.17)

We present only the matrices of the elements τσ 2, τσ 3 since we saw that they suffice
to construct the quotient. Figure 7 is analogous to figure 6, for the current case. The
fundamental domain that we choose is the same, and the difference will appear in the boundary
conditions.
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(a) (b) (c)

Figure 7. (a) Two copies of the graph � which assist in the visualization of the functions f̃ 1, f̃ 2
on �. The fundamental domain is marked in bold. (b) The first stage in the gluing process. The
encoding is done by restricting f̃ 1, f̃ 2 to the fundamental domain. (c) The quotient graph �/R

which is built using the matrix representation (5.17). The boundary conditions are described in
(5.22) and (5.23).

We consider two functions f̃ 1, f̃ 2 ∈ ��(λ) (for some λ ∈ C) that transform according to
the matrix representation (5.17). The first column of the matrix representing τσ 3 tells us that

τσ 3f̃ 1 = √
3/2f̃ 1 − 1/2f̃ 2, (5.18)

τσ 3f̃ ′
1 = √

3/2f̃ ′
1 − 1/2f̃ ′

2. (5.19)

Evaluating (5.18) and (5.19) on ṽ4 and using the knowledge that f̃ 1 obeys Neumann boundary
conditions on ṽ4 (see equations (5.13) and (5.14)) gives

(1 − √
3/2)f̃ 1|ẽ3(ṽ4) + 1/2f̃ 2|ẽ3(ṽ4) = 0, (5.20)

(−1 − √
3/2)f̃ ′

1|ẽ3(ṽ4) + 1/2f̃ ′
2|ẽ3(ṽ4) = 0. (5.21)

This indicates how we should start gluing the two subgraphs in order to obtain the quotient.
The first stage in this process, depicted in figure 7(b), is to identify the vertex ṽ4 in the two
copies and to turn it into the vertex v4 of the quotient, with the boundary conditions that were
derived in (5.20) and (5.21):

Av4 =
(

1 − √
3/2 1/2

0 0

)
, Bv4 =

(
0 0

−1 − √
3/2 1/2

)
. (5.22)

After treating vertices ṽ1, ṽ2 similarly we obtain the quotient �/R (figure 7(c)), whose remaining
boundary conditions are given by

Av1 = Av2 =
(

3/2
√

3/2

0 0

)
, Bv1 = Bv2 =

(
0 0

−1/2
√

3/2

)
. (5.23)

This last example demonstrates that for a multidimensional representation the quotient
graph depends on the explicit matrix representation by which it is constructed. One choice
of basis for the matrix representation gave us a quotient which is identical to that obtained
previously (figure 2(a)), while another basis yielded a new quotient graph (figure 7(c)). As a
matter of fact, all the examples of quotient graphs with respect to the various representations
discussed so far (figures 2(a) and (b) and 5(b)) can also be obtained as quotients with respect to
the representation R, by suitable choices of bases for its matrix representation. Furthermore,

12



J. Phys. A: Math. Theor. 42 (2009) 175202 R Band et al

there are many other quantum graphs isospectral to these. For example, we consider an
arbitrary orthogonal matrix representation of R, which is parameterized by⎧⎪⎪⎪⎨⎪⎪⎪⎩

τσ 2 	→
(

cos2 θ − sin2 θ −2 cos θ sin θ

−2 cos θ sin θ − cos2 θ + sin2 θ

)
τσ 3 	→

(
2 cos θ sin θ cos2 θ − sin2 θ

cos2 θ − sin2 θ −2 cos θ sin θ

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(e.g., (5.17) is obtained from θ = π/3). Using the general construction method, which is
described in the following section, we obtain from this matrix representation the quotient
given in figure 7(c), with the following boundary conditions:

Av1 = Av2 =

⎛⎜⎜⎝
2 sin2 θ sin 2θ

sin 2θ 2 − 2 sin2 θ

0 0
0 0

⎞⎟⎟⎠ Av4 =

⎛⎜⎜⎝
1 − sin 2θ 2 sin2 θ − 1

2 sin2 θ − 1 1 + sin 2θ

0 0
0 0

⎞⎟⎟⎠

Bv1 = Bv2 =

⎛⎜⎜⎝
0 0
0 0

2 − 2 sin2 θ − sin 2θ

−sin 2θ 2 sin2 θ

⎞⎟⎟⎠ Bv4 =

⎛⎜⎜⎝
0 0
0 0

1 + sin 2θ 1 − 2 sin2 θ

1 − 2 sin2 θ 1 − sin 2θ

⎞⎟⎟⎠ .

The matrices above are not square ones as is required from the definition of the boundary
conditions. However, since their role is to describe linear restrictions and due to the fact that
they are all of rank 1, they can be reduced to square matrices by deleting the appropriate rows7.
We thus get a continuous family of isospectral graphs. We already met some of its members.
For example, θ = 3π/4 gives the following boundary conditions:

Av1 = Av2 =
(

1 −1
0 0

)
Av4 =

(
2 0
0 0

)
(5.24)

Bv1 = Bv2 =
(

0 0
1 1

)
Bv4 =

(
0 0
0 2

)
. (5.25)

When applying this to figure 7(c), we note that v4 does not remain a vertex of degree 2, but
rather splits into two vertices of degree 1, one having the Dirichlet boundary condition and
the other the Neumann. The vertices v1 and v2, however, stay connected and obtain Neumann
boundary conditions. The resulting quotient is thus the one that we have already obtained
as �/R2 (figure 2(b)). In a similar manner, the quotient �/R1 (figure 2(a)) is obtained from
the choice θ = 0. We conclude by pointing out that the graph described in figure 7(c) is a
good prototype for the isospectral family mentioned, yet it might also be misleading, since
some members of the family have boundary conditions that tear apart the edges connected
to some of the vertices, and thus change the connectivity of the graph. One should also pay
attention to the fact that we have treated only orthogonal representations of R. We may further
extend the isospectral family presented above by considering the broader case of all matrix
representations of R. In particular, the quotient �/R3 (figure 5(b)) is obtained from the unitary
representation {

σ 	→
(

i 0
0 −i

)
, τ 	→

(
0 −1

−1 0

)}
.

7 See also the discussion that comes after (6.1) and (6.2).
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6. The rigorous construction of a quotient graph

The rigorous formalism of the quotient graph construction is fully described and proven in
[27]. Here we summarize this method in accordance with the discussion and demonstrations
presented so far in this paper. Let � be a quantum graph with a finite set of vertices V and a
finite set E of edges connecting the vertices. Let G be a finite group that acts on �, and R a
d-dimensional representation of G. We assume for now that G acts freely on the edges, i.e.,
ge �= e for e ∈ E, id �= g ∈ G, and leaves the treatment of a non-free action on the edges for
later (section 7.2). We may choose an ordered basis B = (bj )

d
j=1 for R, with respect to which

we think of it as a matrix representation. We choose representatives {ẽi}Ii=1 for the orbits
E/G, and likewise {ṽk}Kk=1 for V/G. We shall assume, by adding ‘dummy’ vertices (vertices of
valency 2 with Neumann boundary conditions) if required, that G does not carry any vertex in
V to one of its neighbors. This ensures that no edge is transformed onto itself in the opposite
direction, which would force us to take half the edge as a representative. The quotient graph
�/R obtained from these choices is defined to have {vk}Kk=1 as its set of vertices, and

{
ei
j

}i=1...I

j=1...d

for edges, where each ei
j is of length lẽi . The vertices vk, vk′ of �/R are connected by the edge

ei
j if there exist g, g′ ∈ G such that ẽi connects gṽk to g′ṽk′ in �. In such a case, the vertices

vk, vk′ are connected by all the edges
{
ei
j

}d

j=1. Until now, we have only used the action of
the group G on � in order to determine the edges and vertices of the quotient graph and its
connectivity. Now we also need to use the information from R,B and the boundary conditions
of �, in order to specify the boundary conditions at each vertex vk in �/R. Let the boundary
conditions at ṽk in � be described by Aṽk

, Bṽk
. From here to the end of this section, we focus

on the vertex vk and its predecessor ṽk , and keep in mind that our parameters depend on k
even when it is not reflected by the notations. The set of edges incident to the vertex ṽk can be
written as Eṽk

= {
glẽ

νl
}n

l=1, for some {gl}nl=1 in G. Note that repetitions can occur among νl’s
and also among gl’s, and that their total number is n = dṽk

. The set of edges entering vk is
Evk

= {
e
μl′
j

}
1�l′�m
1�j�d

, where {μl′ }ml′=1 is defined to be the set of distinct values among {νl}nl=1.

Obviously, m � n, and the relation between the sets {μl′ }ml′=1, {νl}nl=1 is given by the n × m

matrix:

′
ll′ =

{
1 νl = μl′

0 otherwise.

The resulting matrices (see [27]), describing the boundary conditions at vk , are

Avk
= (

Aṽk
⊗ Id

) · diag
([

ρR

(
g−1

1

)]
B
, . . . ,

[
ρR

(
g−1

n

)]
B

)T · (′ ⊗ Id), (6.1)

Bvk
= (

Bṽk
⊗ Id

) · diag
([

ρR

(
g−1

1

)]
B
, . . . ,

[
ρR

(
g−1

n

)]
B

)T · (′ ⊗ Id). (6.2)

Observe that the boundary conditions (6.1) and (6.2) encapsulate the information of the
boundary conditions on � (given by Aṽk

, Bṽk
), the action of the group (′ and {gi}), the

representation (ρR) and the basis that was chosen for the representation (B). However,
they may fail to be square matrices as our definition of a quantum graph calls for. We
therefore need to discuss the question of how many linearly independent restrictions are
dictated by these boundary conditions, i.e., find rank

(
Avk

Bvk

)
. Let us assume that the

original boundary conditions on ṽk were linearly independent, i.e.
(
Aṽk

Bṽk

)
is of maximal

rank, dṽk
. If the action of G is free not only on the edges but also on the vertices, then

′ is a permutation matrix and we get that Avk
and Bvk

are square matrices. Furthermore,
rank

(
Avk

Bvk

) = d · rank
(
Aṽk

Bṽk

) = d · dṽk
= dvk

, which means that
(
Avk

Bvk

)
is also of

maximal rank.
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In the general case, it is shown in [27] that if the matrix Aṽk
· B

†
ṽk

is self-adjoint then
rank

(
Avk

Bvk

) = dvk
. This means that we may eliminate rows from

(
Avk

Bvk

)
, and remain

with square Avk
, Bvk

which still describe the same boundary conditions. Therefore, starting
from a graph � whose Laplacian is self-adjoint, any �/R produced by this construction method
would be a valid quantum graph (whether the Laplacian on �/R is also self-adjoint is discussed
in section 7.3). This also demonstrates the benefits of using quantum graphs to implement
the quotient construction. Although one may apply the above procedure to other types of
objects (see section 9), the resulting quotients might not be objects of the same type as their
predecessors. The advantage of quantum graphs in this context is that the self-adjointness
condition guarantees that the quotient is a quantum graph as well.

We now recall the intimate relation between the construction of �/R and the encoding
process, which for each λ ∈ C takes functions f̃ 1, . . . , f̃ d ∈ ��(λ) that transform according
to R, and maps them to a single function f ∈ ��/R(λ). This encoding is described by

f |ei
j
≡ f̃ j |ẽi . (6.3)

This relation gives the decoding process as well—starting from f ∈ ��/R(λ), one reconstructs
the values of f̃ 1, . . . , f̃ d ∈ ��(λ) on the edges’ representatives {ẽi}. The values on the rest
of the edges are then determined by the action of G and the representation R.

We elaborate on the functions f̃ 1, . . . , f̃ d ∈ ��(λ) that play a role in the decoding–
encoding process. For two representations R,R′ with the corresponding carrier spaces
V, V ′, HomG(V, V ′) is the vector space of all linear transformations T : V → V ′ that
respect the action of the group G, i.e., ∀ g ∈ G, v ∈ V : T (ρR(g)v) = ρR′(g)T (v).
Such linear transformations are called intertwiners of the representations R,R′. It is
known that

〈
χR, χ��(λ)

〉
G

= dim HomG(R,��(λ)) ([38], section 9C), and we recall that
the quotient graph’s construction guarantees σ�/R(λ) = 〈

χR, χ��(λ)

〉
G

. We therefore have that
��/R(λ) ∼= HomG(R,��(λ)), which offers another point of view on our quotient graphs. We
demonstrate this by an example. Let G be a group and R = S ⊕ S ⊕ S, for some irreducible
representation S of G, and let λ ∈ C be such that ��(λ) ∼= V S

1 ⊕V S
2 , where V S

1 , V S
2 are carrier

spaces of S. Since dim HomG(R,��(λ)) = 〈
χR, χ��(λ)

〉
G

= 〈3χS, 2χS〉G = 6, we can choose
six linearly independent intertwiners from V R to ��(λ). One such choice of intertwiners can
be described as follows. We decompose a carrier space of R,V R into three carrier spaces of
S and each intertwiner then sends one of these three copies to either V S

1 or V S
2 , and the other

two copies to zero.
The quotient �/R is constructed with respect to a certain basis B of R. The image of this basis

by each of the above six intertwiners is a set of d = dim R functions f̃ 1, . . . , f̃ d ∈ ��(λ)

which transform according to R,8 and this set can be encoded by a function f ∈ ��/R(λ)

according to (6.3). We thus obtain six linearly independent eigenfunctions of the eigenvalue
λ on the quotient �/R, which demonstrates the equivalence ��/R(λ) ∼= HomG(R,��(λ)).

7. Application of the method—further investigation

Having revealed the key elements of the construction method, we are ready to present its
theoretical implications as well as various issues that may interest those who wish to apply it.

7.1. Sunada’s isospectral theorem

In his famous paper [2], Sunada provides a method for producing isospectral Riemannian
manifolds. Phrasing his result somewhat loosely, given a manifold M equipped with a free
8 Note that in this example, this set of d functions is not a linearly independent set.
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Figure 8. An equilateral tetrahedron with Neumann boundary conditions. It is equipped with an
action of S4 permuting its vertices ṽ1, ṽ2, ṽ3, ṽ4.

action of a finite group G and subgroups H1,H2 of G which are almost conjugate, the
manifolds M/H1 and M/H2 are isospectral. H1 and H2 are said to be almost conjugate if
∀ g ∈ G |{[g] ∩ H1}| = |{[g] ∩ H2}|, where [g] denotes the conjugacy class of g in G. As
mentioned and proved in [5], H1 and H2 are almost conjugate iff IndG

H1
1H1

∼= IndG
H2

1H2 , where
1Hi

is the trivial representation of Hi . Comparing this to corollary 4.4, we see that Sunada’s
theorem is obtained as a particular case of the corollary if M/Hi is isospectral to M/1Hi

. This is
indeed the case since the space of functions on M/Hi is isomorphic to the space of functions
on M which are invariant under the action of Hi . But the latter is the trivial component of the
space of functions on M, which by definition is isomorphic to the space of functions on M/1Hi

,
so that

∀ λ ∈ C �M/Hi
(λ) ∼= �

1Hi

M (λ) ∼= �M/1Hi
(λ),

as claimed. During the discussion above, we have applied our isospectral theory to manifolds,
as opposed to quantum graphs, for which it was developed in the previous sections. This should
not bother us—the method can be applied to other geometric objects, as will be demonstrated
in section 9. Finally, we note that the equivalence of IndG

H1
1H1

∼= IndG
H2

1H2 and H1,H2 being
almost conjugate was already used by Pesce [28] to give another proof for Sunada’s theorem.
Our application of Frobenius reciprocity for the proof of theorem 4.3 is similar to that of Pesce,
whose proof is also summarized comprehensibly in [5].

7.2. A non-free action on the edges

We now treat the case of a group whose action on the edges is not free. We have already
encountered examples of non-free action on the vertices, and have seen that this may result
in the vertex in the quotient graph having a degree smaller than that of its predecessor. An
action which is not free on the edges results in some more interesting features. Denote by
� the quantum graph which is an equilateral tetrahedron equipped with Neumann boundary
conditions at all its vertices (figure 8).

Note that we have added ‘dummy’ vertices in the middle of the edges, as described in
the previous section. S4 acts by permuting the vertices ṽ1, ṽ2, ṽ3, ṽ4, and this determines its
action on the whole of �. Let S denote the sign representation of S4:

∀ σ ∈ S4 ρS(σ ) = (sgn σ). (7.1)

We choose the edge ẽ1 and the vertices ṽ1, ṽ5 as a fundamental domain for the action of
S4. A function f̃ which transforms according to S satisfies (3 4)f̃ = ρS[(3 4)]f̃ = −f̃ .
Evaluating this on the edge ẽ1 gives f̃ |ẽ1 = f̃ |(3 4)ẽ1 = ((3 4)f̃ )|ẽ1 = −f̃ |ẽ1 , which means
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(a) (b)

Av1 =
√

2 −1
0 0

Bv1 =
0 0

1
√

2

Figure 9. The quotient �/S. The only non-Neumann boundary condition is at v1, and it is specified
by matrices Av1 , Bv1 .

that f̃ vanishes on ẽ1 and therefore also on the whole of �. We conclude that �’s Laplacian
has no eigenfunctions which transform according to S, so that �/S is just the empty graph.
Putting this another way, the edge ẽ1 of � was chosen as a representative for the orbits of
the edges under the action of the group, E/S4. We therefore expected to have a single edge e1

1
in the quotient. However, this edge has disappeared due to the action of the stabilizer of ẽ1.
Specifically, the stabilizer is Gẽ1 = {id, (3 4)} and the restriction of the representation on it is
not trivial: ρS |Gẽ1 �= 1. This caused the disappearance.

Moving to a more complex demonstration of this principle, we examine the permutation
representation of S4, which we denote by R. Some of the matrices of R using its standard basis
are ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 2) 	→

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠, (3 4) 	→

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠

(2 3 4) 	→

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞⎟⎟⎠, (2 4 3) 	→

⎛⎜⎜⎝
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
. (7.2)

We choose the same fundamental domain and consider the values of the functions
f̃ 1, f̃ 2, f̃ 3, f̃ 4 (which transform according to (7.2)) on it. We now have four edges,
e1

1, e
1
2, e

1
3, e

1
4, that are supposed to form the quotient graph after we properly glue them and

deduce the boundary conditions. From the action of (2 3 4) and (2 4 3) on f̃ 1, the chosen matrix
representation for R and the fact that ṽ1 has Neumann boundary conditions, it follows that
f̃ ′

1|ẽ1(ṽ1) = 0. Likewise, from the action of (1 2) on f̃ 1 we conclude that f̃ 1|ẽ1(ṽ5) = f̃ 2|ẽ1(ṽ5)

and f̃ ′
1|ẽ1(ṽ5) + f̃ ′

2|ẽ1(ṽ5) = 0 (where the derivatives are outgoing from ṽ5). This allows
us to glue the edges e1

1, e
1
2 and to deduce a Neumann condition on the left side of e1

1
(figure 9). These considerations are similar to those used before, and the new part comes
when we observe that (3 4)f̃ 3 = f̃ 4. This gives f̃ 3|ẽ1 = f̃ 4|ẽ1 and means that we do not
need both of the corresponding edges (i.e., e1

3 and e1
4) in the quotient graph9. We note that

the problem arises since the representation restricted to the stabilizer Gẽ1 = {id, (3 4)} has
a non-trivial component (ρR[(3 4)] has an eigenvalue not equal to 1). The solution to this
situation is to change our basis in the following way:

f̂ 1 = f̃ 1, f̂ 3 = 1√
2
(f̃ 3 + f̃ 4)f̂ 2 = f̃ 2, f̂ 4 = 1√

2
(f̃ 3 − f̃ 4).

9 This is because the quotient construction is motivated by encoding the functions on � which transform according
to R, without redundancies.
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This forces us to rewrite (7.2) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 2) 	→

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠, (3 4) 	→

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞⎟⎟⎠

(2 3 4) 	→

⎛⎜⎜⎝
1 0 0 0
0 0 1/

√
2 −1/

√
2

0 1/
√

2 1/2 1/2

0 1/
√

2 −1/2 −1/2

⎞⎟⎟⎠, (2 4 3) 	→

⎛⎜⎜⎝
1 0 0 0
0 0 1/

√
2 1/

√
2

0 1/
√

2 1/2 −1/2

0 −1/
√

2 1/2 −1/2

⎞⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(7.3)

Examining the action of (3 4) on f̂ 4, we get f̂ 4|ẽ1 ≡ 0 and this turns out to be the edge
which disappears. The previous considerations we made concerning f̃ 1|ẽ1 and f̃ 2|ẽ1 are still
valid since f̂ 1 = f̃ 1, f̂ 2 = f̃ 2. The last step in the gluing process follows from the second
column of the matrix representations of (2 3 4), (2 4 3) and the evaluation of the corresponding
relations on ẽ1:

f̂ 2|ẽ3 = ((2 3 4)f̂ 2)|ẽ1 = 1/
√

2f̂ 3|ẽ1 + 1/
√

2f̂ 4|ẽ1 , (7.4)

f̂ 2|ẽ2 = ((2 4 3)f̂ 2)|ẽ1 = 1/
√

2f̂ 3|ẽ1 − 1/
√

2f̂ 4|ẽ1 . (7.5)

Recalling that f̂ 4|ẽ1 ≡ 0 and using (7.4) and (7.5) to obtain relations for the derivatives as
well, we finish the process and give the quotient �/S that is shown in figure 9.

We now return to the general construction procedure described in the previous section and
discuss the adjustments that should be made in order to apply it to the case of a non-free action
on the edges. After choosing the representatives {ẽi}Ii=1 for the orbits E/G, we consider for
each i the representation ResG

Gẽi
S with its carrier space V i . We decompose V i into its trivial

component, (V i)
1G

ẽi , and its complement,
⊕

S�1G
ẽi
(V i)S . We denote the dimension of the

trivial component of V i by di and choose a basis for it:
{
bi

j

}di

j=1. We complete this to a basis for

the whole of V i by adding vectors from the complement of (V i)
1G

ẽi , and we denote this basis,{
bi

j

}d

j=1, by Bi . Let
{
f̃ i

j

∣∣
ẽi

}d

j=1 be functions on the edge ẽi which transform according to the

representation R as given by the basis Bi . As in the preceding examples we have that ∀ j > di,

f̃ i
j

∣∣
ẽi = 0.10 Therefore, in the assembly of the quotient, we endow it with only di copies of

the edge ẽi—the copies which correspond to the functions
{
f̃ i

j

∣∣
ẽi

}di

j=1. Equations (6.1)
and (6.2) are replaced in the general case by the following:

Avk
= (

Aṽk
⊗ Id

) · diag
([

ρR

(
g−1

1

)]B
Bν1

, . . . ,
[
ρR

(
g−1

n

)]B
Bνn

)T · , (7.6)

Bvk
= (

Bṽk
⊗ Id

) · diag
([

ρR

(
g−1

1

)]B
Bν1

, . . . ,
[
ρR

(
g−1

n

)]B
Bνn

)T · . (7.7)

One obvious difference is the use of a separate basis Bi for each edge that enters the vertex.
The other change is due to  which is defined to be the nd × dvk

matrix obtained by removing
from (′ ⊗ Id) the columns {(i − 1) · d + j} 1�i�m

dμi
<j�d

; these are the columns which represent

the functions whose vanishing on the corresponding edge (ẽi) of the graph � causes the
disappearance of (d − di) copies of this edge from the quotient. Note that (6.1) and (6.2)

10 This can be deduced from observation (7.10).
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are obtained as a special case of (7.6) and (7.7) when the action is free on the edges and a
single choice of basis is made (i.e., B1 = · · · = BI = B). In addition, the encoding/decoding
process in this case is then slightly altered from that described by (6.3). For each λ ∈ C and
1 � i � I , a set of functions f̃ i

1, . . . , f̃
i
d ∈ ��(λ) that transform according to the basis Bi of

R is mapped into a single function f ∈ ��/R(λ) by

∀ 1 � j � di, f |ei
j
≡ f̃ i

j

∣∣
ẽi . (7.8)

Note that the functions
{
f̃ i

j

∣∣
ẽi

}
1�i�I
di<j�d

are zero and therefore not encoded. Finally, the

discussion that comes after equations (6.1) and (6.2) regarding the rank of Avk
Bvk

is valid
here as well: whenever the Laplacian on � is self-adjoint, the produced quotient obeys the
definition of a quantum graph.

7.3. The self-adjointness of the Laplacian on the quotient graph

A natural question to ask is whether the Laplacian on the quotient graph produced by the above
construction is self-adjoint. The necessary and sufficient conditions for the self-adjointness
of a quantum graph were described in section 2. Their examination in light of (7.6) and (7.7)
gives the following:

Proposition 7.1. Let �/R be a quotient quantum graph constructed as explained in
section (7.2).

(i) If �’s Laplacian is self-adjoint, G acts freely on � (both on the edges and the vertices), and
[ρR(g)]B

i

B is unitary for all g ∈ G, 1 � i � I , then the Laplacian on �/R is self-adjoint.

(ii) If � has Neumann boundary conditions and [ρR(g)]B
i

B is unitary for all g, i, then the
Laplacian on �/R is self-adjoint if and only if for every vertex ṽ at least one of the
following holds:

(a) 〈χR, 1〉Gṽ
= 0.

(b) All stabilizers {Gẽ}ẽ∈Eṽ
are of equal order.

Remark. Since G is assumed to be finite, one-dimensional representations are unitary in all
bases.

Proof. We start by recalling the observations made in sections 6 and 7.2. When � has a
self-adjoint Laplacian, our construction ensures that for every vertex v of the quotient we have
rank(AvBv) = dv . Therefore, one condition required for the self-adjointness of the quotient
is fulfilled, and we are left to verify the other, Av · B†

v = Bv · A†
v .

(i) Let ṽ be a vertex in �, with Eṽ = {gi ẽ
νi }ni=1, and v the corresponding vertex in �/R.

Since the action is free both on the edges and on the vertices, we have ′ = In (by
appropriate indexing of the edges) and  = ′ ⊗ Id = Idv

(since the free action also
implies dv = dṽ · d = n · d). The unitarity of the representation with respect to the bases
Bi and B gives that D := diag

([
ρR

(
g−1

1

)]B
Bν1

, . . . ,
[
ρR

(
g−1

n

)]B
Bνn

)T
is a unitary matrix.

Therefore,
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Av · B†
v = (Aṽ ⊗ Id) · D · Idv

· ((Bṽ ⊗ Id) · D · Idv

)†
= (Aṽ ⊗ Id) · (Bṽ ⊗ Id)

† = (
Aṽ · B

†
ṽ

)⊗ Id

= (
Bṽ · A

†
ṽ

)⊗ Id = Bv · A†
v.

(ii) Let v be a vertex of �/R, and ṽ its predecessor in �. Recall (section 6) that Eṽ = {gi ẽ
νi }ni=1,

and that {νi}ni=1 attain in total m distinct values, {μi}mi=1. We assume (by reordering, if
necessary) that {νi}mi=1 are different: this means that {gi ẽ

νi }mi=1 are representatives for the
different orbits of the edges in Eṽ. For each 1 � i � m we choose a set of representatives{
t
j

i

}ri

j=1 (ri = [Gṽ : Ggi ẽ
νi ]) for the left cosets of Ggi ẽ

νi in Gṽ , so that when writing

Eṽ = {
t
j

i gi ẽ
νi
}

i=1...m
j=1...ri

we obtain each edge in Eṽ exactly once. This is the ordering with

which we represent the boundary conditions at ṽ.
Denoting

gi,j = ([
ρR

(
t
j

i gi

)−1]B
Bνi

)T
, θi =

(
Idνi

0
0 0

)
∈ Md×d(C) ,

G = diag(g1,1, . . . , g1,r1 , g2,1, . . . , gm,rm
),

we have

G†G† =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1,1θ1g
†
1,1 · · · g1,1θ1g

†
1,r1

...
. . .

...

g1,r1θ1g
†
1,1 · · · g1,r1θ1g

†
1,r1

. . .

gm,1θmg
†
m,1 · · · gm,1θmg

†
m,rm

...
. . .

...

gm,rm
θmg

†
m,1 · · · gm,rm

θmg
†
m,rm

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The Neumann boundary conditions at ṽ can be expressed by

Aṽ =

⎛⎜⎜⎜⎝
1 −1
...

. . .

1 −1
0 · · · 0 0

⎞⎟⎟⎟⎠ Bṽ =

⎛⎜⎜⎜⎝
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
1 1 · · · 1

⎞⎟⎟⎟⎠
and using (7.6) and (7.7) we have BvA

†
v = (Bṽ ⊗ Id)G†G†(Aṽ ⊗ Id)

† and can write
BvA

†
v in d × d blocks as follows:

BvA
†
v =⎛⎜⎜⎜⎝

[0] · · · [0] [0] · · · · · · [0] [0]
...

...
...

...
...

[0] · · · [0] [0] · · · · · · [0] [0]
[M1,1 − M1,2] · · · [

M1,1 − M1,r1

]
[M1,1 − M2,1] · · · · · · [

M1,1 − Mm,rm

]
[0]

⎞⎟⎟⎟⎠ ,

where for 1 � i � m, 1 � j � ri we denote

Mi,j =
ri∑

k=1

gi,kθig
†
i,j .
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Due to the fact that BvA
†
v is strictly lower triangular, it can only be self-adjoint if it is

zero, i.e., if Mi,j is the same for all i, j , and we wish to analyze when this occurs. First,
we note that

θi = 1

|Gẽνi |
∑

g∈Gẽνi

[ρR(g)]B
νi

Bνi , (7.9)

by the following observations:

(a) For every irreducible representation ρS of a group G we have

1

|G|
∑
g∈G

ρS(g) =
{
I S ∼= 1G

0 S � 1G.
(7.10)

(b) As explained in section 7.2, we chose Bνi = {
b

νi

j

}d

j=1 such that
{
b

νi

j

}dνi

j=1 is a basis for

the trivial component of ResG
Gẽνi

R, and
{
b

νi

j

}d

j=dνi
+1 is a basis for

⊕
S�1G

(
ResG

Gẽνi
R
)S

.

By our unitarity assumption,
([

ρR

(
t
j

i gi

)−1]B
Bνi

)† = [
ρR

(
t
j

i gi

)]Bνi

B
, so that

Mi,j =
ri∑

k=1

[
ρR

(
t ki gi

)]Bνi

B
θi

[
ρR

(
t
j

i gi

)−1]B
Bνi

.

Using (7.9) we find

Mi,j = 1

|Gẽνi |
ri∑

k=1

[
ρR

(
t ki gi

)]Bνi

B

∑
g∈Gẽνi

[ρR(g)]B
νi

Bνi

[
ρR

(
t
j

i gi

)−1]B
Bνi

= 1

|Gẽνi |
ri∑

k=1

∑
g∈Gẽνi

[
ρR

(
t ki gig

(
t
j

i gi

)−1)]B
B

and since giGẽνi g
−1
i = Ggi ẽ

νi ,

Mi,j = 1

|Gẽνi |
ri∑

k=1

∑
g∈Ggi ẽ

νi

[
ρR

(
t ki g
(
t
j

i

)−1)]B
B

= 1

|Gẽνi |
∑
g∈Gṽ

[
ρR

(
g
(
t
j

i

)−1)]B
B

= 1

|Gẽνi |
∑
g∈Gṽ

[ρR(g)]BB,

as for every i we have the disjoint union Gṽ = ⋃ri

k=1 t ki Ggi ẽ
μi , and t

j

i ∈ Gṽ for all i
and j . We therefore have Mi,j = Mi ′,j ′ iff either |Gẽνi | = |Gẽ

ν
i′ | or

∑
g∈Gṽ

ρR(g) = 0.

Observation (7.10) shows that the latter happens if and only if ResG
Gṽ

R has no trivial
component, i.e., 〈χR, 1〉Gṽ

= 0. �

Corollary 7.2. If �’s Laplacian is self-adjoint and G acts freely on �, then a quotient with a
self-adjoint Laplacian can be constructed for any representation of G.

Proof. This follows from the first part of the proposition; as the action is free, we have no
restrictions on the bases {Bi}Ii=1 used in the construction. By Weyl’s unitary trick, any finite-
dimensional representation of a finite group is unitarisable (see for example [37]), and therefore
we can choose a single basis B with respect to which R is a unitary matrix representation, and
take B1 = · · · = BI = B. �
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7.4. Transplantation

The transplantation technique is one of the simple and illuminating proofs for isospectrality.
For two isospectral objects, the transplantation is a linear map which bijects each eigenspace
of the first object’s Laplacian onto the corresponding eigenspace of the second. The existence
of a transplantation proves that the spectra of the two objects coincide, including multiplicity.
One usually encounters the transplantation technique when dealing with isospectral objects
consisting of building blocks. Several copies of a certain fundamental building block are pasted
together along their boundaries to form the complete object. The second isospectral object
is composed of the same building blocks, pasted in a different manner. The transplantation
then presents the restriction of an eigenfunction on a building block of one object as a linear
combination of such restrictions to several building blocks of the other object. The linearity
of the eigenvalue problem ensures that the transplanted function is indeed an eigenfunction of
the second shape, as long as it obeys the boundary conditions. The idea of transplantation is
further discussed and demonstrated in [3–5, 8–10, 29, 30].

In order to discuss the notion of transplantation as it arises from our method, it is crucial
to examine the exact procedure by which the isospectral quantum graphs are constructed. The
main tools for producing isospectral graphs are theorem 4.3 and corollary 4.4. However, we
have already noted that �/R is not a single graph, but rather a continuum of isospectral graphs,
each constructed by a certain choice of basis for R. Therefore, isospectrality emerges also from
a change of basis for the representation. Furthermore, even when one works with a single
basis, �/R might depend on the choice of representatives for the orbits E/G, V/G. An example
of producing isospectral graphs using this freedom is shown in section 8.2. This variety of
degrees of freedom (representations, bases, representatives) motivates us to address each of
them separately, and one can combine them appropriately in order to construct the over-all
transplantation.

Proposition 7.3. Let � be a quantum graph equipped with an action of a group G, and let R
be a representation of G. Then any two �/R graphs constructed according to the recipe given
in sections 6 and 7.2 are transplantable.

Proof. We deal with the following degrees of freedom:

(i) The freedom to choose a basis. Let {ẽi}Ii=1 be representatives for the orbits E/G of � (the
choices of representatives for the vertices do not affect the transplantation). For every
1 � i � I , let Bi,Bi be two bases for R chosen to correspond to the edge ẽi (following
the prescription given in the end of section 7.2). Let �1 be the quotient obtained as �/R

when we choose the bases {Bi}Ii=1 for R and �2 the quotient �/R obtained by the bases
{Bi}Ii=1. Our motivation is the following: for every λ ∈ C,��1(λ) and ��2(λ) serve to
encode the same space (if R is irreducible then this is the R-isotypic component of ��(λ).
In the general case, it is the corresponding space of intertwiners). Therefore, a bijection
between them can be obtained by composing the ‘�1-decoding’ with the ‘�2-encoding’.
However, since functions on the two quotients encode functions on � which transform
according to different bases, a suitable change of basis is required between the decoding
and encoding. Starting with f ∈ ��1(λ) and denoting the corresponding function in
��2(λ) by ϕ, we obtain

f |ei
j
= f̃ i

j

∣∣
ẽi

=
d∑

k=1

[
[I ]B

i

Bi

]
k,j

ϕ̃i
k

∣∣∣∣
ẽi
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=
d∑

k=1

[
[I ]B

i

Bi

]
k,j

ϕ

∣∣∣∣
ei
k

,

where [I ]B
i

Bi is the change of basis matrix and
{
f̃ i

j

}d

j=1,
{
ϕ̃i

k

}d

k=1 are the functions in

��(λ) described by (7.8). By the construction,
{
f̃ i

j

}d

j=1 transform according to Bi , and{
ϕ̃i

k

}d

k=1 according to Bi . We now note that the bijection we have constructed is indeed
a transplantation, as it represents the restrictions of one function on each edge as a linear
combination of restrictions of the second function on edges of the same length. We
also note that the choice of the global basis B (see (7.6) and (7.7)) does not affect the
transplantation.

(ii) The freedom to choose representatives. Let {ẽi}Ii=1 , {ε̃i}Ii=1 be two sets of representatives
for the orbits E/G. We describe the connection between them by choosing gi such that
gi ẽi = ε̃i for 1 � i � I . For each i, let Bi = {

bi
j

}d

j=1 be a basis for R chosen to correspond

to the edge ẽi . A natural choice for a basis Bi = {
bi

j

}d

j=1 which corresponds to the edge

ε̃i would then be bi
j = gibi

j . Let �1 be the quotient obtained as �/R by the choice of
the representatives {ẽi}Ii=1 and the bases {Bi}Ii=1, and �2 the quotient �/R obtained from
{ε̃i}Ii=1 and {Bi}Ii=1. Working with these bases for �2 does not limit generality, as other
choices can be handled by the first part of the proposition. The merit of {Bi}Ii=1 is that
it gives an extremely simple transplantation between f ∈ ��1(λ) and the corresponding
ϕ ∈ ��2(λ):

f |ei
j
= f̃ i

j

∣∣
ẽi = gif̃ i

j

∣∣
gi ẽi = ϕ̃i

j

∣∣
ε̃i = ϕ

∣∣
εi
j

.

We have used (7.8) on the first and last equalities. The second follows from the action
of G on ��(λ), and the third from the choice of bases for the matrix representation (as
before,

{
f̃ i

j

}d

j=1,
{
ϕ̃i

j

}d

j=1 are functions in ��(λ) that transform according to the matrix

representations of R as given by the bases Bi,Bi). �

Proposition 7.4. Let � be a quantum graph equipped with an action of a group G,H a
subgroup of G and R a representation of H. Then there exists a transplantation between
every two graphs �/R and �/IndG

H R which are constructed by the recipe given in sections 6
and 7.2.

Proof. The outline of the proof is similar to that of proposition 7.3. We start by describing
a convenient choice of representatives and bases for the construction of each of the quotients
�/R and �//IndG

HR. For every λ ∈ C we obtain a connection between two sets of functions
in ��(λ), which transform according to those two sets of bases. This connection yields
the transplantation between the functions in ��/R(λ) and ��/IndG

H
R(λ). Let {ε̃i}Ii=1 be the

representatives for the orbits E/G of � used in the construction of �/IndG
H R. We deal separately

with each representative ε̃i and address the simpler case of Gε̃i = {id} first. Let Bi = {
bi

j

}d

j=1
be a basis for the representation R. We choose representatives for the left cosets of H in
G: {tk}[G:H ]

k=1 . A possible basis for IndG
HR 11 is Bi = {

tkb
i
j

}
1�k�[G:H ]

1�j�d

. Let λ ∈ C. For{
f̃ i

j

}
1�j�d

, a set of functions in ��(λ) which transforms according to Bi , we consider{
ϕ̃i

(k,j) = tkf̃
i
j

}
1�k�[G:H ]

1�j�d

, a set of functions in ��(λ) which transforms according to Bi . We

11 See appendix A.
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handle the case in which �/R is constructed by choosing the representatives for the orbits Gε̃i
/H

of � to be
{
ẽ(i,k) = t−1

k ε̃i
}[G:H ]

k=1 , for which we obtain the transplantation:

ϕ
∣∣
εi
(k,j)

= ϕ̃i
(k,j)

∣∣
ε̃i = tkf̃

i
j

∣∣
ε̃i = f̃ i

j

∣∣
t−1
k ε̃i = f̃ i

j

∣∣
ẽ(i,k) = f

∣∣
e
(i,k)
j

. (7.11)

We now treat the case of a non-trivial Gε̃i . Obviously, the construction of each quotient
depends on the various choices for bases and the edge representatives. We proceed in the
following order: starting with any representatives for E/G, {ε̃i}, we pick representatives for
E/H, {ẽ(i,k)}. We then assume we are given any bases for R, {B(i,k)}, which fit {ẽ(i,k)} and use
them to produce bases {Bi}, which fit {ε̃i}. The instrument which enables us to advance in
this manner is the double coset structure.

We start by choosing representatives for the (Gε̃i , H) double cosets in G, {tk}lk=1. We
then denote {t(k,1)}lk=1 = {tk}lk=1 and complete this to a set of representatives of the left cosets
of H in G, {t(k,m)} 1�k�l

1�m�nk

(∑l
k=1 nk = [G : H ]

)
, obeying the condition

∀ 1 � k � l, ∀ 1 � m1, m2 � nk, ∃g ∈ Gε̃i s.t.t(k,m1) = gt(k,m2).

Note that the choice of {t(k,m)} obviously depends on ε̃i , but we omit the i index here to simplify
the notation. Returning to the graph, the condition above means that

∀ 1 � k � l, ∀ 1 � m1, m2 � nk, t−1
(k,m1)

ε̃i = t−1
(k,m2)

ε̃i . (7.12)

It is now possible to describe the representatives for the orbits E/H , used in �/R’s construction.
For each 1 � i � I we can choose the representatives for the orbits Gε̃i

/H as
{
t−1
(k,1)ε̃

i
}

1�k�l
={

t−1
k ε̃i

}
1�k�l

. We denote these representatives by ẽ(i,k) = t−1
k ε̃i . The union of all these,

{ẽ(i,k)} 1�i�I
1�k�l

, forms our choice of representatives for the orbits E/H .

We now assume that for each k we are given B(i,k) = {
b

(i,k)
j

}d

j=1, a basis for R which

corresponds to the edge ẽ(i,k). Namely,
{
b

(i,k)
j

}dk

j=1 is a basis for the trivial component

of ResH
H

ẽ(i,k)
R, and

{
b

(i,k)
j

}d

j=dk+1 is a basis for
⊕

S�1

(
ResH

H
ẽ(i,k)

R
)S

(note that dk depends

on i, but we do not mention this to simplify the notation). A possible basis for IndG
HR

is
{
t(k,m)b

(i,k)
j

} 1�k�l
1�m�nk

1�j�d

, but the construction of �/IndG
H R requires choosing a basis which

corresponds to the edge ε̃i , in the sense mentioned above. By lemma 7.5 which follows
this proof,

{
1
nk

∑nk

m=1 t(k,m)b
(i,k)
j

}
1�k�l

1�j�dk

is a basis for the trivial component of ResG
Gε̃i

IndG
HR.

We can complete it to a basis of IndG
HR by adding any bases for the non-trivial irreducible

components of ResG
Gε̃i

IndG
HR. The exact form of this completion does not affect the quotient

�//IndG
H R (nor the transplantation) since the functions that correspond to these basis elements

vanish on the edge ε̃i . We denote this basis of IndG
HR by Bi , and this finishes the description of

the bases and the representatives by which the two quotients are constructed. We summarize
them and the encoding\decoding relations that they imply:

• �/R: We have
{
ẽ(i,k) = t−1

k ε̃i
}

1�k�l
as representatives for the orbits Gε̃i

/H . The resulting

edges of the quotient are
{
e
(i,k)
j

}
1�k�l

1�j�dk

, where for each k, the edges
{
e
(i,k)
j

}
1�j�dk

correspond to the basis
{
b

(i,k)
j

}
1�j�dk

. Let f be a function on �/R. For each k, we can

decode its restrictions on the edges
{
e
(i,k)
j

}
1�j�dk

into the set of functions
{
f̃

(i,k)
j

}
1�j�d

,
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whose restrictions on Hẽ(i,k) transform according to the representation R given by the
basis B(i,k). The decoding is given by

f̃
(i,k)
j

∣∣
ẽ(i,k) =

{
f |

e
(i,k)
j

1 � j � dk

0 dk < j � d.

.
• �/IndG

H R: Obviously, we have ε̃i as a representative for the orbit Gε̃i
/G. The

resulting edges of the quotient are
{
εi
(k,j)

}
1�k�l

1�j�dk

, and they correspond to the basis{
1
nk

∑nk

m=1 t(k,m)b
(i,k)
j

}
1�k�l

1�j�dk

. For ϕ, a function on �/IndG
H R, we decode its restrictions into

the edges
{
εi
(k,j)

}
1�k�l

1�j�dk

by the set of functions
{
ϕ̃i

(k,j)

}
1�k�l
1�j�d

whose restrictions on Gε̃i

transform according to the basis Bi . The decoding is given by

ϕ̃i
(k,j)

∣∣
ε̃i =

{
ϕ|εi

(k,j)
1 � j � dk

0 dk < j � d
.

We recall that we wish to find an isomorphism between ��/R(λ) and ��/IndG
H

R(λ) for every
λ ∈ C. In order to do this, we compose the ‘�/R-decoding’ with the ‘�/IndG

H R-encoding’, but
in the middle we need to establish a bijection between the sets of functions whose restrictions
on Gε̃i transform according to

⋃l
k=1 B(i,k), and those whose restrictions on Gε̃i transform

according to Bi . The bijection suggested by the bases we have chosen is

ϕ̃i
(k,j) = 1

nk

nk∑
m=1

t(k,m)f̃
(i,k)
j . (7.13)

By (7.12), ∀ 1 � m � nk, t
−1
(k,m)ε̃

i = t−1
k ε̃i = ẽ(i,k), so that (7.13) simplifies to

ϕ̃i
(k,j)

∣∣
ε̃i = 1

nk

nk∑
m=1

t(k,m)f̃
(i,k)
j

∣∣∣∣∣
ε̃i

= 1

nk

nk∑
m=1

f̃
(i,k)
j

∣∣∣∣∣
t−1
(k,m)ε̃

i

= f̃
(i,k)
j

∣∣
ẽ(i,k) . (7.14)

Having set the stage, the transplantation is simply given by

ϕ
∣∣
εi
(k,j)

= ϕ̃i
(k,j)

∣∣
ε̃i = f̃

(i,k)
j

∣∣
ẽ(i,k) = f

∣∣
e
(i,k)
j

. (7.15)

�

Lemma 7.5. Following the notations of the proof above,
{

1
nk

∑nk

m=1 t(k,m)b
i
(k,j)

}
1�k�l

1�j�dk

is a

basis for the trivial component of ResG
Gε̃i

IndG
H R.

Proof. Let 1 � k � l and 1 � m � nk .

Gε̃i t(k,m) =
nk⋃

m′=1

{
Gε̃i t(k,m)

⋂
t(k,m′)H

}
=

nk⋃
m′=1

t(k,m′)

{
t−1
(k,m′)Gε̃i t(k,m)

⋂
H
}

=
nk⋃

m′=1

t(k,m′)

{
t−1
(k,m)Gε̃i t(k,m)

⋂
H
}

=
nk⋃

m′=1

t(k,m′)

{
Gt−1

(k,m)ε̃
i

⋂
H
}

=
nk⋃

m′=1

t(k,m′)Ht−1
(k,m)ε̃

i =
nk⋃

m′=1

t(k,m′)Hẽ(i,k) . (7.16)
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The first equality is due to Gε̃i t(k,m)H = ⋃nk

m′=1 t(k,m′)H and the third one is by (7.12). In
particular, we observe that for every k, |Gε̃i | = nk|Hẽ(i,k) |. For b

(i,k)
j with 1 � j � dk , we have

by (7.16)

1

|Gε̃i |
∑

g∈Gε̃i

gt(k,m)b
(i,k)
j = 1

|Gε̃i |
nk∑

m′=1

t(k,m′)

∑
h∈H

ẽ(i,k)

hb
(i,k)
j = 1

nk

nk∑
m′=1

t(k,m′)b
(i,k)
j , (7.17)

where the last equality is since Hẽ(i,k) acts trivially on b
(i,k)
j . Obviously, the lhs of (7.17)

is invariant under the action of Gε̃i . Therefore, the set
{

1
nk

∑nk

m′=1 t(k,m′)b
(i,k)
j

}
1�k�l

1�j�dk

lies

in the trivial component of ResG
Gε̃i

IndG
HR. In addition, it is linearly independent since{

t(k,m)b
(i,k)
j

} 1�k�l
1�m�nk

1�j�d

is a basis for IndG
HR. To finish the proof we show that its size,

∑l
k=1 dk ,

equals
〈
ResG

Gε̃i
IndG

H R, 1
〉
Gε̃i

.
If R is a representation of H � G, then for any g ∈ G we also have R as a representation

of gHg−1, with ghg−1 ∈ gHg−1 acting as h ∈ H . Mackey’s decomposition theorem ([38],
section 10B) uses this to relate induction and restriction in the following way:

ResG
Gε̃i

IndG
HR ∼=

l⊕
k=1

Ind
Gε̃i

tkHẽ(i,k) t
−1
k

Res
tkH t−1

k

tkHẽ(i,k) t
−1
k

R,

which shows that〈
ResG

Gε̃i
IndG

HR, 1
〉
Gε̃i

=
l∑

k=1

〈
Ind

Gε̃i

tk H
ẽ(i,k) t

−1
k

Res
tkH t−1

k

tkHẽ(i,k) t
−1
k

R, 1
〉
Gε̃i

=
l∑

k=1

〈
Res

tkH t−1
k

tkHẽ(i,k) t
−1
k

R, 1
〉
tkHẽ(i,k) t

−1
k

=
l∑

k=1

〈
ResH

H
ẽ(i,k)

R, 1
〉
H

ẽ(i,k)
=

l∑
k=1

dk.

�

Corollary 7.6. If G acts on � and H1,H2 are subgroups of G with the corresponding
representations R1, R2 such that IndG

H1
R1 ∼= IndG

H2
R2, then �/R1 and �/R2 which are constructed

by the recipe described are transplantable.

We end this section by demonstrating the process of finding the transplantation for our
basic isospectral example (figure 2). The representations (3.1) and (3.2) that were used to
form those quotients are one dimensional and we denote their bases by B = {b},B = {b}.
We choose the representatives {e, σ } to form the induction IndD4

H1
R1 whose basis we choose to

be {eb, σb}.
The matrix representation corresponding to this basis is⎧⎪⎨⎪⎩

e 	→
(

1 0
0 1

)
, σ 	→

(
0 1

−1 0

)
, σ 2 	→

(−1 0
0 −1

)
, σ 3 	→

(
0 −1
1 0

)
,

τ 	→
(−1 0

0 1

)
, τσ 	→

(
0 −1

−1 0

)
, τσ 2 	→

(
1 0
0 −1

)
, τσ 3 	→

(
0 1
1 0

)
⎫⎪⎬⎪⎭ . (7.18)

We choose the same representatives {e, σ } and get IndD4
H2

R2 with the basis {eb, σb} and the
following matrix representation:⎧⎪⎨⎪⎩

e 	→
(

1 0
0 1

)
, σ 	→

(
0 1

−1 0

)
, σ 2 	→

(−1 0
0 −1

)
, σ 3 	→

(
0 −1
1 0

)
,

τ 	→
(

0 1
1 0

)
, τσ 	→

(−1 0
0 1

)
, τσ 2 	→

(
0 −1

−1 0

)
, τσ 3 	→

(
1 0
0 −1

)
⎫⎪⎬⎪⎭ . (7.19)
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(a) (c)(b)

Figure 10. (a) The graph �/R1 with its edges labeled. (b) The graph � whose relevant edges are
denoted. (c) The graph �/R2.

The relation between these two bases is

eb = 1/
√

2 (eb − σb)

σb = 1/
√

2 (eb + σb) .

Let λ ∈ C. Let f ∈ ��/R1
(λ), ϕ ∈ ��/R2

(λ). Decoding these functions we get
f̃ 1 ∈ �

R1
� (λ), ϕ̃1 ∈ �

R2
� (λ). Note that in the general construction we also have a superscript

index denoting the number of edges on which the function is defined. However, in this example,
we have a free action on the edges so that we can choose a single basis (B for �/R1 and B for �/R2)
to work with. Using the general notation we therefore have ∀ 1 � i � 6, f̃ 1 = f̃ i

1 and similarly

for ϕ̃1. Forming the inductions we have {ef̃ 1, σ f̃ 1} ⊂ �
Ind

D4
H1

R1

� (λ), {eϕ̃1, σ ϕ̃1} ⊂ �
Ind

D4
H2

R2

� (λ).
These functions correspond to the bases {eb, σb}, {eb, σb} and transform accordingly. We
now describe the transplantation by expressing f in terms of ϕ (the edges’ labeling is given
in figure 10).

f |e1
1
= f̃ 1|ẽ1 = ef̃ 1|ẽ1 = 1/

√
2
(
eϕ̃1|ẽ1 − σ ϕ̃1|ẽ1

)
= 1/

√
2
(̃
ϕ1|ẽ1 − ϕ̃1|σ−1 ẽ1

) = 1/
√

2
(̃
ϕ1|(τσ 3)−1 ẽ5 − ϕ̃1|σ−2 ẽ7

)
= 1/

√
2
(
ρR2(τσ 3)̃ϕ1|ẽ5 − ρR2(σ

2)̃ϕ1|ẽ7

) = 1/
√

2
(−ϕ̃1|ẽ5 + ϕ̃1|ẽ7

)
= 1/

√
2
(−ϕ|e5

1
+ ϕ|e7

1

)
f1|e5

1
= f̃ 1|ẽ5 = ef̃ 1|ẽ5 = 1/

√
2
(
eϕ̃1|ẽ5 − σ ϕ̃1|ẽ5

)
= 1/

√
2
(̃
ϕ1|ẽ5 − ϕ̃1|σ−1 ẽ5

) = 1/
√

2
(̃
ϕ1|ẽ5 − ϕ̃1|(τσ 3)−1 ẽ7

)
= 1/

√
2
(̃
ϕ1|ẽ5 − ρR2(τσ 3)̃ϕ1|ẽ7

) = 1/
√

2
(̃
ϕ1|ẽ5 + ϕ̃1|ẽ7

)
= 1/

√
2
(
ϕ|e5

1
+ ϕ|e7

1

)
.

The transplantation on all the other edges is obtained similarly and the result is

f |e2
1
= 1/

√
2
(−ϕ|e6

1
+ ϕ|e8

1

)
f |e3

1
= 1/

√
2
(−ϕ|e4

1
+ ϕ|e9

1

)
f |e4

1
= 1/

√
2
(
ϕ|e4

1
+ ϕ|e9

1

)
f |e6

1
= 1/

√
2
(
ϕ|e6

1
+ ϕ|e8

1

)
.
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Figure 11. The Cayley graph of D4 with generating set {σ, τ }. The lengths of some edges of this
quantum graph are marked.

8. A gallery of isospectral graphs

We present three interesting examples of isospectral graphs. The first example shows that once
the algebraic conditions stated in theorem 4.3 or in corollary 4.4 are satisfied, we can choose
any graph that obeys the group symmetries and obtain isospectral quotients. The second
example shows a symmetry group larger than D4, as well as the effect of using different
choices of representatives while constructing the quotient. The third example demonstrates
the special case of a group that acts freely on a graph which enables us to get quotients whose
boundary conditions are all of the Neumann type.

8.1. G = D4—another choice for �

We present another example, using the group D4, to emphasize that it is possible to obtain
isospectral quotient graphs from any graph that obeys the symmetry of D4. We now denote
the Cayley graph of D4 with respect to the generating set S = {σ, τ } by � (figure 11). Since a
Cayley graph can be constructed for any discrete group, this example can easily be generalized
to create other isospectral sets. The set of edges of � is then E = {(g, gs)}g∈D4,s∈S , and the
action of D4 on the edges of � is by ∀ h ∈ D4, h(g, gs) = (hg, hgs), where s ∈ S. Taking the
same subgroups of D4 and representations as in sections 3 and 5, we obtain three isospectral
quotient graphs �/R1, �/R2, �/R3, shown in figure 12. The representatives chosen to construct
the graphs are

V/H1 = {e, σ } E/H1 = {(e, σ ), (σ 3, e), (e, τ ), (σ, τσ 3)}
V/H2 = {e, σ } E/H2 = {(e, σ ), (σ 3, e), (e, τ ), (σ, τσ 3)}
V/H3 = {e, τ } E/H3 = {(e, σ ), (τσ 3, τ ), (τ, e), (e, τ )}.

8.2. G = Oh—freedom to choose representatives

We now consider a larger group and treat Oh, the group of symmetries of the cube. The group
Oh contains 48 elements: the identity, 23 rotations and 24 reflections. A fundamental domain
for the action of Oh on the cube is a tetrahedron. Each of the 48 tetrahedra that together form
the cube has one of its faces along the external boundary of the cube, and its other three faces
inside the cube. We begin by describing a graph, denoted by �, that obeys the symmetries of
Oh. We consider star graphs with three edges, such that each tetrahedron contains one such
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(a)

(b)

(c)

Av1 = Av2 =

1 1 0 0
1 0 1 0
1 0 0 1
0 0 0 0

Bv1 = Bv2 =

0 0 0 0
0 0 0 0
0 0 0 0
1 −1 −1 −1

Av1=

⎛
⎜⎜⎝

1 1 0 0
1 0 1 0
1 0 0 1
0 0 0 0

⎞
⎟⎟⎠ Bv1=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
1 −1 −1 −1

⎞
⎟⎟⎠

Av2=

⎛
⎜⎜⎝

1 1 0 0
1 0 −1 0
1 0 0 1
0 0 0 0

⎞
⎟⎟⎠ Bv2=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
−1 1 −1 1

⎞
⎟⎟⎠

Av1 = Av2 =

i 1 0 0
i 0 1 0
i 0 0 1
0 0 0 0

Bv1 = Bv2 =

0 0 0 0
0 0 0 0
0 0 0 0
−i 1 1 1

Figure 12. The three quotient graphs obtained from the Cayley graph: (a) �/R1, (b) �/R2 and (c)
�/R3. The matrices describe the boundary conditions at the various vertices. The diagrams on the
left relate the edges to the rows of the corresponding matrices, numbered 1–4.

star graph, and the edges of the star graph are connected to the center of the interior faces
of the tetrahedron (one edge goes to each face). This star graph is constructed to have three
edges of different lengths, labeled a, b and c. Any two star graphs in neighboring tetrahedra
are then connected at the center of their common face. � is the union of these star graphs.
It is a three-regular, bipartite graph, with 48 vertices and 72 edges of lengths 2a, 2b and 2c,
each with equal multiplicity. We will use the subgroups O, Td � Oh, along with appropriate
representations, to form the isospectral quotient graphs.

We first consider the subgroup O � Oh, known as the octahedral group, which contains
the identity and the 23 rotation elements. We take representatives for E/O and V/O. Since
O is a subgroup of index 2, one possibility is to choose the edges and vertices contained
in two tetrahedra as representatives. O has two one-dimensional, one two-dimensional and
two three-dimensional irreducible representations [36]. We work with the two-dimensional
representation, using the basis given in [36], and we denote it as R1. The quotient graph �/R1 is
shown in figure 13(a). As noted in sections 6 and 7.4, it is possible to make different choices
for the representatives. We present three different quotient graphs for �/R1, corresponding to
three different choices of representatives, in figures 13(a)–(c).

We now examine the subgroup Td � Oh. The vertices of the cube consist of two sets,
each of which forms the vertices of an equilateral tetrahedron. Td contains all the elements of
Oh whose action does not mix between the two sets. It should be noted that O ∼= Td

∼= S4.
In particular, Td and O have the same irreducible representations. We will take the matrix
representation that was used for O and use it for Td , denoting it by R2. The quotient graph
�/R2 is shown in figure 13(d).
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Av1=

⎛
⎜⎜⎝

1 c 0 −s
0 s −1 c
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ Bv1=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
1 −c 0 s
0 −s −1 −c

⎞
⎟⎟⎠

Av2=

⎛
⎜⎜⎝

1 c 0 s
0 s 1 −c
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ Bv2=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
1 −c 0 −s
0 −s 1 c

⎞
⎟⎟⎠

where c = cos(π/3) and s = sin(π/3)
(a)

Av1=

⎛
⎜⎜⎝

1 c 0 −s
0 s −1 c
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ Bv1=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
1 −c 0 s
0 −s −1 −c

⎞
⎟⎟⎠

Av2=
1 1
0 0 Bv2=

0 0
1 −1

(b)

Av1=

⎛
⎜⎜⎝

1 c 0 s
0 s 1 −c
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ Bv1=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
1 −c 0 −s
0 −s 1 c

⎞
⎟⎟⎠

Av2=

⎛
⎜⎜⎝

1 c 0 −s
0 s 1 c
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ Bv2=

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
1 −c 0 s
0 −s 1 −c

⎞
⎟⎟⎠

(c)

Av1=Av3=
1 + c −s

0 0
Av2=

1 + c s
0 0

Bv1=Bv3=
0 0

1 − c s
Bv2=

0 0
1 − c −s

(d )

Figure 13. The isospectral graphs obtained from the cube. (a)–(c) are all �/R1, formed by
choosing different representatives for E/O and (d) is the graph �/R2. Unless stated otherwise,
Neumann boundary conditions are assumed. The boundary conditions of the marked vertices are
given by the matrices on the right.

The isospectrality of the quotient graphs formed from O and Td follows from the fact that
IndOh

O R1 ∼= IndOh

Td
R2.

8.3. G = D3—a free action on �

We now consider an example that demonstrates the possibility of constructing quotient graphs
that have only Neumann boundary conditions. We show that this can be achieved even when
dividing by multidimensional representations. We consider the graph �, shown in figure 14,
which is symmetric under the action of D3 ∼= S3. The group acts freely on both the vertices
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(a) (b)

Figure 14. Two visualizations of the graph � which is symmetric under D3. (a) A three-
dimensional visualization. The loops are perpendicular to the plane of the triangle. σ is a rotation
of 2π/3 about an axis perpendicular to the plane of the triangle and τ is a rotation of π about a
height of the triangle. (b) A two-dimensional visualization whose edges’ lengths are marked.

(a)

(b)

(c)

Figure 15. The first quotient graph �/S1+S2+2S3 ∪ �/S1 ∪ �/S1. All vertices have Neumann boundary
conditions. (a) The graph formed from the first block of the representation. Note that in this case,
we have recovered the original graph. (b)–(c) Two copies, coming from the two blocks containing
the trivial representation.

and edges of �. This is ensured by having the circles perpendicular to the plane of the triangle.
We have D3 = {e, σ, σ 2, τ, τσ, τσ 2}, where σ is a rotation of 2π/3 about the axis perpendicular
to the plane of the triangle and τ is a rotation of π about the height of the triangle.

Rather than working with representations of various subgroups, we use various bases of
a representation of the entire group to create the quotient graphs. D3 has three irreducible
representations: the trivial representation S1, the sign representation S2 and the standard
representation S3, which is of dimension 2. We take the eight-dimensional representation
R = 3S1 + S2 + 2S3. We begin by choosing a basis such that the matrix representation of R is
block diagonalized as follows:⎛⎜⎝ S1 + S2 + 2S3

S1

S1

⎞⎟⎠ .

This choice of basis is not unique. We therefore specify it by identifying the top block as
the regular representation of D3 and taking the standard basis for this representation. Due
to the fact that the matrix representation is block diagonalized, the quotient graph created
consists of three disjoint graphs. Each graph corresponds to one block, and these are shown in
figure 15.
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(a)

(b) (c)

Figure 16. The second quotient graph �/S1+S3 ∪ �/S1+S3 ∪ �/S1+S2. All vertices have Neumann
boundary conditions. (a)–(b) The graphs formed from the first two blocks of the representation.
(c) The graph obtained from the third block.

Note that this representation consists of permutation matrices. This, together with the
fact that the action of D3 on � is free, ensures Neumann boundary conditions on the quotient
graph. We now choose a new basis, such that the matrix representation of R takes the form⎛⎜⎝ S1 + S3

S1 + S3

S1 + S2

⎞⎟⎠ .

Again we must further specify the choice of basis. Each of the first two blocks is the
permutation representation of the symmetric group of size three, and we choose its standard
basis. For the third block, we choose the basis in which

σ 	→
(

1 0
0 1

)
, τ 	→

(
0 1
1 0

)
.

Using this basis, we again obtain a quotient graph consisting of three disjoint graphs,
corresponding to the three blocks of the matrix representation, as shown in figure 16. This
quotient also has only Neumann boundary conditions for the same reason. The two quotient
graphs, namely �/S1+S2+2S3 ∪ �/S1 ∪ �/S1 and �/S1+S3 ∪ �/S1+S3 ∪ �/S1+S2, are isospectral.

Remark. As a matter of fact, all the quotients obtained in this subsection can also be obtained,
as quotients by the trivial representations of D3’s subgroups, as

IndD3
D3

1 ∼= S1

IndD3
〈σ 〉1 ∼= S1 + S2

IndD3
〈τ 〉1 ∼= S1 + S3

IndD3
{id}1 ∼= S1 + S2 + 2S3.

9. Drums and manifolds

We now apply theorem (4.3) to other objects. In particular, we reconstruct some existing
examples using our method, and comment on some new results.
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/R1⊗R1 /R1⊗R2 /R2⊗R1 /R2⊗R2

Figure 17. The four isospectral domains presented in [10], obtained as quotients of the torus T

(figure 18). Solid lines indicate Dirichlet boundary conditions, and dotted ones Neumann.

Figure 18. The torus T, of which the four domains in figure 17 are quotients.

9.1. Jakobson, Levitin et al

We begin by examining the isospectral domains presented by Jakobson et al and Levitin
et al [9, 10]. It is possible to recover all the isospectral examples described in these papers
as quotients by representations with isomorphic inductions. We consider first an interesting
example, consisting of the four isospectral domains shown in figure 17 (see also figure 7 in
[10]).

We take a torus, T, with 16 diamond-shaped holes, as shown in figure 18. We can express
the torus as Ta ×Tb, where Ta, Tb are circles with circumferences a and b, respectively. Taking
a rigid action of D4 on each of the circles Ta and Tb, we obtain an action of G = D4 × D4 on
the torus Ta × Tb: the action of the first D4 in the direct product is by horizontal translations
and reflections, and that of the second D4 is by vertical ones. For example, the element (σ, e)

transforms T rigidly onto itself so that the four columns of diamonds are cyclically shifted by
one, and the element (τ, e) swaps the first column with the fourth, and the second with the
third. Similarly, the action of elements of form (e, g) is by transformations that permute the
rows of diamonds.

Adopting the notations of section 3, we examine the subgroups {Hi×Hj }i,j∈{1,2} of D4×D4

and their corresponding representations {Ri ⊗ Rj }i,j∈{1,2}. Since IndD4
H1

R1 ∼= IndD4
H2

R2, all of
these representations have isomorphic inductions in D4 × D4. Applying corollary 4.4, we
obtain that

{
T/Ri⊗Rj

}
i,j∈{1,2} are isospectral (figure 17).

To demonstrate how the technicalities work for these domains, we construct T/R1⊗R2.
From (3.1) and (3.2), we obtain information on f̃ ∈ �

R1⊗R2
T (λ): we see that f̃ vanishes

on the axes of reflection of (τ, e), as it is anti-symmetric with respect to this reflection, and
similarly for (e, τσ ). Since f̃ is symmetric with respect to the axes of (τσ 2, e) and (e, τσ 3),
its normal derivatives with respect to these axes are zero. This is summarized in figure 19(a)
and the resulting quotient is shown in figure 19(b). Note that the two parts of figure 19
serve the same purpose as those of figure 3, i.e., to demonstrate how the information on a
function belonging to a certain isotypic component is encoded in the boundary conditions of
the quotient. We end by remarking that all the constructions demonstrated in section 5 can be
applied analogously to T to enlarge the isospectral quartet in figure 17. However, the quotients
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(a) (b)

Figure 19. (a) The information we have on f̃ ∈ �
R1⊗R2
T

(λ). The function vanishes along the
solid lines, and its normal derivatives at the dotted lines are zero. (b) The quotient planar domain
T/R1⊗R2 which encodes this information. Solid lines stand for Dirichlet boundary conditions and
dotted lines for Neumann.

Figure 20. The quotient T/R1⊗R3. Solid lines stand for Dirichlet boundary conditions and dotted
lines for Neumann. There is a factor of i between the values and derivatives at the top and bottom
edges.

obtained from most choices of representations and bases will not be planar domains or even
manifolds. For example, consider the representation R3 of H3, given in (5.1). The quotient
T/R1⊗R3 (figure 20) is a cylinder with Dirichlet and Neumann conditions at its boundaries,
and a ‘factor of i’ condition along a section line normal to the boundaries (compare with the
quotient �/R3 introduced in section 5). This quotient is a manifold with a singularity. Other
types of singularities may arise when considering quotients with respect to multidimensional
representations.

We now examine a more general example presented in [10]. Consider the cylindrical
drum D, shown in figure 21. In the figure, the left and right edges are identified. The three
dots imply that the basic pattern which appears in figure 22 is repeated and D consists of 8n

copies of it. D is symmetric under the action of the dihedral group D4n, where σ rotates the
cylinder and τ is a reflection whose axis is shown in figure 21.

We consider the subgroups H1,H2 � D4n, where

H1 = {e, τ, τσ 2n, σ 2n}
H2 = {e, τσ, τσ 2n+1, σ 2n},

equipped with the one-dimensional representations

R1: {e 	→ (1), τ 	→ (−1), τσ 2n 	→ (1), σ 2n 	→ (−1)}
R2: {e 	→ (1), τσ 	→ (1), τσ 2n+1 	→ (−1), σ 2n 	→ (−1)}.
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Figure 21. The cylindrical drum D. The left and right edges are identified. Solid lines stand for
Dirichlet boundary conditions and dotted ones for Neumann. The reflection elements in D4n and
their axes are indicated.

Figure 22. A fundamental domain of D under the action of D4n.

(b) - /R1 (c) - /R2

(a)

4 4

Figure 23. (a) The information we have on f̃ ∈ �
R1
D

(λ). The function vanishes along the solid
lines, and its normal derivatives at the dotted lines are zero. (b) and (c) The quotient planar domains
D/R1 and D/R2. Solid lines stand for Dirichlet boundary conditions and dotted ones for Neumann.
These domains illustrate the case n = 2.

We find that IndD4n

H1
R1 ∼= IndD4n

H2
R2, and therefore we can form two isospectral quotients, each

one a quarter the width of the original drum, with Dirichlet boundary conditions on one side,
and Neumann on the other. In figure 23, the drum D and the resulting quotients are shown for
the case n = 2. In conclusion, we have provided an alternate proof for theorem 4.2 in [10].
In fact, this proof is valid for any number n, whereas the original theorem in [10] treated only
the case n = 2k . The reader might wonder why we limited our attention to D4n. The answer
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(a) (b)

Figure 24. The isospectral drums of Gordon et al with new boundary conditions.

is that if we consider the more general Dn, then in order to define H1 and H2, n must be even.
If n is even, but not a multiple of 4, then the proof works, but in that case H1 and H2 are also
conjugate in D4, so that the isospectral domains thus obtained are also isometric.

9.2. Gordon, Webb and Wolpert

The famous domains of Gordon, Webb and Wolpert, originally presented in [6, 7], can be
similarly constructed by our method. Buser et al [8] have shown that they can be constructed
as quotients of the hyperbolic plane. This is done by considering an epimorphism from the
symmetry group of this plane onto PSL3(F2) and taking the inverse images of two subgroups
in PSL3(F2), each isomorphic to S4. In our formalism, the drums of Gordon et al are
obtained (with Neumann boundary conditions) from the quotient of the hyperbolic plane by
the corresponding trivial representations of S4. Using the sign representation of S4 instead
we obtain the same drums with different boundary conditions (figure 24). The conditions of
corollary 4.4 are satisfied in this case as well, so that this pair of drums is isospectral. A more
detailed explanation is given in [27].

9.3. Chapman’s two-piece band

In D4 there are no Sunada pairs, i.e., there are no non-conjugate subgroups A,B � D4 whose
trivial representations satisfy IndD4

A 1A
∼= IndD4

B 1B . However, by simple arithmetic we can
extract isospectrality even from these ‘basic ingredients’.

We note that if {Ri}ni=1 are representations of G, then the disjoint union
⋃n

i=1
�/Ri is

isospectral to �/
⊕n

i=1Ri , as we have �⋃n
i=1

�/Ri
(λ) = ⊕n

i=1 ��/Ri
(λ), so that

σ⋃n
i=1

�/Ri
(λ) =

n∑
i=1

〈
χRi

, χ��(λ)

〉
G

= 〈
χ⊕n

i=1 Ri
, χ��(λ)

〉
G

= σ�/
⊕n

i=1 Ri
(λ)

(this was implicitly manifested in section 8.3). Combining this with theorem 4.3, we
obtain the following: if {Hi}, {H ′

j } are finite sets of subgroups of G, with the corresponding

representations {Ri}, {R′
j }, such that

⊕
i IndG

Hi
Ri

∼= ⊕
j IndG

H ′
j
R′

j , then
⋃

i
�/Ri is isospectral

to
⋃

j
�/R′

j .
We recall the subgroups H1,H2,H3 � D4 from sections 3 and 5 and also consider

H4 = {e, τσ 2} and H5 = {e, τσ }. Even though no two inductions among
{
IndD4

Hi
1Hi

}5
i=1 are

isomorphic, we do have that IndD4
H1

1H1 ⊕ IndD4
H5

1H5
∼= IndD4

H2
1H2 ⊕ IndD4

H4
1H4 . By the observation

above, if D4 acts on some object �, then �/1H1 ∪ �/1H5 is isospectral to �/1H2 ∪ �/1H4 .
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τσ2

τ

τσ τσ3

1

1

/H1

√
2

√
2/H2

2

1

/H4 2

2

/H5

(a) (b)

S

S

S
S

Figure 25. (a) A square S, on which D4 acts, with the axes of reflection elements marked.
(b) Fundamental domains for the actions of H1 = 〈τ, τσ 2〉,H2 = 〈τσ, τσ 3〉,H4 = 〈τσ 2〉, H5 =
〈τσ 〉 on S.

1

1

/1H1

√
2

√
2/1H2

2

1

/1H4 2

2

/1H5
D

D

D

D

Figure 26. Various quotients of D, the square in figure 25(a) with Dirichlet boundary (solid lines
stand for Dirichlet boundary conditions and dotted ones for Neumann). D/1H1 ∪D/1H5

is isospectral
to D/1H2 ∪ D/1H4 .

In figure 25, part (a) displays a square S, of side length 2, on which D4 acts, and part
(b) displays fundamental domains for the actions of D4’s subgroups {Hi}i=1,2,4,5. If we
supply S with Neumann boundary conditions, we obtain that {S/1Hi

} are the domains shown in
figure 25(b), also with Neumann boundary conditions. The isospectrality of S/1H1 ∪ S/1H5

and S/1H2 ∪ S/1H4 is a known example constructed by Chapman [29], which shows that ‘one
cannot hear the shape of a two-piece band’ [35]. Chapman obtains this isospectral example by
manipulating the drums of Gordon et al—he enlarges the number of connected components
by cutting the basic building block and then cancels out identical components in the two
shapes. Chapman shows that these domains are also isospectral if the Neumann conditions
at the boundaries are replaced by Dirichlet ones, and we would like to establish this as well.
A reasonable guess would be to try D, a square identical to S, but with Dirichlet boundary
conditions. This, however, leads to isospectrality of domains with mixed boundary conditions
(figure 26).

In figure 26, the Dirichlet edges are the remnants of D’s boundary, whereas the Neumann
edges are the traces of the reflections by which the quotients were taken. One is thus led to
consider the following representations:

R′
1: {e 	→ (1), τ 	→ (−1), τσ 2 	→ (−1), σ 2 	→ (1)}

R′
2: {e 	→ (1), τσ 	→ (−1), τσ 3 	→ (−1), σ 2 	→ (1)}

R′
4: {e 	→ (1), τσ 2 	→ (−1)}

R′
5: {e 	→ (1), τσ 	→ (−1)}.

In {R′
i}, the reflection elements are sent to (−1), so that the corresponding quotients encode

functions which are antisymmetric at the corresponding axes, hence vanishing along them.
The quotients {D/R′

i}i=1,2,4,5 are indeed the domains presented in figure 25(b) with Dirichlet
boundary conditions, and upon verifying that IndD4

H1
R′

1 ⊕ IndD4
H5

R′
5

∼= IndD4
H2

R′
2 ⊕ IndD4

H4
R′

4, we
obtain the isospectrality we have sought. Note that by taking {S/R′

i}i=1,2,4,5, we would have
again obtained the mixed isospectral example in figure 26, but with the Dirichlet and Neumann
conditions swapped. We end by remarking that as usual, one can extend the isospectral
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families above by considering other bases for the representations IndD4
H1

1H1 ⊕ IndD4
H5

1H5 and

IndD4
H1

R′
1 ⊕ IndD4

H5
R′

5, but that in the general case the objects thus obtained will no longer be
planar domains.

10. Summary and open questions

This paper describes a method which enables one to construct isospectral objects, such as
quantum graphs and drums. The algebraic component of the underlying theory suggests
theorem 4.3 and corollary 4.4 as our main tools for producing isospectral objects. Their
assumptions are less strict than those of Sunada’s theorem [2], and this allows more degrees of
freedom in the isospectral search. Another ingredient is the assembly process of the so-called
quotient graphs, whose construction accounts for yet more liberty. We found that for a graph
� with a symmetry group G and a representation R of the group, we have a variety of choices
to make for the fundamental domain of the action of G on � and also for the basis with respect
to which R is presented. These different possibilities yield (possibly) different quotient graphs
�/R, all isospectral to each other. We wish to offer two perspectives on this dizzying freedom.
On the one hand, it invites us to test the strength of the method. Namely, given two isospectral
objects, can it be decided whether they arise as quotients of some common object. We touched
this question so far merely by reconstructing some known isospectral objects in terms of our
method. On the other hand, it prompts one to classify these sources of isospectrality and to
understand the interrelationships between them. A fundamental question in this context is
whether, for R as above, there exists a choice of basis for IndG

HR which makes �/IndG
H R the

same as �/R (rather than just isospectral). We saw a demonstration of this in section 5, where
�/R1 was the same as �/IndG

H1
R1 with an appropriate choice of basis. If this is always the case,

it means that the ability to change between different bases is a more fundamental source of
isospectrality. This should not cause one to abandon theorem 4.3 and corollary 4.4. Their
role in such a case would be to indicate favorable bases for the construction. First, they make
the practical assembly of the quotient easier by offering lower-dimensional representations to
divide by. Second, the quotient of a manifold by a multidimensional representation is seldom
a manifold, so one is led to seek one-dimensional representations with isomorphic inductions
(see examples in section 9).

Pondering over the quotient graph, which stands at the heart of our method, we are led
to inquire how its various properties are determined by the construction. Among these are
topological ones, such as the number of connected components and the number of independent
cycles of the graph. Others relate to the nature of the boundary conditions, which in turn
determine the qualities of the differential operator on the graph. Of specific importance are
conditions which guarantee that the quotient graph has only Neumann boundary conditions,
or alternatively, boundary conditions which ensure the self-adjointness of its Laplacian. This
issue was addressed in proposition 7.1 and the example in section 8.3, but still awaits further
investigation.

Quantum graphs are the focus of this paper and they obtain a thorough treatment. One
reason for this, which was already mentioned, is that under fairly mild conditions, the resulting
quotient object is also a quantum graph. The other reason is that it is relatively simple to give
a rigorous description of their construction (see section 6). However, we have demonstrated
in section 9 that the method is also applicable to manifolds and drums, and it is desirable to
examine the possibility of obtaining other isospectral objects as well, e.g., discrete graphs.

Another interesting application would be to relate the construction method to the spectral
trace formula for quantum graphs. Specifically, we would like to show the equality of the
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trace formulae for isospectral graphs just by examining the way in which they are constructed.
This includes a comparison of the total lengths of the graphs and the lengths of their periodic
orbits. A similar question for isospectral planar domains is discussed in [30]. We propose
to treat this issue by returning to the origin of the spectral trace formula for quantum graphs
[17, 18], which was developed by describing the boundary conditions in terms of scattering
matrices. Therefore, it may be worthwhile to work out an isospectral theory, analogous to that
described in this paper, but stated in terms of scattering matrices. Such an approach may also
pave the way for a similar isospectral theory for discrete graphs, as a spectral trace formula
for them has recently been developed using scattering matrices [31].

We end by returning to Kac’s question and asking what one can do when hearing the
shape of a graph (drum) is not possible. One answer concerns the field of counting nodal
domains of the Laplacian eigenfunctions. Some new works investigate the ability to resolve
the isospectrality of discrete graphs, quantum graphs and various manifolds by counting their
nodal domains [23, 32–34]. A specific method of doing so by relating the nodal count of
an isospectral pair to its transplantation was developed in [26]. The theory presented in this
paper and the transplantation it yields can perhaps lead to a general method of isospectrality
resolution. It may therefore be further asked whether one can count whatever cannot be heard.
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Appendix A. A short review of required elements of representation theory

Let G be a finite group. A d-dimensional representation of G, denoted by R, consists of
a vector space V R of dimension d equipped with an action of G, which is described by a
homomorphism ρR : G → GL(V R), i.e., ∀ g1, g2 ∈ G,ρR(g1g2) = ρR(g1)ρR(g2). Once
a basis for V R is chosen, one can also think of ρR as a homomorphism into GLd(C). ρR is
called the structure homomorphism of R, and the vector space V R the carrier space of the
representation. We alternatingly use R, ρR and V R when referring to the representation.

The character of a representation R is defined as χR : G → C, χR(g) = tr(ρR(g)). We
will also use the notation χV for the character of a representation R whose carrier space is V .
There is an inner product defined on the characters by〈

χR1 , χR2

〉
G

:= 1

|G|
∑
g∈G

χR1(g)χR2(g).

A representation R is called reducible if there exists a non-trivial subspace of the carrier
space which is invariant under the action of the group. Otherwise it is irreducible. Up to
isomorphism, any finite group G has a finite number r of irreducible representations, {Si}ri=1.
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We often use S to denote irreducible representations and R for general ones. The characters
of the irreducible representation obey orthogonality relations ∀ i, j ∈ {1 . . . r} , 〈χSi

, χSj
〉G =

δi,j .
Two important notions that are used throughout this paper are the restriction and the

induction of a representation. Let H be a subgroup of a group G. Let R be a representation of
G. Then the restriction of R from G to H, denoted by ResG

HR, is described by V ResG
H R = V R

and ρResG
H R = ρR|H . In particular, the dimension of ResG

H R is equal to that of R.
Now, let R be a representation of H. We describe the induction of R from H to G, denoted

by IndG
HR . We start with a carrier space W = V R for the representation R of H and construct

a vector space V = V IndG
H R which carries a representation of G. We choose representatives

for the left cosets of H in G: {ti}ni=1, where n = [G : H ]. For each i ∈ {1 . . . n}, we form a
space denoted by tiW , which is isomorphic to W . The prefix ti of the elements tiv ∈ tiW

is currently only an abstract notation without an actual meaning. However, as one may
expect, the vector tiv will obtain, via the described construction, the meaning of the action
of ti ∈ G on v ∈ V . The desired carrier space V is defined to be V = ⊕n

i=1 tiW and
we now equip it with an appropriate action of G. Let v ∈ V, g ∈ G. There exist unique
{vi}ni=1 ⊂ W such that v = ∑n

i=1 tivi , and there exist unique hi ∈ H and σ (i) ∈ {1 . . . n}
(which depend on g) such that gti = tσ (i)hi for i ∈ {i . . . n}. We are motivated by the ‘identity’
gv = ∑n

i=1 gtivi = ∑n
i=1 tσ (i)hivi to define

g · v =
n∑

i=1

tσ (i)(hivi), (A.1)

where hivi is computed according to the representation R from which we started. Note that the
action of g permutes the subspaces {tiW }ni=1 among themselves, and in addition manifests the
action of a corresponding H element (determined by g and ti) on each such subspace. It is left
for the reader to check that this indeed defines an action, i.e., ∀ g1, g2 ∈ G, (g1g2)v = g1(g2v),
and that the obtained representation does not depend (up to isomorphism) on the choice of
representatives. Also, V contains a subspace which as a representation of H is isomorphic to
R, namely, tiW which corresponds to the trivial H-coset. In contrast to the preservation of
dimension of the restricted representation, we have dim IndG

HR = dim R · [G : H ].
It is known that the character completely identifies a representation, and it is therefore

useful to describe the characters of the restricted and induced representations. Obviously,
χResG

H R = χR|H , and an explicit calculation gives

χIndG
H R(g) =

n∑
i=1

χR

(
t−1
i gti

)
, (A.2)

where χR

(
t−1
i gti

) = 0 for all t−1
i gti /∈ H .

Let us demonstrate this by referring to section 3 and calculating the induction of the
representation R1 from H1 to G ∼= D4. We choose the representatives {e, σ } for the cosets of
H1 in D4. The character of the induced representation is therefore

χIndG
H1

R1
(e) = χR1(e) + χR1(e) = 2

χIndG
H1

R1
(σ ) = χR1(σ ) + χR1(σ

3σσ) = 0

χIndG
H1

R1
(σ 2) = χR1(σ

2) + χR1(σ
3σ 2σ) = −2

χIndG
H1

R1
(τ ) = χR1(τ ) + χR1(σ

3τσ ) = 0

χIndG
H1

R1
(τσ ) = χR1(τσ ) + χR1(σ

3τσσ) = 0.
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In the above, we have calculated the character only for chosen representatives of the conjugacy
classes of G (which is obviously enough). We indeed obtain the character of the two-
dimensional irreducible representation of D4 (see for example (5.7)).

We end by stating a fundamental theorem, known as Frobenius reciprocity ([38],
section 10A): Let G be a group with a representation R1. Let H be a subgroup of G and
R2 a representation of H. Then〈

χResG
H R1

, χR2

〉
H

= 〈
χR1 , χIndG

H R2

〉
G
.

This is the main element that stands behind the proof of theorem 4.3.
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