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N o d a l d o m a i n s o n g r a p h s - H o w t o c o u n t t h e m a n d w h y ? 

Ram Band^, Idan Oren^ and Uzy Smilansky^ 

ABSTRACT. The purpose of the present manuscript is to collect known results 
and present some new ones relating to nodal domains on graphs, with special 
emphasize on nodal counts. Several methods for counting nodal domains will 
be presented, and their relevance as a tool in spectral analysis will be discussed. 

1. Introduction 

Spectral graph theory deals with the spectrum and the eigenfunctions of the 
Laplace operator defined on graphs. The study of the eigenfunctions, and in partic
ular, their nodal domains is an exciting and rapidly developing research direction. 
It is an extension to graphs of the investigations of nodal domains on manifolds, 
which started already in the 19th century by the pioneering work of Chladni on the 
nodal structures of vibrating plates. Counting nodal domains started with Sturm's 
oscillation theorem which states that a vibrating string is divided into exactly n 
nodal intervals by the zeros of its nth vibrational mode. In an attempt to general
ize Sturm's theorem to manifolds in more than one dimension, Courant formulated 
his nodal domains theorem for vibrating membranes, which bounds the number 
of nodal domains of the nth eigenfunction by n [1]. Pleijel has shown later that 
Courant's bound can be realized only for finitely many eigenfunctions [2]. The 
study of nodal domains counts was revived after Blum et al have shown that nodal 
count statistics can be used as a criterion for quantum chaos [3]. A subsequent pa
per by Bogomolny and Schmit illuminated another fascinating connection between 
nodal statistics and percolation theory [4]. A recent paper by Nazarov and Sodin 
addresses the counting of nodal domains of eigenfunctions of the Laplacian on §2 

[5]. They prove that on average, the number of nodal domains increases linearly 
with n, and the variance about the mean is bounded. At the same time, it was 
shown that the nodal sequence - the sequence of numbers of nodal domains ordered 
by the corresponding spectral parameters - stores geometrical information about 
the domain [6] . Moreover, there is a growing body of numerical and theoretical 
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6 RAM BAND*, IDAN OREN* AND UZY SMILANSKY*'§ 

evidence which shows that the nodal sequence can be used to distinguish between 
isospectral manifolds. [7, 8]. 

In the present paper we shall focus on the study of nodal domains on graphs, 
and show to what extent it goes hand in hand or complements the corresponding 
results obtained for Laplacians on manifolds. 

The paper is designed as follows: The next chapter summarizes some elemen
tary definitions and background material necessary to keep this paper self contained. 
Next, we survey the known results regarding counting nodal domains on graphs and 
state a new theorem regarding the morphology of nodal domains. After these pre
liminaries, we present a few counting methods of nodal domains on graphs. Finally, 
the intimate connection between nodal sequences and isospectrality on graphs will 
be reviewed, and some open problems will be formulated. 

2. Definitions, notations and background 

A graph Q — (V, B) is a set of vertices V = {1, 2, • • • V} of size V = \V\ and a set 
of undirected bonds (edges) B of size B = |S|, such that {i,j} G B if the vertices 
i and j are connected by a bond. In this case we say that vertices i and j are 
adjacent and denote this by i ~ j . The degree (valency) of a vertex is the number 
of bonds which are connected to it. A graph is called v-regular if all its vertices 
are of degree v. Throughout the article, and unless otherwise stated, we deal with 
connected graphs with no multiple bonds or loops (a bond which connects a vertex 
to itself). A well known fact in graph theory is that the number of independent 
cycles in a graph, denoted by r is equal to: 

(1) r = B-V + Co 

where Co is the number of connected components in Q. We note that r is also the 
rank of the fundamental group of the graph. A tree is a graph for which r = 0. 
Let g be a subgraph of Q. We define the interior of g as the set of vertices whose 
adjacent vertices are also in g. The boundary of g is the set of vertices in g which 
are not in its interior. 

A graph Q is said to be properly colored if each vertex is colored so that adjacent 
vertices have different colors. Q is k-colorable if it can be properly colored using k 
colors. The chromatic number x(0) is k if Q is fc-colorable and not (fc-l)-colorable. 
A very simple observation, which we will use later, is that x(G) < V. 

Q is called bipartite if its chromatic number is 1 or 2. However, since a chro
matic number 1 corresponds to a graph with no bonds, and we are dealing only 
with connected graphs, we can exclude this trivial case and say that for a bipartite 
graph, x — 2. The vertex set of a bipartite graph Q can be partitioned into two dis
joint sets, say Vi and V2, in such a way that every bond of Q connects a vertex from 
Vi with a vertex from V2- We then have the following notation: Q = (Vi U V2,S) 
[20]. 

The adjacency (connectivity) matrix of Q is the symmetric V x V matrix C = 
C(G) whose entries are given by: 

r _ f 1, if i and j are adjacent 
u 1 0, otherwise 
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NODAL DOMAINS ON GRAPHS - HOW TO COUNT THEM AND WHY? 7 

Laplacians on graphs can be defined in various ways. The most elementary way 
relies only on the topology (connectivity) of the graph, and the resulting Laplacian 
is an operator on a discrete and finite-dimensional Hilbert space. These operators 
or their generalizations to be introduced below will be referred to as "discrete" or 
"combinatorial" Laplacians. One can construct the Laplacian operator as a differ
ential operator if the bonds are endowed with a metric, and appropriate boundary 
conditions are required at the vertices. The resulting operator should be referred 
to as the "metric" Laplacian. However, because the metric Laplacian is identical 
with the free Schrodinger operator (i.e. with no potential) on the graph, one often 
refers to this system as a "Quantum Graph" - a misnomer which is now hard to 
eradicate. In the sequel we shall properly define and discuss the relevant versions 
of Laplacians on graphs. 

The discrete Laplacian, of Q, is the matrix 

(2) L{Q) = D-C, 

where D is the diagonal matrix whose ith diagonal entry is the degree of the vertex 
i, and C is the adjacency matrix of Q. A generalized Laplacian, L is a symmetric 
V x V matrix with off-diagonal elements defined by: L- < 0 if vertices i and j are 
adjacent, and L- = 0 otherwise. There are no constraints on the diagonal elements 
of L'. 

The eigenvalues of L(G) together with their multiplicities, are known as the 
spectrum of Q. To each eigenvalue corresponds (at least one) eigenvector whose 
entries are labeled by the vertices indexes. It is well known that the eigenvalues 
of the combinatorial Laplacian are non-negative. Zero is always an eigenvalue 
and its multiplicity is equal to the number of connected components of Q. An 
important property regarding spectra of large ^-regular graphs is that the limiting 
spectral distribution is symmetric about A = v, and is supported on the interval 
[v - 2 v

/ v ^ l , v + 2V^=T] [18]. 
An extensive survey of the spectral theory of discrete Laplacians can be found 

in [21, 22, 23]. 

To define quantum graphs a metric is associated to Q. That is, each bond 
is assigned a positive length: L& G (0,oo). The coordinate along the bond b is 
denoted by x^. The total length of the graph will be denoted by C = J2beB ^h-
This enables to define the metric Laplacian (or free Schrodinger operator) on the 
graph as the negative second derivative — ̂  on each bond. The domain of this 
operator on the graph is the space of functions which connect continuously across 
vertices and which belong to the Sobolev space W2,2(b) on each bond b. Moreover, 
vertex boundary conditions are imposed to render the operator self adjoint. We 
shall consider in this paper the Neumann and Dirichlet boundary conditions: 

(3) Neumann condition on the vertex i : ^ ^ - j -^- i/Jb(xb)\ — 0 •> 

(4) Dirichlet condition on the vertex i : 

where S^ denotes the group of bonds which emerge from the vertex i and the 
derivatives in (3) are directed out of the vertex i. The eigenfunctions are the 

£ h~b
Mxb) 

6gS(i) UXb *6=0 
Mxb)\Xb=0 = = o , 
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8 RAM BAND ,̂ IDAN OREN̂  AND UZY SMILANSKY '̂1 

solutions of the bond Schrodinger equations: 

(5) VbeB - ^ ^ = fcV&, 

which agree on the vertices and satisfy at each vertex boundary conditions of the 
type (3) or (4). The spectrum {k^}^=1 is discrete, non-negative and unbounded. 
One can generalize the metric Laplacian by including potential and magnetic flux 
that are defined on the bonds. Other forms of boundary conditions can also be 
used. However, these generalizations will not be addressed here, and the interested 
reader is referred to two recent reviews [13, 14]. 

Finally, two graphs, Q and H, are said to be isospectral if they posses the same 
spectrum (same eigenvalues with the same multiplicities). This definition holds 
both for discrete and quantum graphs. 

3. Nodal domains on graphs 

Nodal domains on graphs are defined differently for discrete and metric graphs. 
• Discrete graphs: Let Q = (V,S) be a graph and let f= ( / i , /2, • • •, fv) be a real 
vector. We associate the real numbers fi to the vertices of Q with i — 1,2,.. . , V. 
A nodal domain is a maximally connected subgraph of Q such that all vertices have 
the same sign with respect to f. The number of nodal domains with respect to a 
vector f is called a nodal domains count, and will be denoted by ^(f). The maximal 
number of nodal domains which can be achieved by a graph Q will be denoted by 
vg. The nodal sequence of a graph is the number of nodal domains of eigenvectors 
of the Laplacian, arranged by increasing eigenvalues. This sequence will be denoted 

by {vn}n=i-
The definition of nodal domains should be sharpened if we allow zero entries in f. 
Two definitions are then natural: 

• A strong positive (negative) nodal domain is a maximally connected sub
graph H of Q such that j{ > 0 (£ < 0) for allien. 

• A weak positive (negative) nodal domain is a maximally connected sub
graph H of Q such that f{ > 0 (£ < 0) for all i e H. 

In both cases, a positive (negative) nodal domain must consist of at least one 
positive (negative) vertex. According to these definitions, it is clear that the weak 
nodal domains count is always smaller or equal to the strong one. 
• Metric graphs: Nodal domains are connected domains of the metric graph where 
the eigenfunction has a constant sign. The nodal domains of the eigenfunctions are 
of two types. The ones that are confined to a single bond are rather trivial. Their 
length is exactly half a wavelength and their number is on average —. The nodal 
domains which extend over several bonds emanating from a single vertex vary in 
length and their existence is the reason why counting nodal domains on graphs is 
not a trivial task. The number of nodal domains of a certain eigenfunction on a 
general graph can be written as 

(6) ^ = \ Z £ { | ^ | + ^ ( i - ( - i ) L ^ J ^ [ ^ g ^ ] ) } - B + y 

where \x\ stands for the largest integer which is smaller than x, and <pi, (j)j are the 
values of the eigenfunction at the vertices connected by the bond b = {i,j} [17]. 
(6) holds for the case of an eigenfunction which does not vanish on any vertex: 
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NODAL DOMAINS ON GRAPHS - HOW TO COUNT THEM AND WHY? 9 

Mi </>i 7̂  0, and there is no cycle of the graph on which the eigenfunction has a 
constant sign. The last requirement is true for high enough eigenvalues where half 
the wavelength is smaller than the length of the shortest bond. This restriction, 
which is important for low eigenvalues, was not stated in [17]. 

Nodal domains on quantum graphs can be also defined and counted in an 
alternative way. Given an eigenfunction, we can associate to it the vector 0 = 
( 0 i , . . . , <j)y) of its values on the vertices and count the nodal domains of this vector 
as in the case of a discrete graph, explained above. The reasoning behind this way 
of counting is that the values of the eigenfunction on the vertices {<j>i)Y=i together 
with the eigenvalue k2 store the complete information about the values of the 
eigenfunction everywhere on the graph. We thus have two independent ways to 
define and count nodal domains on metric graphs. To distinguish between them we 
shall refer to the first as metric nodal domains, and the number of metric domains 
in the nth eigenfunction will be denoted by / in . The domains defined in terms of 
the values of the eigenfunction on the vertices will be referred to as the discrete 
nodal domains. The number of the discrete nodal domains in the nth eigenfunction 
will be denoted by i/n, similar to the notation of this count for the discrete graphs. 

As far as counting nodal domains is concerned, trees behave as one dimensional 
manifolds, and the analogue of Sturm's oscillation theory applies for the eigenfunc
tions of the discrete [9] and the metric Laplacians [10, 11 , 12, 15], as long as the 
eigenvector (or the eigenfunction) does not vanish at any vertex. Thus we have 
vn — n for discrete tree graphs and /xn = n for metric ones. 

Similarly, Courant's theorem applies for the eigenfunctions of both the discrete 
and the metric versions of the Laplacian on any graph: vn < n, fxn < n, [16, 17]. 
It should be noted that there is a correction due to multiplicity of the nth eigenvalue 
and the upper bound becomes n + m — 1, where m is the multiplicity [16]. However, 
sharper lower and upper bounds for the number of nodal domains were discovered 
recently. Berkolaiko provided a lower bound for the nodal domains count for both 
the discrete and the metric cases [27]. He showed that the nodal domains count of 
the nth eigenfunction of the Laplacian (either discrete or metric) has no less than 
n — r nodal domains (r is the number of independent cycles in the graph). Again, 
this is valid if the eigenfunction has no zero entries and it belongs to a simple 
eigenvalue. When n — r < 0, this result is trivial since a nodal domains count is 
positive by definition. We note that for metric graphs this theorem does not hold 
when the discrete count is used. This can be explained by the simple observation 
that n — r grows unbounded while the discrete count is bounded by the number of 
vertices. 

A global upper bound for the nodal domains count of a graph Q was derived 
in [28]: The maximal number of nodal domains on Q was proven to be smaller or 
equal to vgV — \ + 2, where \ *s the chromatic number of Q. This bound is valid 
for any vector, not only for Laplacian eigenvectors. 

To end this section we shall formulate and prove a few results which show that 
not all possible subgraphs can be nodal domains of eigenvectors of the discrete 
Laplacians of ^-regular graphs. The topology and connectivity of nodal domains 
are restricted, and the restrictions depend on whether the eigenvalue is larger or 
smaller than the spectral mid-point v. 

THEOREM 3.1. Let Q be a v-regular graph. Then the following statements hold: 
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10 RAM BAND13, IDAN OREN̂  AND UZY SMILANSKYb'§ 

i. For all eigenvectors with eigenvalue X > v the nodal domains do not have interior 

vertices. 

ii. For all eigenvectors with eigenvalue X < v, all the nodal domains consist of at 

least two vertices. 

Hi. For all eigenvectors with eigenvalue X < v — k (and k < v), in every nodal 

domain there exists at least one vertex with a degree (valency) which is larger than 

k. 

Proof. Let f be an eigenvector with no zero entries of the discrete Laplacian, 

corresponding to an eigenvalue A. Let g be a nodal domain of f. 

i. Assume that i is an interior vertex in g. Hence, the signs of fj for all j ~ i are 

the same as the sign of fi. This is not compatible with 

(7) - E / i = ( A - ^ 

for A > v. Hence g cannot have any interior vertices. 

ii. Assume that the subgraph g consists of a single vertex i. Thus on all its neighbors 

j ~ i, the sign of fj is different from the sign of fi. This is not compatible with 

(8) - X J / i =~(v-X)fi 

for A < v. Hence g cannot consist of a single vertex. 

iii. Denote the complement of the nodal domain (subgraph) g in V by gc. For all 

the vertices i in g 

(9) (Lfy = vfi -Y,CJ,ifj ~ E CM/J = Xfi • 
jeg legc 

Summing over i G g we get: 

(10) (f - A) E * = E ( E Ci& + E CM/< I 

Assuming for convenience that fi are positive for i G g, the rightmost sum in the 

equation above is non positive, and therefore 

( i i ) ( v - x ^ / i < E E c ^ ' = E v ^ ^ * 5 > -
ieg ieg j€g i€g i€g 

Here, vi = Y2j^g ^j,i 1S ^ n e valency (degree) of the ith vertex in g, and v denotes 

the largest valency in the subgraph. Since it is assumed that A < v — k we get 

(12) k < v , 
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NODAL DOMAINS ON GRAPHS - HOW TO COUNT THEM AND WHY? 11 

which completes the proof. • 

This theorem holds also for an eigenvector f which has zero elements with the 
only exception being the failure of part i when using the weak count. The case 
A = v deserves special attention. As long as the nodal domain under study has no 
vanishing entries, it cannot consist of a single vertex nor can it have interior vertices. 
Namely, for A = v, statements i and ii of Theorem 3.1. are valid simultaneously. 
Otherwise, one should treat separately the strong and the weak counts. For the 
strong count, and A = v a nodal domain cannot have an interior vertex. However, 
using the weak count for A = v one finds that no single vertex domains can exists, 
as in Theorem 3.1.zi. 

Item Hi of Theorem 3.1 can be used to provide a A dependent bound on the 
number of nodal domains of eigenvectors corresponding to eigenvalues A < v. De
fine the integer k as k = v — |~A~|. Theorem 3.1.m implies that every nodal domain 
occupies at least k + 2 vertices. Thus, their number is bounded by -X^. Courant 
theorem guarantees that the number of nodal domains is bounded by the spectral 
count N(\). This information together with the known expression for the expecta
tion value of Af(X) over the ensemble of random graphs, enable us to show that for 
large v and V, the bound -^^ ^s more restrictive than the Courant bound. Unlike 
PleijePs result, this bound is not uniform for the entire spectrum, and it applies 
only to the lower half of the eigenvalues with A < v. 

Theorem 3.1 can be easily extended to the nodal properties of the eigenvectors 
of the generalized Laplacian, provided that the weights at each vertex sum up to a 
constant v which is the same for the entire graph. 

4. How to count nodal domains on graphs? 

When discussing nodal domains counting, we must make a clear distinction 
between algorithmic and analytic methods. In the first class, we include computer 
algorithms. They vary in efficiency and reliability, but they have one feature in 
common, namely, that the number of nodal domains is provided not as a result of a 
computation, but rather, it follows from a systematic counting process. The most 
widely used method is the Hoshen-Kopelman algorithm (HK) for counting nodal 
domains on 2-dimensional domains [30]. Analytic methods provide the number 
of nodal domains as a functional of the function and the domain under study. 
The functional might be quite complicated, and not efficient when implemented 
numerically. An example of an analytical method for nodal domains counting in 
one dimension, is given by 

(13) u=f 
J a 

b ldf(x) 
*(/(*)) dx 

dx + 1 

where the nodal domains of / (#) , in the interval [a, b] are provided (assuming that 
f(a)f(b) 7̂  0). While counting in 1-d is simple, there is no analytic counting method 
for computing the number of nodal domains in higher dimensions: the complicated 
connectivity allowed in high dimensions renders the counting operation too non 
local. 

Graphs, which are in some sense intermediate between one and two dimensions 
still allow several analytic counting methods which we discuss here. An example 
of an analytical count is given by (6). The HK algorithm is well suited for graphs 
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12 RAM BAND11, IDAN OREN11 AND UZY SMILANSKY*'5 

which are grids. However, it is not as efficient when the graph under study is 
highly irregular. Although the HK algorithm fails for very complex graphs, other 
algorithms, called labeling algorithms, display linear efficiency ([46],[47]). 
Method III. in the following list, in addition of providing an analytical expression 
for the nodal domain count, can also be implemented as a computer algorithm. We 
show that it performs as efficiently as the labeling algorithm. 

The counting methods that we present here are aimed for the discrete counting 
of both discrete and metric graphs. In what follows, we assume that a vector f is 
associated to the vertex set with entries fi. The nodal domains are defined with 
respect to f. 

4.1. Method I. - Counting nodal domains in terms of flips. We define 
a flip as a bond on the graph which connects vertices of opposite signs with respect 
to a vector f. The sign vector of f, denoted by f, is defined by fi = sign( fi). For 
the time being, it is assumed that f has no zero entries. The general situation will 
be discussed later. We denote the set of flips on the graph by !F(f): 

(14) f(f) = {(u,v)eB\fvfu<0}. 

The cardinality of F(f) will be denoted by F(f). 

LEMMA 4.1. The number of flips of a sign vector f, can be expressed as 

(15) F(f) = F(f) = i ( f , L f ) . 

Proof. Using: 

(16) (f,Lf) = ^ { l - J u ? 

~ j 2 _ J 4, if Jv and Ju have opposite signs 
(1 • ) KJv ~ Ju) — \ ~ ~ 

I 0, if fv and fu have the same sign 

• 

Using the number of flips, one can get an expression for the number of nodal 
domains: 

THEOREM 4.2. Given a connected graph Q on V vertices, B bonds (and r 

cycles) and a vector f; then the number of nodal domains of f is: 

(18) v(i) = l(f,Lf) + V-B + 1(f) = \(f,Li) - (r - /(f)) + 1 

where 1(f) is the number of independent cycles in Q of constant sign (with respect 
to f). The second equality above is based on equation (1). 

Proof. Let us remove all the flips from the graph. We are now left with a 

possibly disconnected graph Q. There is a bijective mapping between components 
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NODAL DOMAINS ON GRAPHS - HOW TO COUNT THEM AND WHY? 13 

of Q and nodal domains of Q. Hence, the number of components in Q is equal to 

the nodal domains count of Q with respect to f. Let the number of nodal domains 

in Q be denoted by ^(f). Using (1), it is clear that for the ith component (where 

i = 1, 2 , . . . , v(f)): Ti — Bi — Vi + 1 where r^, Bi and Vi are the number of cycles, 

bonds and vertices of the ith component, respectively. It is also clear that all the 

cycles in Q are of constant sign, since there are no flips in Q. Thus, by our notation 

Vi — li. Let us sum over the components: 

(19) 1(f) = £ h = Y^(Bi -Vi + 1) = (B- F(f)) -V + ./(f) 
i=l i=l 

Combining (15) with (19), we get (18). D 

(18) is valid only for vectors f with no zero entries. In order to be able to 
handle a zero entry in f, we must perform a transformation on the graph. For 
a strong nodal count, we simply delete all the zero vertices along with the bonds 
connected to them from the graph, and then apply (18) on the new graph (with 
the new Laplacian). For a weak nodal count we replace each zero vertex by two 
vertices, one positive and one negative (not connected to each other), and connect 
them to all vertices which were connected to the original one. Now we can apply 
(18), and get the desired result. Notice that this correction fails in the case of a 
zero vertex whose neighbors are of the same sign (in this case an artificial nodal 
domain is added). However, the situation above can not occur for an eigenvector 
of a discrete Laplacian. This way of handling zero entries can be adapted for the 
following counting methods as well and will not be repeated in the sequel. 

Using (18), we can write some immediate consequences: 

(20) F(fn) + 1 - r < vn < F(fn) + 1 

(21) n - r - 1 < F(fn) < n + r - 1 

(20) results from the obvious fact that 0 < / < r, while (21) is a consequence 
of Courant's nodal domains theorem and Berkolaiko's theorem which states that 
n — r < vn. 
In order to make use of (18), one must compute /(f) which is not given explicitly 
in terms of f. Thus, it cannot be considered as an analytic counting method, nor 
does it offer computational advantage (There is no known efficient algorithm which 
counts all the cycles of constant sign with respect to f). However, it offers a useful 
analytical tool for deriving other results, and it makes a useful connection between 
various quantities defined on the graph. 

4.2. Method II. — Partition function approach. Foltin derived a parti
tion function approach to counting nodal domains of real functions in two dimen
sions [32]. It can be adapted for graphs in the following way: Each vertex, i, is 
assigned an auxiliary "spin" variable Si where Si = ±1 (a so called Ising-spin). 
Thus, given a certain function f on the graph, each vertex is assigned with two 
"spins" Si and /$. Let s denote the auxiliary spin vector: s = (si, 52 , . . . , sy). 
Foltin introduced a weight to each configuration of the spins model. It assigns the 
value 1 to configurations in which all spins Si belonging to the same nodal domain 
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14 RAM BAND11, IDAN OREN* AND UZY SMILANSKY*§ 

(with respect to f) are parallel, while spins of different domains might have different 
values. The weight reads: 

(22) «,(f ,s)= J ] i - I ± M . L _ ± £ i 

M: Ci,3=1 L 

It can be easily checked that this form satisfies the requirements stated above: The 
weight can take the values one or zero. It is one if and only if each factor in the 
product is equal to one. A certain factor is one, in either one of the two cases: if 
fi j^ fj (i,j belong to different domains) - this allows the Ising-spins in different 
domains to be independent of each other. The second case is if i,j are in the same 
domain, fi = fj and the corresponding Ising-spins are equal, s^ = Sj. Let us now 
sum over all possible spin configurations {s^ to get the partition function 

(23) Z(f) = 5 > ( f , s ) . 

{•} 
For the configurations whose weight has the value one, the spins have equal signs 
over each nodal domain and different domains are independent of each other. Hence, 
the total number of such configurations is: 

(24) Z(f) = 2"(#> , 

where u(f) is the number of nodal domains of the vector f. The nodal domains 
count is: 

(25) i/(f) = -^ - lnZ(f ) « 1.441nZ(f). 

The partition function approach provides an explicit formula for the number of 
nodal domains, and therefore it belongs to the analytic and not to the algorithmic 
counting methods. As a matter of fact, it is highly inefficient for practical computa
tions. It involves running over all possible spin configurations {s^}, where Si = ±1 . 
There are 2V different configurations, and as V increases the efficiency deteriorates 
rapidly. 

The partition function approach can be used as a basis for the derivation of 
some identities involving the graph and a vector f defined on it. It is convenient to 
introduce the following notations: 

1 + fifj 
Pb 

ab = 
1 - SiSj 

2 
Where f and s are as before, and b is an undirected bond. We generalize the 
partition function by introducing a new parameter x into the definitions 

(26) w(f,s;x) = J J [1 - ¥>&0-i>a;] 
beB 

(27) Z(f;x) = ^ n ; ( f , s ; x ) = ^ ; j j ( l - ^ a 6 x ) 
{s} {s} bes 

(28) Z(f;l) = 2^(f) 
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NODAL DOMAINS ON GRAPHS - HOW TO COUNT THEM AND WHY? 15 

where x can assume any real or complex value. At x = 1, the generalized partition 
function is identical to (23). 

Let us now perform the summation over all the vectors s, and compute the 
coefficient of xk. To get all the contributing terms we have to sum over all choices 
of k brackets from (27), in which x appears. Non vanishing contributions occur 
whenever both <̂& and <7& are equal to one. Since we are only summing over s, we 
only need to check when o^ — 1. This happens if and only if the s vector has a 
flip on the bond b. Since we choose k brackets (which is equivalent to choosing 
k bonds), we need to count how many s vectors have flips on all these k bonds. 
The signs of those s vectors on bonds which are not contained in this choice of k 
bonds are irrelevant. If we observe the choice of k bonds (&i,... ,&&), we notice 
that each connected component, within this choice, contributes a factor of 2, since 
the symmetry of turning each plus to minus and vice versa, does not change the 
flip properties. Using (1) we see that the number of connected components with 
respect to the choice of k bonds is: Co(&i,... , bk) = V — k + r(&i, . . . , bk), where 
r ( 6 i , . . . , bk) is the number of independent cycles that are contained in this choice. 
Finally we notice that a cycle of odd length cannot have flips on all of its bonds, 
so we will not sum over choices of &!,...,&& which contain a cycle of odd length. 
Thus, the sum over s yields: 

Z(t;x) = E E ' f [ ( ^ ) 2 v - f c + p < 6 ' - - 6 * > ( - l ) f c
a 

fc=0 bi,...,bk£B i=l 

(29) 2 " E 
k=0 

(-1)* 
2k E ' n ( ^ ) 2 r ( 6 i ' - ' 6 f c M 

6i,...,bfce£ i=l 

Where >^ stands for summation on all the possibilities to choose k bonds 

&i, . . . , bk G B such that the subgraph they form do not contain an odd cycle. We 
can now derive some immediate properties of the generalized partition function. 
To start, we compute the leading four derivatives at x — 0 to demonstrate the 
counting techniques involved. Some more effort is required to compute the higher 
derivatives. 

(30) Z(f;0) 

(31) Z (1)(f;0) 

(32) Z(2\f;0) 

(33) Z<3>(f;0) 

= - 2 l / - 1 E V i = - 2 ^ 1 ( B - F ( f ) ) 

beB 

2! 2 ^ E ' f [ ( ^ ) = 2 v - 1 ( B - 2
F ( f ) ) 

b1,b2eB i=l ^ ' 

- 3 ! 2 ^ - 3 E E M = " 3 ! 2 V " 3 

6i,...,63€B i=l 

B - F(f)N 

3 , 
-C3 
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16 RAM BAND15, IDAN OREN* AND UZY SMILANSKY"-8 

4 

Z<4>(f;0) = 4\2V-4 Y,' I I ^ . ) 
6i,...,b4GiB i=l 

4! 2 y - 4 2C4 + 
B - F(f) 

4 
C4 — C3 

(34) 4! 2 V-4 B - F(f) 
+ C4 - C3 

Where C3 is the number of triangles of constant sign, C4 is the number of cycles 
of length 4 of constant sign, and C3 = Cs(B — F(f) — 3) is the number of choices 
of 4 non-flips bonds which contain a triangle. In the evaluation of the function and 
its first three derivatives we have used the identity Vn < 3 r(&i, . . . , bn) = 0 when 
6 1 , . . . , bn contain no odd cycles. 

The partition function is a polynomial of degree less than or equal to the 
number of bonds. For a graph Q with B bonds and Co connected components, 
the polynomial is of degree B if and only if Q is bipartite and the function f is of 
constant sign on each connected component. This follows from two observations: 
first, a well known theorem in graph theory states that a graph Q is bipartite if 
and only if it contains no cycles of odd length. Thus we can choose all the bonds 
in Q without having an odd cycle contained in this choice. Second, unless f is of 
constant sign on each connected component, we will encounter a flip and hence the 
multiplication over all <£&. will vanish. If Q is bipartite, the coefficient of xB is 2Co. 

While the value of the polynomial at x = 1 has an immediate application 
through (28), we can evaluate it for other values. Let us choose f to be a vector of 
constant sign. This way <̂&. = 1 for all i — 1, 2 , . . . , B. Hence (29) reduces to: 

(35) 
fe=0 \bi,...,bk£B j 

xk. 

On the other hand, (27) equals: 

(36) 
{s} beB 

Choosing x — —n + 1 where n G Z and using the fact that (35) and (36) are equal, 
we get: 

(37) 1 
2 ^ E - F ( s ) 

W 

M (-n + l)k. 

For random vectors s, uniformly distributed, the left hand side can be interpreted 
as the average over this ensemble of the quantity: nF(s\ Let us choose two special 
values for n. If we choose n = — 1, the left hand side is just the difference between 
the probability that a random vector s on the graph has an even number of flips, 
and an odd number of flips. The right hand side is: 

(38) 
B 

E 
k=0 

E ' (-1)* } ^ 2r^ 
bu...,bkes 

• M 
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NODAL DOMAINS ON GRAPHS - HOW TO COUNT THEM AND WHY? 17 

For n — 2, we get: 

(39) ^ E 2 F ( S ) = E ^ E ' ^ - M -
{s} fc=o bu...,bkeB 

2V 

An example of the use of the polynomial could be in proving that on a tree, the 
probability of an even number of flips is equal to the probability of an odd number 
of flips. We use Eq. (38) and see that this difference of probabilities is equal to: 
E t o ( - i ) f e ( f ) = o. 
Other possible identities we can derive are for the complete graph, Ky. A function f 
of constant sign induces one nodal domain on Ky, while any other function induces 
two nodal domains. Therefore, for x — 1: 

(40) 

(41) 
2V 

2V-2 ^ 
fe{±i}v 

f#±T 

* (-1)* 

k=0 

2 " E 
k=0 

(-1)* 
2k £ ' 

->r(6i,...,6fc) _ = 2 

bu...,bkeB 

E I W f ) }r^-M 
bu...,bkeB \i=i J 

Where ^ ( f ) = 2 for bi = (u,v). Equivalently, running over all the functions 
f (including those of constant sign) we get: 

( 4 2 ) 2 ^ E E 
f£{±l}v k=0 

(-1)* 
2k E ' f n ^ c f ) ) ^ - •,bfc) 4(2y - 1) 

4.3. Method III. — Breaking up the graph. We begin again by deleting 
all the flips from the graph Q. This way we are left with a (possibly) disconnected 
graph, Q in which each connected component corresponds uniquely to a nodal 
domain in the original graph. The connectivity matrix C and the discrete Laplacian 
L of Q are given by 

(43) 

(44) 

Cij Cij • Jijj 

Lij — —Cij-\- dij y ^ Cik 

k=l 

Where f is the sign vector, and it is assumed for the moment that none of the 
entries of f vanish. 

We now make use of the theorem which states that the lowest eigenvalue of the 
Laplacian is 0 with multiplicity which equals the number of connected components 
in the graph. Therefore, finding the nodal domains count reduces to finding the 
multiplicity of zero as an eigenvalue of L. An analytic counting formula can be 
derived by constructing the characteristic polynomial of L: 

(45) det(AiV - L) 
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18 RAM BAND*, IDAN OREN* AND UZY SMILANSKY*'§ 

The multiplicity of its 0 eigenvalue provides the nodal domains count: 

(46) i/(f) = lim X-^r lndet(A/y - L) . 
A^o dX 

This method of counting, which provides the analytical expression (46) for the 
nodal count, is also the basis for a computational algorithm which turns out to be 
very efficient. It relies on the efficiency of state of the art algorithms to compute 
the spectrum (including multiplicity) of sparse, real and symmetric matrices. To 
estimate the dependence of the efficiency on the dimension V of the graph, we have 
to consider the costs of the various steps in the computation. The construction of 
the matrix L, takes 0(V2) operations, and storing the information requires 0(V2) 
memory cells as well. It takes 0(Va) operations to find all its eigenvalues where 
a ~ 2.3 (and at worst case a ~ 3) [29]. In figure 1, this polynomial dependence is 
shown for graphs of two different connectivity densities, with y equals 0.5 and 5. 
In this figure the logarithm of the time needed to find all eigenvalues of L (defined 
for a random vector), is plotted against the logarithm of the number of vertices. 
The slope which is the exponent of the polynomial dependence is smaller than 3. 
The eigenvalues in these two examples were attained using the Matlab command 
eig. As will be shown below, there are more efficient ways of finding the spectrum 
of sparse, real and symmetric matrices. Thus, the efficiency stated above can be 
improved for graphs with sparse Laplacians. 

log(V ) log(V ) 

(a) (b) 

FIGURE 1. The time it takes to compute the spectrum of L as a 

function of the number of vertices, for two different connectivity 

densities: (a) y = 0.5 (b) y — 5. 

Finally, we would like to show that the present method can be applied for 
counting nodal domains of functions defined on two dimensional grids and that 
its efficiency is comparable to that of the commonly used HK algorithm. Given 
a function f on a two dimensional domain, we have to compute its values on a 
rectangular grid with Wx y/V points. The HK algorithm counts the nodal domains 
in 0(V) operations [30]. Using our method, we consider the rectangular grid as a 
graph with V vertices. Assuming for simplicity periodic boundary conditions, the 
valency of all the vertices is 4. The corresponding L matrix is a V x V matrix 
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NODAL DOMAINS ON GRAPHS - HOW TO COUNT THEM AND WHY? 19 

which is sparse (as long as V ^> 4), and due to the periodic boundary conditions it 
takes the explicit form: 

(47) Lij = ASij — Sij-i — <Si,j+i — Si-y,j — $i+v,j • 

Thus, storing L takes only 0(V) memory cells, and constructing L takes 0(V) 
operations. We mentioned above that for a general real symmetric matrix, the 
number of operations needed is 0(Va), where a ~ 2.3 and at worst case a ~ 3. 
However, the sparse nature of L significantly simplifies the problem. The most 
well-known eigenvalue method for sparse-real-symmetric matrices is the Lanczos 
method. In addition, in recent years, new efficient algorithms were discovered for 
the same problem. In [31], it is proven that finding the eigenvalues of a sparse 
symmetric matrix takes only 0(V) operations. Combining the costs, we find that 
it takes our algorithm 0(V) operations in order to compute the nodal domains 
count, and therefore it is comparable in efficiency to the HK algorithm. 
As mentioned earlier, the labeling algorithms also display linear efficiency ([46],[47]). 
The labeling algorithms have the advantage that they are simpler in a sense, and 
that they are implemented quite easily as computer programs. In addition, the la
beling algorithms maintain their linear efficiency even for graphs with dense Lapla-
cians. It is worth mentioning, however, that our algorithm has the advantage that 
it provides an analytic expression of the nodal domains count (46). 

4.4. Method IV. — A geometric point of view. The counting method 
proposed here uses a geometric point of view which starts by considering the V 
dimensional Euclidean space, and dividing it into 2V sectors using the following 
construction. Consider the 2V vectors e^ = (e± , e^* , . . . , e^ ) where e^ = 
{1 , -1} , a = 1,2, . . . , 2 V . A vector x G Rv is in the sector a if x - e ^ =YX=i I xi I-
In two dimensions, the sectors are the standard quadrants. We shall refer to the 
vectors e^) as the indicators. 

Given a graph Q with V vertices, we partition the 2V indicators into disjoint 
sets: 7n = {e^a^ : u(e^) = n} where ^(e^a^) denotes the nodal domains count of 
the indicator e(a) with respect to Q. As shown before max{n | 7n 7̂  0} < V — X + 2, 
where \ 1S ^ n e chromatic number of (y, and also some of the 7^5 might be empty. 

Let f be a vector with non-zero entries defined on the vertex set of Q. Then, 
the main observation is that z/(f) = n if and only if: 

(48) Y, < 5 ( V , f ) - £ m ) = 1 . 
eae7n \ 2=1 / 

where, 

//mx £, v ,. e . x ( 1 if x = 0 
(49) 5{x) = l i m - s i n - = ' , . v ' y / e^o x e \ 0, if x =£ 0 

and (e a , f) is the dot product of ea and f. In other words, by finding the sector to 
which f belongs and knowing from a preliminary computation the number of nodal 
domains in each sector, one obtains the desired nodal count. Thus, the present 
method requires a preliminary computation in which the sectors are partitioned 
into equi-nodal sets j n . This should be carried out once for any graph. Therefore 
the method is useful when the nodal counts of many vectors is required. In several 
applications, one is given a vector field (of unit norm for simplicity) f £ Sv~1 which 
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20 RAM BAND*, IDAN OREN* AND UZY SMILANSKYh§ 

is distributed on the (V — l)-sphere with a given probability distribution p(f), and 
one is asked to compute the distribution of nodal counts, 

(50) P(n) = [ p(f)6 (i/(f) - n) dv~H . 
Jsv~1 

In such cases, the preliminary task of computing the equi-nodal pays off, and one 
obtains the following analytic expression for the distribution of the nodal counts. 

P(n)= [ p{t)dv-H J2 M ( e a , f ) -

(51) f p{i)5(l-\f\2)dviY< 5 ( ( e a , f ) - £ > l 
*€7n 

where: p ( f ) = p ( ^ ) . 2 | f | . 
(51) can also be formulated as: 

2V 

P(n) = W p(f) 5(1-
3=1 Jfi>0 

(52) j2 [+p(f)5(i-\f\*)dvf 5 3 s U ^ r f - i b A 

Where J = JV> 0 means integration on the first sector (the vectors with all entries 
positive) and F = (fie^ / 2 e £ , . . . , fve^). 

Equations (51) and (52) are the general equations governing the nodal domains 
count distribution. In order to make further progress, we need to specify the dis
tribution from which f is taken. This means that we need to specify p(f) in (51) 
for example. Let us discuss two examples: 
A uniform distribution over the V — 1 dimensional sphere: In this case, we can 
solve Equation (51) and get that P(n) = ^ - . Note that for a tree, we can solve 
this problem by other means. Using (18), we see that for a tree, the number of 
nodal domains is equal to the number of flips plus one. Since f is taken from the 
uniform distribution, then the probability of a flip is half. The number of flips in 
a vector f is thus a binomial variable: F(f) ~ Binomial(N,p) with N = V — 1 is 
the number of bonds, and p = \. For large enough V this approaches the Gaussian 
distribution: F(f) ~ Gaussian(n,o~2) with // = ^ ^ and a2 — ^ p 1 . From this 
result we can infer that: 

o -9(n-¥±l)2 

(53) P(n) « , Z exp ( A " 2 j ) 
V J W ^2TT(V - 1) V V - l J 

(54» ^ - 7 5 n r n 5 - p ( - W J - ' 

For the other extreme, the complete graph, Ky, the only possible nodal domains 
counts are one and two [28]. The vectors which yield a nodal domains count of one 
are vectors of constant sign. All other vectors yield a nodal domains count of two. 
Indeed, using (51) or (52) it is easy to be convinced that for the complete graph, 
7i = 2 while 72 = 2V — 2. All other 7n 's are empty. 
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NODAL DOMAINS ON GRAPHS - HOW TO COUNT THEM AND WHY? 21 

Micro-canonical ensemble: In this case the vectors f are uniformly distributed on 
the energy shell, where we can also define a measurement tolerance factor, A: 

, „ , ,- S(E-\(f,Lf}-A\)S(l-\f\2) 
(55) pE(f) = / s v _ 1 d ^ f 5 ( £ ; - | ( f ) L f ) - A | ) 

In order to make use of this ensemble, further work must be done, for example, a 
natural way to order the functions of the ensemble. 

5. The resolution of isospectrality 

There are several known methods to construct isospectral yet different graphs. 
A review of this problem for discrete graphs can be found in [33]. The conditions 
under which the spectral inversion of quantum graphs is unique were studied pre
viously. In [38, 39] it was shown that in general, the spectrum does not determine 
uniquely the length of the bonds and their connectivity. However, it was shown in 
[35] that quantum graphs whose bond lengths are rationally independent "can be 
heard" - that is - their spectra determine uniquely their connectivity matrices and 
their bond lengths. This fact follows from the existence of an exact trace formula 
for quantum graphs [40, 41]. Thus, isospectral pairs of non congruent graphs, must 
have rationally dependent bond lengths. An example of a pair of metrically distinct 
graphs which share the same spectrum was already discussed in [35]. 

The main method of construction of isospectral pairs is due to Sunada [34]. 
This method enabled the construction of the first pair of planar isospectral domains 
in R2 [36] which gave a negative answer to Kac's original question: 'Can one hear 
the shape of a drum?' [37]. Later, it was shown that all the known isospectral 
domains in R2 [42, 43] which were also constructed using the Sunada method have 
corresponding isospectral pairs of quantum graphs [44]. An example of this corre
spondence is shown in figure 2. As mentioned in the introduction, it is conjectured 
[7, 19] that nodal domains sequences resolve between isospectral domains. For flat 
tori in 4-d, this was proven [8]. We present here three additional known results for 
the validity of the conjecture for graphs. 

The first result is for the quantum graphs shown in figure 2(c). Both graphs of 
this isospectral pair are tree graphs and therefore have the same metric nodal count 
/jin —n [15]. This demonstrates the need to use the discrete nodal count in order to 
resolve isospectrality in this case. Indeed numerical examination of this case shows 
that for the first 6600 eigenfunctions there is a different discrete nodal count for ~ 
19 % of the eigenfunctions. Similar numerical results exist for two other pairs of 
isospectral graphs that are constructed from the isospectral domains in [42, 43]. 
The exact results are described in [19]. 

Another result is also in the field of quantum graphs [19]. The graphs in figure 
3 are the simplest isospectral pair of quantum graphs known so far. The simplicity 
of these graphs enables the comparison between the nodal counts of both graphs. 
It was proved that the nodal count is different between these graphs for half of 
the spectrum. This result was proved separately for the discrete count and for the 
metric count. The proof does not contain an explicit formula for the nodal count 
but rather deals with the difference of the nodal count between the graphs averaged 
over the whole spectrum. 
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lb 

i i lb b, 

(c) 

FIGURE 2. (a) Planar isospectral domains of the 73 type, (b) Re

ducing the building block to a 3-star. (c) The resulting isospectral 

quantum graphs. 

N 
2a 

N 

D 

D 

D 2b 

I 

2c 

II 

b 
ta 

FIGURE 3. The isospectral pair with boundary conditions. D 

stands for Dirichlet and N for Neumann. The bonds' lengths are 

determined by the parameters a,b,c 

II 

N 

Examining the nodal sequences for the graph 77 for various values of the length 
parameters a, 6, c, we observed that the formula 

(56) / i / / = n _ I _ i ( _ i ) L ; ^ f e n J 

reproduces the entire data set without any flaw * . Assuming it is correct (which 
is not yet proved rigorously) we first see that it provides an easy explanation for 
the previously discussed result regarding the resolution of isospectrality for this 
pair. For rationally independent values for the parameters a,b,c one gets that 
/i^7 7̂  n for half of the spectrum. Combining this with /i7 = n (since graph / is 

This result was obtained with A. Aronovitch. 

Licensed to Technion Israel Institute of Technology.  Prepared on Thu Oct 27 12:37:00 EDT 2016for download from IP 132.68.115.37.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms
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a tree) we see again that for half of the spectrum the nodal domain sequences are 
different. Expression (56) is a periodic function of n with period proportional to 
the length of the only loop orbit on the graph (the length is measured in units of the 
graph's total length). It can be expanded and brought to a form which is similar 
in structure to a trace formula where the length of this orbit and its repetitions 
are the oscillation frequencies. A similar trace formula for the nodal counts of the 
Laplacian eigenfunctions on surfaces of revolution was recently derived [6]. 

Finally, we direct our attention to discrete Laplacians. It was recently shown 
[28] that if Q and H are two isospectral graphs where one of them is bipartite 
and the other one is not, then their nodal domains count will differ. Without loss 
of generality, let Q be a bipartite graph and H a non-bipartite one, then for the 
eigenvector of the largest eigenvalue, the nodal domains count are different: for 
G, vv = V, while for W, vv < V. The proof of this theorem is based on another 
interesting result derived in [28]: Denote by fy the eigenvector corresponding to the 
largest eigenvalue of the Laplacian of a connected graph Q. Then v(fv) = VQ = V, 
if and only if Q is bipartite. Figure 4. illustrates this result. 

H f * 

H-no t bipartit e  # J 
G-bipartit e  | 1 

o \ 

® ® j 

® 1 

1 2 3 4 5 6 
n 

FIGURE 4. The upper figure presents a pair of isospectral graphs 

taken from [26]. Graph <5, on the right is bipartite, whereas graph 

W, on the left, is not. The lower figure presents the nodal domains 

count, v(fn) vs. the index n. 

6H 

-

- ® 

grap h 
grap h 
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6. Summary and open questions 

In spite of the progress achieved recently in the study of nodal domains on 
graphs, there are several outstanding open problems which call for further study. 
We list here a few examples. 

Of fundamental importance is to find out whether there exists a "trace formula" 
for the nodal count sequence of graphs, similar to the one derived in [6] for surfaces 
of revolution. The closest we reached this goal is for the graph / / in the previous 
section, where (56) could be expanded in a Fourier series. However (56) was deduced 
numerically but not proved. Once a nodal trace formula is available, it could be 
compared to the spectral trace formula [41] and might show the way to prove or 
negate the conjecture that counting nodal domains resolves isospectrality [7, 19]. 

The conjecture mentioned above can be addressed from a different angle. One 
may study the various systematic ways to construct isospectral pairs and investigate 
the relations between the construction method and the nodal count sequence of the 
resulting graphs. Such an approach worked successfully for the isospectral graphs 
presented in figure 3 [19]. 

Another open question which naturally arises in the present context: Can one 
find graphs whose Laplacians have different spectra but the nodal count sequences 
are the same? A positive answer is provided for tree graphs [15]. Are there other 
less trivial examples of "isonodal" yet not isospectral domains? 

It follows from Berkolaiko's theorem [27] that the number of nodal domains 
(both metric and discrete) of the nth eigenfunction is bounded in the interval [n — 
r, n]. We can thus investigate the probability to have a nodal count vn = n — r (for 
0 < r < r). This probability, which is defined with respect to a given ensemble of 
graphs, is denoted by P(r). It is defined for discrete graph Laplacians as: 

(57) P(r) = ^(#{l<n<V: un = n - f}> . 

The corresponding quantity for metric Laplacians is: 

N(K) = {#{n:kn<K}) 

PiT\K) = j^(#{n<N(K) : vn = n-r}) 

(58) P(r) = lim P(r;K) 
K—+OC 

Here, ( ) stands for the expectation with respect to the ensemble. New questions 
arise from the investigation of the relation between the connectivity of the graph 
and the nodal distribution P(r). Can one use the information stored in P(r) to gain 
information on the graphs e.g., the mean and the variance of the valency (degree) 
distribution of the vertices in the graphs? 

Many of the results we have presented, have analogues in Riemannian manifolds 
(which in most cases, were discovered earlier) - for example, Courant's theorem 
was originally formulated for manifolds. One can search for other analogues, and a 
good example is the Courant-Herrmann Conjecture (CHC). For manifolds the CHC 
states that any linear combination of the first n eigenfunctions divide the domain, 
by means of its nodes, into no more than n nodal domains. Glad well and Zhu [45] 
have shown that in general there is no discrete counterpart to the CHC. However, 
we can still ask for which classes of graphs does the CHC hold? 
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