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Abstract
We study the nodal set of eigenfunctions of the Laplace operator on the right-
angled isosceles triangle. A local analysis of the nodal pattern provides an
algorithm for computing the number νn of nodal domains for any eigenfunction.
In addition, an exact recursive formula for the number of nodal domains is
found to reproduce all existing data. Eventually, we use the recursion formula
to analyse a large sequence of nodal counts statistically. Our analysis shows
that the distribution of nodal counts for this triangular shape has a much
richer structure than the known cases of regular separable shapes or completely
irregular shapes. Furthermore, we demonstrate that the nodal count sequence
contains information about the periodic orbits of the corresponding classical
ray dynamics.

PACS numbers: 03.65.Ge, 03.65.Sq, 05.45.Mt
Mathematics Subject Classification: 35Pxx, 58C40, 58J50

(Some figures may appear in colour only in the online journal)

1. Introduction

More than 200 years ago Chladni pioneered the study of standing waves with his experiments
on sound figures for the vibration modes of plates [1]. The sound figures revealed that one
may characterize the modes by looking at the nodal set—the lines on the plate which do not
take part in the vibration and which are visualized in a sound figure. For each mode he drew
the nodal pattern and counted the number of nodal lines and nodal domains. With his work he
not only laid the foundations of modern acoustics but also started a thread in theoretical and
mathematical physics which lead to such classic results as Sturm’s oscillation theorem [2] and
which continues to this day.
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The mathematical framework starts with the Laplacian � on a compact Riemannian
manifold M—for the purpose of this paper it will be sufficient to consider dimension 2. If the
manifold has a boundary, then Dirichlet boundary conditions will be assumed. One studies the
eigenvalue problem

−�ϕ = λϕ, ϕ|∂M = 0. (1.1)

The solutions define the discrete spectrum of (non-negative) eigenvalues {λN}∞N=1 which we
assume to be ordered as 0 � λ1 � λ2 � · · ·. The corresponding eigenfunctions will be denoted
ϕN . A nodal domain of the eigenfunction ϕN is a connected region in M where the sign of
ϕN does not change. We define the nodal count νN as the number of nodal domains in ϕN .
The nodal counts {νN} form a sequence of integer numbers which characterizes the vibration
modes ϕN of the shape M. In the case of degeneracies in the spectrum the nodal count is
not uniquely defined. This may be overcome in various ways, e.g. by fixing a basis (and an
order in each degeneracy class). Some results on nodal counts are valid for any choice for the
basis of eigenfunctions—a famous example is the classic theorem by Courant [3] which states
νN � N.

More recently, it has been proposed [4] that one may use the nodal count sequence to
distinguish between the following: (i) regular shapes where the Laplacian is separable and
the corresponding ray (billiard) dynamics is integrable, and (ii) irregular shapes where the ray
dynamics is completely chaotic (see also [5–9]).

In the regular separable case the nodal set has a checker board pattern with crossing nodal
lines. The nodal count can easily be found using Sturm’s oscillation theorem in both variables.
In this case many properties of the nodal count sequence can be developed analytically—
e.g. the statistical distribution of the scaled nodal count ξN = νN/N can be described by an
explicit limiting function P(ξ ). This function has some generic universal features: P(ξ ) is an
increasing function with support 0 � ξ � ξcrit < 1, where ξcrit is a system-dependent cut-off.
Near the cut-off, for ξ < ξcrit the distribution behaves as P(ξ ) ∝ (ξcrit − ξ )−1/2.

In the irregular case, no explicit counting functional is known. In this case, the nodal
lines generally do not have any intersections and counting nodal domains rely on numerical
algorithms (such as the Hoshen–Kopelman algorithm [10]) that represent the eigenfunctions on
a grid of finite resolution. The numerical procedure is reliable if the resolution is high enough
to resolve the distance between nodal lines near avoided intersections [11]. For high lying
eigenvalues λN , the algorithm is time-consuming due to the increasing grid size. The numerical
experiments have shown that a limiting distribution P(ξ ) takes the form P(ξ ) = δ(ξ − ξ ),

where ξ is a universal constant (i.e. it does not depend on the shape). This and other numerical
findings have been shown to be consistent with a seminal conjecture by Berry [12] which states
that the statistics of eigenfunctions for an irregular (chaotic) shape can be modelled by the
Gaussian random wave (a superposition of planar waves with the same wavelengths, random
direction and random phase). Bogomolny and Schmit [13] realized that the nodal structure
of a two-dimensional random wave may be modelled by a parameter-free critical percolation
model (see also [14, 15]). With this heuristic model they were able to derive an explicit value
for ξ (and other features of the nodal set) with excellent agreement to all numerical data. One
interesting implication of the critical percolation model is that nodal lines can be described
by SLE which has been checked affirmatively in numerical experiments [16–18]. Meanwhile,
some features of the nodal count have been proven rigorously for random waves on a sphere
[19]—these rigorous results imply the δ-type distribution for P(ξ ) (but cannot predict the
value ξ ).

Another interesting applications of the nodal count that we will touch in this paper are
inverse questions. Two inverse questions have been discussed in some detail: (i) can one
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resolve isospectrality by looking at the additional information contained in the nodal count
[20–22]; and (ii) can one count the shape of a drum [23–26]? In other words, does the sequence
of nodal counts (ordered by increasing eigenvalues) determine the shape of the manifold M?
We refer to the shape rather than the manifold itself as the nodal counts are invariant under
scaling of M.

Both inverse questions have been answered in the affirmative for certain sets of shapes and
some cases have been proven rigorously [21, 26]. However, most recently the first example of
a pair of non-isometric manifolds with identical nodal sequences was found [22].

In some cases it could be shown that the geometrical information is stored in the nodal
sequence in a way which is very similar to the way it is stored in spectral functions. For instance,
the nodal count sequence for regular shapes with a separable Laplacian can be described by
a semiclassical trace formula [23–25]. This trace formula is very similar to the known trace
formulas for spectral functions—it is a sum over periodic orbits (closed ray trajectories) on the
manifold where each term contains geometric information about the orbit. It has been shown
that this trace formula can be used to count the shape of a surface of revolution [25].

In the irregular case, the existence of a trace formula is an open question (unpublished
numerical experiments by the authors give some support to the existence of such a formula).

In this work, we continue the thread of research summarized above and consider the nodal
set of the eigenfunctions of one particular shape: the right-angled isosceles triangle (i.e. the
triangle with angles 45◦–45◦–90◦). While this shape is regular with an integrable ray dynamics,
the Laplacian is not separable.

Our main result is an explicit algorithm for the nodal counts. In contrast to the numerical
algorithm used for irregular shapes, our algorithm is exact and does not rely on a finite
resolution representation of the wavefunction. Although the algorithm is specific to this shape,
the approach may serve as the first step to generalize explicit formulas for nodal counts beyond
the separable case where very few results are currently available. Furthermore, we conjecture
a recursion formula that allows very efficient evaluation of nodal counts for high eigenvalues.

In the remainder of the introduction, we will introduce the spectrum and the basis of
eigenfunctions for the right-angled isosceles triangle. In section 2, we will discuss the nodal
structure of the eigenfunctions and state the nodal count algorithm and the recursion formula as
our main results. In section 3, we apply the nodal count algorithm to compute the distribution
P(ξ ) of scaled nodal counts and discuss the consistency of the observed nodal counts with the
existence of a trace formula.

1.1. Eigenvalues and eigenfunctions of the Laplacian for the right-angled isosceles triangle

Let D ⊂ R
2 be the right-angled isosceles triangle of area π2/2. For definiteness, we choose

the triangle as

D = {(x, y) ∈ [0, π ]2 : y � x}.
The eigenvalue problem is stated by

−�ϕ(x, y) = − (
∂2

x + ∂2
y

)
ϕ(x, y) = λϕ(x, y) with ϕ(x, y)|∂D = 0.

The spectrum of eigenvalues is given by

λm,n = m2 + n2 for m, n ∈ N
∗ and m > n

and the corresponding eigenfunctions

ϕm,n(x, y) = sin(mx) sin(ny) − sin(nx) sin(my) (1.2)

form a complete orthogonal basis.
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(a) (b)

Figure 1. Two examples for the tiling cases: (a) ϕ9,5 and (b) ϕ21,6.

We denote the nodal count (the number of nodal domains) for ϕm,n(x, y) by νm,n. Let us
order the spectrum in increasing order, written as a sequence {λN}∞N=1, such that λN � λN+1.
Here, N ≡ Nm,n is an integer function of the integers m and n (we will continue to suppress the
reference to m and n), and we have mildly abused the notation by writing λN = λNm,n = λm,n.
The spectrum contains degeneracies of a number-theoretic flavour. For a g-fold degenerate
eigenvalue λN = λN+1 = · · · = λN+g−1, we define Nm,n by ordering the degenerate values
by increasing n. This ordering is arbitrary and has been chosen for definiteness—none of our
results here would change with a different choice.

In principle, one may also be interested in the nodal patterns of arbitrary eigenfunctions
in a degeneracy class. Indeed, many physical applications may imply that the basis functions
ϕm,n cannot be regarded as typical as soon as one looks at a degenerate eigenvalue. However,
in this paper we will focus exclusively on the nodal counts of the basis functions ϕm,n—for two
reasons: (i) understanding the nodal patterns of arbitrary superpositions of the basis functions
ϕm,n is a much harder problem which does not follow naturally from understanding just the
basis; and (ii) this choice of basis is natural for any computations.

2. The nodal pattern

This section describes the main properties of the nodal pattern of the eigenfunctions ϕmn.
These observations are then used in subsection 2.3 to infer an exact algorithm for counting
nodal domains in the triangle. Eventually, we propose a very efficient recursion formula for
the nodal counts of the eigenfunctions ϕmn in subsection 2.5.

2.1. A tiling structure of the nodal lines

The eigenvalue problem on the triangle possesses some symmetry properties which are revealed
in the nodal pattern of the eigenfunctions, ϕm,n. Specifically, there are eigenfunctions whose
nodal sets show a tiling structure.

(1) For m > n with (m + n) mod 2 = 0, the eigenfunction ϕm,n is an antisymmetric function
with respect to the line y = π − x. This line is therefore part of the nodal set of ϕm,n. The
complementary nodal set decomposes into two isometric patterns, each from either side of
the line. Each of these two patterns is similar to the nodal set pattern of the eigenfunction
ϕm′,n′ with m′ = (m + n)/2 and n′ = (m − n)/2 (figure 1(a)).

(2) For m > n with gcd(m, n) = d > 1, the nodal set of the eigenfunction ϕm,n consists of
d2 identical nodal patterns. Each of these patterns is contained within a subtriangle and
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(a) (b)

Figure 2. (a) The nodal sets N1
9,4 (dotted lines) and N2

9,4 (dashed lines). (b) The subdomains where
ϕ1

9,4 and ϕ2
9,4 have the same sign.

they are tiled together to form the complete pattern. Each such subpattern is similar to the
nodal set of the eigenfunction ϕm′,n′ for m′ = m/d and n′ = n/d (figure 1(b)).

The observations above follow directly from (1.2).

2.2. Characterization of the nodal set

Let us now characterize the nodal set of the eigenfunction ϕm,n. We assume that the nodal
set of ϕm,n does not have the tiling behaviour described in section 2.1, i.e. gcd(m, n) =
(m + n) mod 2 = 1. Otherwise, one may reduce the values of m, n, as described above, to a
smaller pair m′, n′, which does satisfy this condition, and study the nodal set of ϕm′,n′ within
the reduced triangle. In particular, it is proved in lemma A.1 in the appendix that for m, n
which satisfy the condition above, the nodal lines of the eigenfunction ϕm,n do not cross. This
observation is used below to characterize the nodal set.

We write the eigenfunction ϕm,n as the difference of the following two functions:

ϕ1
m,n(x, y) = sin(mx) sin(ny),

ϕ2
m,n(x, y) = sin(nx) sin(my).

Their nodal sets are correspondingly

N1
m,n =

{
(x, y) ∈ D

∣∣∣∣x ∈ π

m
N ∨ y ∈ π

n
N

}
,

N2
m,n =

{
(x, y) ∈ D

∣∣∣∣x ∈ π

n
N ∨ y ∈ π

m
N

}
.

These are regular checkerboard patterns whose nodal domains are open rectangles and triangles
(figure 2(a)).

The intersection N1
m,n ∩ N2

m,n is the set of points

Vm,n =
{π

m
(i, j) |0 < j < i < m

}
∪

{π

n
(i, j) |0 < j < i < n

}
(marked with stars in figure 2). The eigenfunction ϕmn vanishes at these points. Hence, nodal
lines pass through them. In the following, we analyse the run of the nodal lines of ϕmn between
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(a) (b) (c)

Figure 3. Different cases of connecting Vm,n within the shaded sub-domains. (a) A rectangle with
two points from Vm,n. (b) A rectangle with four points from Vm,n. (c) A rectangle with a single
point from Vm,n.

the points of the set Vm,n. The union N1
m,n ∪ N2

m,n divides D into cells shaped as rectangles
and triangles of various sizes. These cells are the connected components of D\ (

N1
m,n ∪ N2

m,n

)
.

The nodal set of ϕmn is contained within the cells in which ϕ1
m,n and ϕ2

m,n have the same sign.
These cells are interlacing in the checkerboard pattern formed by N1

m,n ∪ N2
m,n. We call them

the shaded cells and they appear so in figure 2(b).
The connection between the points in Vm,n by nodal lines can be easily determined by

going over the shaded cells and distinguishing between the following cases.

(1) A rectangular cell adjacent to two points of Vm,n. A non-self-intersecting nodal line
connects these two points. This is proved in lemma A.2. An example is shown in
figure 3(a).

(2) A rectangular cell adjacent to four points of Vm,n. Two nodal lines connect the two pairs
of vertices in either a horizontal or a vertical non-crossing pattern. One can determine
whether the pattern is horizontal or vertical by comparing the sign of ϕm,n at the middle
point of the rectangle with the sign of ϕm,n at one of the neighbouring cells. This is
proved in lemma A.2. This lemma also proves that a non-tiling eigenfunction, ϕm,n,
cannot vanish at the middle point of the rectangular cell. An example is shown in
figure 3(b).

(3) A cell adjacent to a single point of Vm,n. This happens only for a cell which is adjacent
to the boundary of D. The Vm,n point is then connected to the boundary of D by a
simple non-intersecting nodal line. This is proved in lemma A.3. An example is shown in
figure 3(c).

(4) A triangular cell which does not contain any point of Vm,n. In this case there is no nodal
line which passes through this triangle. This is proved in lemma A.3.

2.3. An algorithm for counting the nodal domains

We now describe an algorithm for counting νm,n, the number of nodal domains of ϕm,n, based
on the observations of the previous section. If the values of m, n correspond to an eigenfunction
with a tiling behaviour we replace them by their reduced values.

(1) For m > n with gcd(m, n) = d > 1, set the new values of m, n to be m′ = m/d and
n′ = n/d. Set the number of tiles to be d2.

(2) For m > n with (m + n) mod 2 = 0, set the new values of m, n to be m′ = (m + n)/2
and n′ = (m − n)/2. Set the number of tiles to be 2.

The number of nodal domains νm,n for the original values of m, n equals to the number of
tiles times the number of nodal domains of the reduced values. We now proceed, assuming the
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v0

(a) (b)

Figure 4. (a) The nodal set pattern of ϕ9,4. (b) The graph G9,4 which is produced by the counting
algorithm.

values of m, n were reduced. We create a graph, Gm,n, whose vertices areVm,n with an additional
anchor vertex, v0, which stands for the boundary of the triangle, ∂D. The edges of the graph
would stand for the nodal lines which connect the vertices of Vm,n. We go over all shaded
cells as described above and for each of them add either zero, one or two edges to the graph
connecting the relevant vertices. The number of vertices in a cell determines their connectivity,
as described in the previous section5. The cells which contain a nodal line connected to the
boundary ∂D, would contribute a single edge to the graph connecting the relevant vertex of
Vm,n to the vertex v0. Figure 4 demonstrates the graph Gm,n which corresponds to a certain
nodal set pattern.

For a planar graph, we define an interior face as a finite area two-dimensional
domain bounded by the graph’s edges. Once the graph Gm,n is constructed, the number
of nodal domains, νm,n, is given by the number of the graph’s interior faces plus 1.
According to Euler’s formula for planar graphs, the number of interior faces of Gm,n equals
E(Gm,n) − |Vm,n| + c(Gm,n), where E

(
Gm,n

)
is the number of edges of Gm,n and c

(
Gm,n

)
is

the number of its connected components. We, therefore, obtain

νm,n = 1 + E(Gm,n) − |Vm,n| + c(Gm,n),

which completes the algorithm once c(Gm,n) is calculated (E(Gm,n) and |Vm,n| are known at
this stage).

2.4. Boundary intersections and nodal loops

Above we have discussed the nodal count νm,n. We now introduce two further quantities which
reflect the nodal set structure of the eigenfunction ϕm,n. The first is the number of intersections
of the nodal set of ϕm,n with the boundary, ∂D, which we denote by ηm,n and call boundary
intersections. The second is the number of nodal lines which neither touch the boundary nor
intersect themselves or any other nodal lines. We call those nodal loops, and denote their
number by Im,n. In the case where ϕm,n does not have a tiling structure, each nodal line is either

5 In addition, explicitly computing the value of ϕm,n at a specific point of the cell might be required in the case of a
cell adjacent to four vertices.
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a loop or a segment connected to the boundary at two points. Hence, the connection between
the quantities defined above (in the non-tiling case) is given by the following formula:

νm,n = 1 + 1
2ηm,n + Im,n. (2.1)

As an example, in figure 4 one can count η9,4 = 10 and I9,4 = 4. The algorithm described in
the preceding section can be used to count ηm,n and Im,n.

(1) The number of nodal loops, Im,n, is given as the number of connected components of the
graph Gm,n minus 1.

(2) The number of nodal intersections, ηm,n, equals twice the number of independent cycles
of the Gm,n component which contains v0.

One can show ([28]) that the number of boundary intersections of the nodal set of ϕmn in
the non-tiling case is given by

ηm,n = m + n − 3. (2.2)

Combining this with (2.1) indicates that any formula for the nodal loop count Im,n would yield
a formula for the nodal count νm,n and vice versa.

2.5. A recursive formula for the nodal loop count

In subsection 2.3, we have described an exact algorithm that allowed us to compute the
nodal loops count. By direct inspection of tables of evaluated loop counts, we have noticed
strong correlations between the counts of different eigenfunctions. An extensive analysis
of such tables allowed us to infer a recursive formula that we will now describe. Apart
from regenerating all data that we looked at explicitly, we have checked that the empirical
formula correctly predicts all loop counts for the first 100 000 non-tiling eigenfunctions (this
assures agreement of the nodal counts at least up to N = 246 062, i.e. for all ϕm,n with
m2 + n2 � 628 325).

We propose that the loop count Im,n is given by

Im,n = Ĩ
(
n, 1

2 (m − n − 1), 0
)
,

where the three parameter function Ĩ(n, k and l) is defined by the following recursive formula:

Ĩ(n, k, l)

:=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 n = 1 or k = 0⌊
n

2k + 1

⌋ (
lk + (2l + 1) k2

) + Ĩ(n mod (2k + 1), k, l) 2k + 1 < n

1

2

⌊
k

n

⌋
(2l + 1)

(
n2 − n

) + Ĩ(n, k mod n, l) 2k + 1 > 2n(
l + 1

2

)
(2k2 + n2 − n − 2nk + k) + 1

2
k + Ĩ(2k − n + 1, n − k − 1, l + 1) n < 2k + 1 < 2n.

(2.3)

As usual we have assumed that m and n correspond to a non-tiling case (otherwise, the
reduction as described above should be made).

Remarks

(1) Note that the description of (2.3) in terms of the parameters (n, k) = (
n, 1

2 (m − n − 1)
)

is more compact than a description in terms of the original parameters m and n.
(2) If the initial values of parameters, n and k correspond to a non-tiling case, i.e.

gcd (n + 2k + 1, n) = 1, then this condition will hold for all recursive applications of the
formula.
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(3) One can verify that recursive applications of the formula terminate at some stage. Namely,
that during the recursive applications we arrive at either n = 1 or k = 0.

3. Applications to the nodal counting sequence

3.1. The nodal count distribution

Let us now discuss the asymptotic statistics of the number of nodal domains in terms of the
nodal count distribution. In section 1.1, we have given a definition of the nodal count sequence
{νN}∞N=1. Let νN be the nodal count of the Nth eigenfunction. From Courant’s nodal domain
theorem [3], we know that νN � N. While the Courant bound is only realized by a finite
number of eigenfunctions [27], one may still expect that the nodal count will grow νN ∼ N
with the index N. It thus makes sense to introduce the scaled nodal count

ξN = νN

N
(3.1)

and ask about the asymptotic behaviour of ξN as N → ∞. The latter has been explored by
Blum et al [4] for general two-dimensional billiards in terms of the nodal count distribution
in the interval λ � λN � λ(1 + g) for large λ. The parameter g > 0 defines the width of the
interval. The limiting distribution is defined as

Pλ,g(ξ ) = 1

N(λ, g)

∑
N:λN∈[λ,(1+g)λ]

δε (ξ − ξN ), (3.2)

where δε (x) = ε
(
π(x2 + ε2)

)−1
is a regularized delta-function (the limit ε → 0 will always

be implied in the following) and N(λ, g) is the number of eigenfunctions in the interval. The
integrated distribution will be denoted by

Iλ,g(ξ ) =
∫ ξ

0
Pλ,g,ε (ξ

′) dξ ′. (3.3)

As mentioned in the introduction, an explicit formula for the limiting distribution

P(ξ ) = lim
λ→∞

Pλ,g(ξ ) (3.4)

can be derived for separable Laplacians using semiclassical methods [4], while for irregular
(chaotic) shapes Bogomolny’s percolation model [13] predicts that the limiting distribution
is concentrated at a universal value ξ which is consistent with all numerical data available.
The right-angled isosceles triangle is neither an irregular shape (in fact the ray dynamics
is integrable) nor are its wavefunctions separable. The proposed recursion formula (2.3)
allows us to find the nodal counts for large sequences of eigenfunctions very efficiently on a
computer. We calculated the nodal counts for all eigenfunctions with

√
λN � 13 000 (about

66 million eigenfunctions) and extracted the nodal count distributions in various intervals. In
the remainder of this section, we will set g = 1 and discuss the numerical results.

Figure 5 reveals that the nodal count distribution Pλ,1(ξ ) (with λ = 90002) for the isosceles
triangle contains a lot of puzzling structure that neither resembles the monotonic behaviour
known from separable billiards nor the single delta-peak known to describe chaotic billiards.
Instead, the distribution consists of many peaks whose strengths and distances form a visible
pattern. Each peak apparently has a further substructure. The same structure appears if one
only includes wavefunctions without tiling behaviour (or with a specific number of tiles).
Comparing the nodal count distributions Pλ,1(ξ ) for various values of λ gives us some insight
into the asymptotic behaviour of Pλ,1(ξ ). Figure 6 shows how two peaks in the distribution
move and change shape as λ increases: all peaks move to the left and become sharper. The
comparison reveals that our numerical calculation of P(ξ ) has not converged—in spite of the
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P(ξ)

0 0.05 0.1 0.15 0.2

ξ
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0.2

0.4

0.6

0.8

I(ξ)

Figure 5. Upper panel: the nodal count distribution (histogram) for energies in the interval
90002 � λN � 2 × 90002. The colours (greyscales) represent the proportion of wavefunctions
with no tiling behaviour (light green), with exactly 2 tiles (dark green), with 4–9 tiles (turquoise),
with 10 to 99 tiles (blue), with 100–999 tiles (violet), with 1000–9999 tiles (grey) and with more
than 10 000 tiles (red). Lower panel: the corresponding integrated nodal count distribution.

extensive number of nodal counts included we cannot be sure whether a limiting distribution
exists. Still it is interesting to note that, in a certain sense, the asymptotic behaviour contains
some features of chaotic systems. In a chaotic billiard, one sees a single peak which becomes a
delta-function as λ → ∞. For the isosceles triangle, we see a large number of peaks—and the
numerics suggests that each one may converge to a delta-function. Another obvious question
suggested by the numerics is whether the limiting distribution contains fractal features.
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50.0540.0

ξ

0

P(ξ)

Figure 6. A detail of the nodal count distribution Pλ,1(ξ ) that shows the limiting behaviour. The five
curves are histograms for λ = 10002 (orange), λ = 20002 (green), λ = 40002 (blue), λ = 60002

(red) and λ = 90002 (black).

3.2. The cumulative nodal loop count

We have already observed in section 2.4 that, at least for the non-tiling case, the nodal
count decomposes to the number of boundary intersections and the nodal loop count (2.1).
The number of boundary intersections for the triangle was already investigated in [28] and
presented as a trace formula. In this section, we thus focus on the nodal loop count. Denoting
by ιn the nodal loop count of the nth eigenfunction, we define two cumulative continuous
counting functions:

Q(N) : =
�N�∑
n=1

ιn,

C(k) :=
∞∑

n=1

ιn(k − kn),

where �N� denotes the largest integer smaller than N, kn is the square root of the nth eigenvalue
(multiple eigenvalues appear more than once in the sequence {kn}) and  (k) is the Heaviside
theta function. It should be noted that the functions above can be obtained one from the other by
the use of the spectral counting function, N (k) = ∑∞

n=1  (k − kn), or its inversion. Previous
works examined similar nodal counting functions for separable drums [23, 24]. It was proved
that for simple tori and surfaces of revolution the nodal counting function can be presented as
a trace formula. The counting function was expressed there as a sum of two parts: a smooth
(Weyl) term which reflects the global geometrical parameters of the drum and an oscillating
term which depends on the lengths of the classical periodic orbits on the drum. For example,
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Figure 7. The power spectrum of Cosc (k). The lengths of some periodic orbits are identified on
the l axis.

it was shown in [23, 24] that the smooth part of
∑�N�

n=1 νn is O(N2), and the oscillating term
has the form

N
5
4

∑
po

apo sin

(
Lpo

√
4π

A
N + ϕpo

)
,

where the sum is over the periodic orbits, Lpo is the length of the orbit, apo and ϕpo are some
coefficients, which depend on the orbit, and A is the total area of the drum. Results for other
separable drums have the same form.

Having in mind the case of separable drums, we have examined both Q (N) and C (k)

numerically and found that both counting functions have a (numerically) well-defined smooth
term and an oscillatory term. Like in the case of the separable drums, the smooth term of
C (k) was found to be O(k4) as well. Note that the accumulated boundary intersections count∑∞

n=1 ηn (k − kn) is only O(k3). Hence, for high-energy eigenfunctions, most of the nodal
domains do not touch the boundary. We have extracted the oscillatory part by numerically
interpolating the smooth term and then subtracting it from C (k). In order to reveal whether
periodic orbits contribute in a similar way as in the separable case, we evaluated the Fourier
transform of the oscillatory term Cosc (k). The result is shown in figure 7 where the transform
was performed for the interval

(k62 439 153, k62 831 853) ≈ (
√

94662 + 83322,
√

10 0462 + 76882).

The Fourier transform in figure 7 shows clear peaks at positions which correspond to
lengths of periodic orbits in the triangle. For each value of (p, q) ∈ Z

2 \ {(0, 0)}, there exists
a continuous family of orbits of length Lp,q = 2π

√
p2 + q2. These are orbits that bounce from

the bottom cathetus (y = 0) at an angle of arctan(q/p).
The investigation of Q (N) starts similarly by extracting its oscillating part. As can be

expected from Weyl’s formula, the smooth part is O(N2). However, the Fourier transform of
Qosc (N) should be done with respect to a scaled variable rather than N. For this purpose, we
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Figure 8. The power spectrum of Qosc (q). The lengths of some periodic orbits are identified on
the l axis.

use the Weyl term of the counting function, N ≈ A
4π

λN , where A = 1
2π2 is the area of D and

λN is the nth eigenvalue. The scaled variable used for the Fourier transform is the square root

of the Weyl-estimated eigenvalue, q ≡
√

4π
A N =

√
8
π

N. Fourier transforming Qosc with respect
to q, reveals a linear combination of delta-like peaks. The positions of these peaks reproduce
the lengths of some of the periodic orbits mentioned above and of some additional ones.

(1) Isolated orbits that hit the corner (π, 0) at 45◦. The length of such orbits is Ln = √
2πn,

where n ∈ N is the number of repetitions of the basic orbit.
(2) Isolated orbits that go along one of the catheti. Their length is L̃n = 2πn, where n ∈ N is

the number of repetitions of the basic orbit.

Figure 8 shows the power spectrum of Qosc(q), done when analysing Q(N) in the interval
N ∈ (38 877 209, 39 269 906).

The above numeric investigation suggests a few observations. The clean Fourier
transforms of both Cosc and Qosc indicate on the existence of a trace formula for both. The
need to rescale the variable before Fourier transforming Qosc suggests that the source of a trace
formula for Q (N) is the trace formula of C (k) combined with the inversion of the spectral
counting function, N (k). A similar relation between the boundary intersections counting
functions was revealed in [28]. Another observation is that only the continuous families of
periodic orbits appear in the Fourier transform of Cosc. This is fundamentally different from
the trace formula of the boundary intersections ([28]) and calls for further investigation. We
suggest that the isolated periodic orbits which do appear in the Fourier transform of Qosc are
caused by the spectral inversion.

4. Summary and discussion

This paper investigates the nodal set of the Laplacian eigenfunctions of the right-angled
isosceles triangle. The novelty of the work is the ability to obtain exact results for the nodal
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count, although this problem is not separable. The algorithm described in section 2.3 constructs
a graph which reflects the topology of the nodal set of a given eigenfunction. The graph contains
complete and exact information about various properties of the nodal set (such as the number
of nodal loops and the number of nodal domains) which can be calculated straightforwardly.
The standard algorithm used for computing the number of nodal domains for a known (non-
separable) eigenfunction on a drum is the Hoshen–Kopelman algorithm [10]. It samples the
eigenfunction on a grid of finite resolution. As far as we know all implementations of the
Hoshen–Kopelman algorithm for nodal counting use a fixed grid and calculate the number
of nodal domains as an approximation. In principle, one may reduce the error by increasing
the resolution of the grid near avoided crossing. However, the application of this algorithm
assumes a priori that there are no nodal intersections. For the special algorithm we provide here
we have proven that it gives the exact result, even though it samples the eigenfunction more
sparsely than the Hoshen–Kopelman. This also leads to a somewhat faster running time of our
algorithm (for both algorithms the running time is proportional to the energy λ—however the
constant of proportionality is lower for our algorithm).

Our result may be generalized to other domains where similar algorithms may apply. Our
algorithm is based on the fact that the eigenfunctions are presented as a linear combination
of simple plane waves. It is therefore tempting to try and generalize it for other drums with
similar property. The equilateral triangle is an immediate candidate (see [29] and references
within).

A further, and quite surprising, result is the recursive formula for the number of nodal
loops. To our knowledge this is the first known exact formula for the nodal count of a non-
separable planar manifold (for certain eigenfunctions of tori exact formulas have been given
in [22]). The formula was found by direct inspection of large tables and has been verified
for a large bulk of data computationally. An obvious challenge is to prove this formula. In
particular, the recursive part of the formula resembles the famous Euclid algorithm for the
greatest common divisor. A further investigation of the mentioned formula might therefore
expose some new number theoretical properties of the nodal count.

The recursive formula enables us to compute a large amount of data and to study the
statistical properties of the nodal count sequence. We have studied this sequence using
functions which are commonly used in research of nodal domains: the nodal count distribution
and the cumulative nodal count. The nodal count distribution showed an intriguing structure
that resembles neither the behaviour known from separable billiards nor the one of chaotic
billiards. If at all, there is some similarities to the chaotic case, where the limiting distribution
is a single delta function, whereas in our case it contains a large number of peaks.

In our analysis of the cumulative nodal count, we found numerical evidence for the
existence of a trace formula similar to the one recently derived for separable drums [23, 24].
An open question is therefore to prove the existence of a trace formula in our case, shedding
more light on the question ‘can one count the shape of a drum?’.
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Appendix. Proofs of three lemmas

Lemma A.1. Let

ϕm,n(x, y) = sin(mx) sin(ny) − sin(nx) sin(my), (A.1)

be an eigenfunction of the Laplacian on D, where m and n obey gcd(m, n) = (m+n) mod 2 =
1. Then, there are no crossings of the nodal set of ϕm,n in the interior of D.

Proof. The necessary conditions for a crossing to happen at a point (x, y) are

ϕm,n (x, y) = 0,

∇ϕm,n (x, y) = 0.

After some algebraic manipulations the equations above obtain
sin (nx)

sin (mx)
= sin (ny)

sin (my)
, (A.2)

tan (nx)

tan (mx)
= n

m
, (A.3)

tan (ny)

tan (my)
= n

m
. (A.4)

Combining (A.2) , (A.3) and (A.4) gives
cos (nx)

cos (mx)
= cos (ny)

cos (my)
.

Squaring this and using (A.2) allows us to conclude that one of the following holds:

sin2 (my) = sin2 (ny) or

sin2 (my) = sin2 (mx) .

Assuming sin2 (my) = sin2 (ny) immediately leads to n
m = ±1, which contradicts

the assumptions on the values of m and n. Assuming sin2 (my) = sin2 (mx) leads to
sin2 (ny) = sin2 (nx). We are now required to examine several possibilities for the relations of
the expressions mx, my, nx, ny. Such an examination shows that each possibility will lead
to a contradiction with the requirements x, y ∈ (0, π ) and the conditions gcd(m, n) =
(m + n) mod 2 = 1. �

From now on we consider only m, n obeying the non-tiling conditions. Recall the following
definitions. Let ϕmn be an eigenfunction of the form (A.1) and

ϕ1
mn(x) = sin(mx) sin(ny)

ϕ2
mn(x) = sin(nx) sin(my).

Furthermore,

N1
m,n =

{
(x, y) ∈ D

∣∣x ∈ π

m
N ∨ y ∈ π

n
N

}
,

N2
m,n =

{
(x, y) ∈ D

∣∣x ∈ π

n
N ∨ y ∈ π

m
N

}
and

Vm,n =
{

π

m
(i, j)|0 < j < i < m

}
∪

{
π

n
(i, j)|0 < j < i < n

}
.

By N (ϕmn) we denote the nodal set of ϕmn. Let Ic ⊂ D\ (N1
m,n ∪N2

m,n) be a rectangular shaped
cell whose boundary is contained in N1

m,n ∪N2
m,n and contains c points from Vm,n, with p0 being

its centre point. We also assume that ∀(x, y) ∈ Ic : Sign ϕ1
mn(x, y) = Sign ϕ2

mn(x, y).
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Figure A1. Example of a superposition of the nodal pattern of ϕ1 and ϕ2.

Lemma A.2.

(i) N (ϕmn) ∩ I2 consists of a non-self-intersecting line connecting the nodal corners of I2.
(ii) ±ϕmn(p0) > 0 and N (ϕmn)∩I4 consists of two separated lines each connecting adjacent

nodal corners along edges with ∓ϕmn > 0.

Proof. Nodal sets on two-dimensional manifolds are submanifolds except for a closed set
of lower dimension, where nodal lines intersect. For an eigenfunction ϕmn this singular set
is characterized by ϕ−1

mn (0) ∩ (∇ϕmn)
−1(0). The boundary of a rectangle I2 with two points

of Vmn intersects the nodal set only at those two points. By elementary arguments using the
monotonicity of the sin function, the existence of nodal lines that do not intersect with the
boundary of this rectangle can be ruled out. The nodal set has to connect the nodal corners,
since nodal lines do not end. We present this argument in detail for one specific case and leave
the other cases to the reader. We consider the situation of figure A1.

Let the rectangle I2 be in this case such that only one symmetry axis of the two nodal
domains of ϕ1

mn and ϕ2
mn enters I2. The symmetry axes are the dotted lines and I2 is shaded.

The vertices on the lower corners belong to the nodal set and the boundary of I2 between those
two points belongs to a nodal domain of ϕmn with positive sign (assume this for now—for
negative sign it would be the same argument). Then, the upper boundary of I2 belongs to a
nodal domain of ϕmn with a negative sign. We study now the behaviour of ϕ on a vertical line
� between the upper and lower boundaries—like the one displayed in the figure. Note first
that the horizontal rectangle in the figure is a nodal domain of ϕ2

mn with a positive sign, while
the vertical rectangle is a nodal domain of ϕ1

mn with a positive sign. On the lower end of �,
ϕ2

mn starts when its value is equal to zero and grows strictly monotonic on � until it reaches
the boundary at a positive value. ϕ1

mn starts with a positive value and falls strictly monotonic
ending at zero. ϕmn being the difference of ϕ1

mn and ϕ2
mn equals zero exactly once on �. This

is true for any �. The nodal set therefore intersects every � exactly once and therefore has no
intersections nor further isolated nodal domains.
In the case of rectangles with four points of Vmn, there is a line of constant sign of ϕmn running
through the centre, which cannot be intersected by a nodal line. It can be concluded as above
that the nodal corners are joined by nodal lines within the two remaining components of this
rectangle. �

Let T ⊂ D \ (N1
m,n ∪ N2

m,n) be a triangular shaped cell next to the boundary with
Sign ϕ1

mn(x, y) = Sign ϕ2
mn(x, y) in T . Let Ib ⊂ D \ (N1

m,n ∪ N2
m,n) be a rectangular shaped cell

next to the boundary with Sign ϕ1
mn(x, y) = Sign ϕ2

mn(x, y) in Ib.

16



J. Phys. A: Math. Theor. 45 (2012) 085209 A Aronovitch et al

Lemma A.3.

(i) A triangular cell T contains a nodal line iff T contains a point of Vm,n. N (ϕmn) ∩ T is a
nodal line connecting this point to the boundary.

(ii) If Ib contains one point of Vm,n then N (ϕmn) ∩ Ib is a nodal line connecting this point to
the boundary.

(iii) If Ib contains two points of Vm,n then N (ϕmn) ∩ Ib is a nodal line connecting those two
points.

Proof. In order to understand the run of the nodal set, the nodal pattern is continued beyond
the hypotenuse by defining the eigenfunction on the whole square to be the continuation of the
eigenfunction on the triangle. This rectangle can now be treated just as in lemma A.2 with two
points of Vm,n on the left -lower and right-upper corners. The resulting nodal line coincides
with the hypotenuse. In case there is a point of Vm,n on the right-lower corner, there is also
one in the left-upper corner by symmetry and the case with four nodal corners from lemma
A.2 applies, and shows the existence of a nodal line connecting the right lower corner with the
boundary. The other points are proven similarly to the proof of lemma A.2 by monotonicity
of ϕ1 and ϕ2. �
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