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Abstract
We investigate spectral quantities of quantum graphs by expanding them as
sums over pseudo orbits, sets of periodic orbits. Only a finite collection of
pseudo orbits which are irreducible and where the total number of bonds is
less than or equal to the number of bonds of the graph appear, analogous
to a cut off at half the Heisenberg time. The calculation simplifies previous
approaches to pseudo orbit expansions on graphs. We formulate coefficients
of the characteristic polynomial and derive a secular equation in terms of the
irreducible pseudo orbits. From the secular equation, whose roots provide the
graph spectrum, the zeta function is derived using the argument principle. The
spectral zeta function enables quantities, such as the spectral determinant and
vacuum energy, to be obtained directly as finite expansions over the set of short
irreducible pseudo orbits.
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Mathematics Subject Classification: 34B45, 81Q10, 81Q35

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum graphs provide models in many disparate areas of mathematical physics. They have
been used to describe electrons in organic molecules, nanotechnology, wave guides, Anderson
localization, quantum chaos and mesoscopic systems to name but a few, see [35] for a review.
One of the reasons why quantum graphs have been so successful is that they possess an elegant
exact trace formula expansion for the spectrum in terms of periodic orbits on the graph. Such
formulae were first derived by Roth [39] and independently by Kottos and Smilansky [33, 34],
see [11] for the current state of the art. The prototype for quantum mechanical trace formulae
was provided by Gutzwiller who showed that in the semiclassical limit the energy spectrum
can be expressed as a sum involving an infinite number of classical periodic orbits [19]. For
most systems this trace formula suffers from convergence issues that can only be resolved
by limiting the contribution of long periodic orbits and in the process valuable information
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is suppressed. One way to recover this information is through a remarkable resummation
procedure which connects long and short pseudo orbits (collections of periodic orbits) via a
truncated quantum zeta function. The resulting expression, discovered by Berry and Keating
[6, 7, 28] and derived using a different method by Bogomolny [9], is termed the Riemann–
Siegel lookalike formula due to the connection with its number theoretical namesake. It allows
one to approximately determine the quantum spectrum up to some given energy, using only a
finite number of periodic orbits.

For quantum graphs, there exists both an exact Riemann–Siegel lookalike formula and
an exact pseudo orbit expansion including only a finite number of pseudo orbits with at most
as many bonds as the graph. Kottos and Smilansky describe this without an explicit formula
in [34]. Here we provide a basic argument to obtain a minimal pseudo orbit expansion. This
also sheds light on the origin of the cancelations seen in such pseudo orbit expansions. We
use the expansion to examine the coefficients of the characteristic polynomial and to produce
a simple expression for a secular equation whose roots provide the spectrum of the graph
0 � λ1 � λ2 � · · ·. This enables the whole spectrum of the graph to be formulated in terms
of a finite number of pseudo orbits which visit at most the same number of bonds as are in the
graph.

To demonstrate the efficacy of this minimal pseudo orbit expansion we describe two
applications to the spectral determinant and vacuum energy of graphs. Formally the spectral
determinant is the product of the eigenvalues,

S(λ) =
∞∏

n=1

′(λ + λn), (1)

where λ is some spectral parameter and the prime indicates that zero modes are omitted where
present. The spectral determinant on graphs has been investigated by a number of authors
[3, 12–14, 16, 23, 24, 26, 29]. In particular in [1] Akkermans et al derive a formula for the
spectral determinant of the graph as a product over all periodic orbits. After expanding the
product they discuss cancelations between certain sets of periodic orbits using a diagrammatic
approach. While the pseudo orbit expansion that we describe in section 6.1 has not been
written down previously, it can be obtained using the cancelation mechanisms from [1], as
is explained in the appendix. The method that we employ in the body of the paper is more
straightforward and the proof shows that the existence of such a pseudo orbit expansion does
not depend on the structure of the scattering matrix, as implied in [1].

A second application of the pseudo orbit expansion allows us to provide a trace formula
over the short pseudo orbits for the vacuum energy of the graph. Formally the vacuum energy is

Ec = 1

2

∞∑
n=1

′√λn. (2)

Vacuum energy is responsible for the Casimir effect, conventionally seen as an attraction
between uncharged parallel conducting plates at short distances. Analytic results for the
vacuum energy in most geometries are hard to obtain and consequently it is interesting to
consider mathematical models of vacuum energy where the analysis can be taken further [38].
In [17] Fulling et al consider the vacuum energy of a star graph with Neumann conditions
at the vertices and show that the Casimir effect is repulsive. The vacuum energy for generic
graphs and vertex conditions was investigated in [2, 23–25].

To regularize both the spectral determinant and vacuum energy we employ the spectral
zeta function,

ζ (s, λ) =
∞∑

n=1

′(λ + λn)
−s, (3)
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Figure 1. (a) A fully connected graph with four vertices and six bonds and (b) a graph with five
vertices and eight bonds.

which is convergent for �s > 1. Making an analytic continuation to the complex s plane the
spectral determinant is defined to be,

S(λ) := exp(−ζ ′(0, λ)). (4)

Similarly the regularized vacuum energy is obtain from the ζ (−1/2, 0), see section 6.2.
The paper is laid out as follows. Section 2 introduces quantum graphs and the scattering

approach used to define a secular function. We then provide, in section 3, a simple derivation
for the pseudo orbit expansion of the secular function. The following sections are devoted to
applications of this expansion. Section 4 examines the variance of the characteristic polynomial
coefficients, section 5 develops a regularized expression for the zeta function and section 6 uses
this expression to obtain pseudo orbit expansions for the spectral determinant and vacuum
energy. After summarizing the results we include an appendix which describes alternative
cancelation mechanisms which provide pseudo orbit expansions.

2. Quantum graphs

Let G = (V,B) be a graph with the finite sets of vertices V and bonds (or edges) B. Each
bond, b ∈ B, connects a pair of vertices, u, v ∈ V , see figure 1. We use the notation b = (u, v)

to denote a directed bond where o(b) = u and t(b) = v, with o and t standing for the origin
and the terminus of b.

We denote by b̂ = (v, u) the reverse of the directed bond b. For every bond b ∈ B we
insist that b̂ is also in B. The size of the set B is then denoted by 2B := |B|. The set of all
bonds whose origin is the vertex v is denoted Bv and its size is called the degree of the vertex,
dv := |Bv|.

The combinatorial graph G becomes a metric graph G when we identify the bonds of G
with one dimensional intervals [0, lb] with a positive finite length lb (lb̂ = lb). We can then
assign to each bond b a coordinate, xb, which measures the distance along the bond starting
from o(b). The reverse directed bond, b̂, posses the coordinate, xb̂, and the two coordinates are
related by xb + xb̂ = lb. We denote a coordinate by x, when its precise nature is unimportant.
2L = ∑

b∈B Lb is twice the total length of G.
The quantum graphs we consider are metric graphs equipped with a self-adjoint differential

operator H, the Hamiltonian. Here we are particularly interested in the negative Laplace
operator,

H : f (x) �→ −d2 f

dx2
, (5)

or the more general Schrödinger operator,

H : f (x) �→ −d2 f

dx2
+ V (x) f (x), (6)

3
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where V (x) is a potential, which we assume to be bounded and piecewise continuous. Note
that the value of a function or the second derivative of a function at a point on the bond is
well-defined, thus it is not important which coordinate, xb or xb̂ is used. This is in contrast to
the first derivative which changes sign according to the direction of the chosen coordinate.

To complete the definition of the operator we need to specify its domain. We denote by
H2(G) the space

H2(G) :=
B⊕

b=1

H2([0, lb]), (7)

which consists of the functions f on G that on each bond b belongs to the Sobolev space
H2([0, lb]). The restriction of f to the bond b is denoted by fb, where fb(xb) = fb̂(lb − xb).
The norm in the space H2(G) is

‖ f ‖H2(G) :=
B∑

b=1

‖ fb‖2
H2([0,lb]). (8)

Note that in the definition of H2(G) the smoothness is enforced along bonds only, without any
matching conditions at the vertices at all. However, the standard Sobolev trace theorem (see
e.g. [15]) implies that each function fb and its first derivative have well-defined values at the
endpoints of the bond b.

All conditions matching functions at the vertices that lead to the operator (5) being self-
adjoint have been classified in [22, 32, 36]. It can be shown that under these conditions the
operator H is bounded from below [36]. In addition, since we only consider compact graphs,
the spectrum is real, discrete and with no accumulation points. Thus we can number the
eigenvalues in the ascending order and denote them with {λn}∞n=1. The nth eigenvalue obeys
the following equation

−d2 fn

dx2
+ V (x) fn(x) = λn fn(x), (9)

where fn is the corresponding eigenfunction. We also use kn, such that λn = k2
n, and say that

{kn}∞n=1 is the k-spectrum of the graph.
In this paper we will primarily consider graphs where the domain of the operator (6)

consists of the functions f ∈ H2(G) which obey Neumann conditions at all vertices of
the graph. The function f is continuous at the vertex v, i.e. fb1 (0) = fb2 (0) for all bonds
b1, b2 ∈ Bv . The derivatives of f at the vertex v satisfy,∑

b∈Bv

d fb

dxb
(0) = 0. (10)

We will assume that G contains no loops (bonds b with o(b) = t(b)) and no pairs of vertices
connected by multiple bonds. However, as a loop or bond can be subdivided by introducing a
vertex of degree two with Neumann boundary conditions without changing the spectrum, this
assumption does not reduce the generality of the results.

In addition, we will assume that the graph’s spectrum is non-negative, λ1 � 0. This
assumption holds in the case of graphs with Neumann conditions with no potential, where
λ1 = 0. The condition can be relaxed by accepting some additional technicalities, see [31].
The next section describes an approach to obtain the spectrum of such a graph.

2.1. The scattering approach to the graph spectrum

Let G be a graph with Neumann vertex conditions and no potential. The eigenvalue equation,

−d2 f

dx2
= k2 f (x), (11)

4
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on each bond has a solution that can be written as a linear combination of two complex
exponentials if k 	= 0. We write

fb(xb) = ain
b e−ikxb + aout

b eikxb, (12)

for the solution on the bond b. The same function can be expressed using the coordinate xb̂ as

fb̂(xb̂) = ain
b̂

e−ikxb̂ + aout
b̂

eikxb̂ . (13)

Since these two expressions should define the same function and since the two coordinates are
related, through the identity xb + xb̂ = lb, we arrive at the following relations

ain
b = eiklbaout

b̂
and ain

b̂
= eiklbaout

b . (14)

Fixing a vertex v and using the matching conditions to relate solutions fb for all bonds b
with o(b) = v one arrives at

�a out
v = σ (v)(k)�a in

v , (15)

where �a out
v and �a in

v are vectors of the outgoing and incoming coefficients at v and σ (v)(k) is a
dv × dv unitary matrix, dv being the degree of the vertex v. The matrix σ (v)(k) is called the
vertex-scattering matrix. It is k independent for the Neumann vertex conditions and its entries
were calculated in [34]:

σ
(v)

b,b′ = 2

dv

− δb,b′ . (16)

Collecting all coefficients ain
b on the whole graph into a vector �a of size 2B such that the

first B entries correspond to bonds which are the inverses of the last B entries. We can then
define the matrix J acting on �a by requiring that it exchanges ain

b and ain
b̂

for all b such that,

J =
(

0 I
I 0

)
. (17)

Then, collecting equations (15) for all vertices into one system and using (14) we have,

Je−ikL�a = �(k)�a, (18)

where L = diag{l1, . . . , lB, l1, . . . , lB} is a diagonal matrix of bond lengths and � (k) is block-
diagonalizable with individual σ (v) (k) as blocks. This can be rewritten as (note that J−1 = J),

�a = eikLJ�(k)�a. (19)

The unitary matrix S(k) := J�(k) is called the bond-scattering matrix. The unitary matrix
U (k) := eikLS(k) is the quantum evolution operator. Using this notation we write (19) as

(I − U (k)) �a = �0. (20)

A vector �a satisfying equation (20) defines an eigenfunction on the graph with the
eigenvalue E = k2. Hence we arrive at the conclusion that the non-zero eigenvalues of
the graph are the solutions of

det (I − U (k)) = 0. (21)

This is called the secular equation. It is the major tool for investigating various spectral
properties of quantum graphs. The interested reader can find a more elaborate description of
the derivation above in [18]. We end by noting that a similar equation may be derived for the
case of a potential which differs from zero [40].

5
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3. A pseudo orbit expansion for the secular function

We define the secular function

F(k) := det(U (k))−
1
2 det(I − U (k)). (22)

This is the LHS of the secular equation (21), multiplied by det(U (k))−
1
2 to turn it into a real

function for all k ∈ R, as U (k) is unitary. We recall that all positive values of the graph’s
k-spectrum are given by the zeros of F(k).

The characteristic polynomial of U (k) is,

Fξ (k) := det(ξI − U (k)) =
2B∑

n=0

anξ
2B−n, (23)

where the k-dependence of the coefficients is omitted for brevity. One can express the secular
function in terms of the coefficients of the characteristic polynomial

F(k) = det(U (k))−
1
2 F1(k)

= a
− 1

2
2B

2B∑
n=0

an. (24)

The main result of this section is a theorem which expands the secular function as a sum over
pseudo orbits on the graph. Before stating the theorem, we describe orbits on graphs.

A periodic orbit on G is a closed path that starts and ends at the same vertex. We denote
such a trajectory by the corresponding ordered set of its bonds, γ := (b1, b2, . . . , bn), such
that ∀i , t (bi) = o (bi+1) and t (bn) = o (b1). Cyclic permutations of the bonds of γ are the
same periodic orbit, for example, γ = (b2, . . . , bn, b1).

A primitive periodic orbit is a periodic orbit which cannot be written as a repetition of a
shorter periodic orbit. We can thus define the repetition number of an orbit rγ as the number of
repetitions of the primitive periodic orbit which it contains. For example, if γ0 = (b1, b2, b3)

is a primitive periodic orbit, then γ1 = (b1, b2, b3, b1, b2, b3) is a periodic orbit with repetition
number rγ1 = 2. Note that the repetition number of a primitive periodic orbit is always one. For
a periodic orbit γ we use Bγ := n to denote the number of bonds in γ , the topological length
of γ . Similarly the metric length (or length) of γ is denoted lγ := ∑

b j∈γ lb j . The product of
scattering amplitudes around γ is;

Aγ = Sb2b1 Sb3b2 · · · Sbnbn−1 Sb1bn , (25)

where we have suppressed the k dependence if present.
We now define a more complex structure which we call a pseudo orbit (also called

a composite orbit in the literature). A pseudo orbit is a collection of periodic orbits,
γ̃ = {γ1, γ2, . . . , γM}. An irreducible pseudo orbit γ̄ is a pseudo orbit which contains no
directed bond more than once. So every periodic orbit γ j in γ̄ has at most one copy of each
directed bond and every pair, γi, γ j, has no directed bond in common. In particular this implies
that an irreducible pseudo orbit consists only of primitive periodic orbits and the primitive
periodic orbits are distinct.

We will use the following notation for properties of γ̃ :

mγ̃ := M the number of periodic orbits in γ̃ . (26)

Bγ̃ :=
∑
γ j∈γ̃

Bγ j the total topological length of γ̃ . (27)

6
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lγ̃ :=
∑
γ j∈γ̃

lγ j the total metric length of γ̃ . (28)

Aγ̃ :=
∏
γ j∈γ̃

Aγ j . (29)

The null pseudo orbit 0 is the pseudo orbit which contains no orbits. We treat it as an irreducible
pseudo orbit with the following properties: m0 = B0 = l0 = 0 and A0 = 1.

Theorem 1. The coefficients of the characteristic polynomial Fξ (k) are given by

an =
∑

γ̄ | Bγ̄ =n

(−1)mγ̄ Aγ̄ (k) exp(iklγ̄ ). (30)

Proof. We first rewrite the characteristic polynomial using the permutation expansion of the
determinant

det (ξI − U (k)) =
∑
ρ∈S2B

sgn(ρ)

2B∏
b=1

[ξI − U (k)]ρ(b),b , (31)

where the indices of the matrix, ρ(b), b, label directed bonds of G. We may now use the unique
presentation of the permutations as a product of disjoint cycles

ρ = (
b1, b2, . . . , bn1

) (
bn1+1, . . . , bn1+n2

) · · ·
(

b∑mρ−1
j=1 n j+1

, . . . , b∑mρ

j=1 n j

)
, (32)

for a permutation ρ with mρ cycles where the jth cycle has length n j. The notation above
means ρ acts on the 2B directed bonds such that ρ (b1) = b2 etc. The representation (32)
is unique up to cyclic permutations of each cycle and no directed bond appears more than
once.

Recall that [U (k)]ρ(b),b 	= 0 only if the directed bond ρ(b) is connected to the directed
bond b, i.e. o (ρ(b)) = t(b).3 From which we conclude that a permutation ρ 	= I can have
a non-zero contribution to the sum (31) only if o (ρ(b)) = t(b) for all b in ρ. This allows
us to interpret (32) as an irreducible pseudo orbit on the graph. Each periodic orbit in the
pseudo orbit corresponds to a cycle of ρ. The pseudo orbit is irreducible since no directed
bond appears more than once in (32). The fixed points of ρ, the bonds b not in ρ so b = ρ(b),
each produce a multiplicative factor of ξ in the contribution of ρ in (31).

The coefficient an multiplies ξ 2B−n and is therefore obtained as a sum of all permutations
ρ ∈ S2B with 2B−n fixed points. Each such permutation corresponds to an irreducible pseudo
orbit, γ̄ , whose bond length is Bγ̄ = n. Using the notation of (32), the pseudo orbit ρ consists
of mρ orbits and n = ∑mρ

j=1 n j. The contribution of this permutation (irreducible pseudo orbit)
to (31) is given by

sgn(ρ)ξ 2B−n(−1)
∑mρ

j=1 n j
(
Ub2b1Ub3b2 · · ·Ub1bn1

)(
Ubn1+2bn1+1 · · ·Ubn1+1bn1+n2

) · · · ,
where we omitted the k dependence fromU for clarity. If we recall thatUb2b1 = exp

(
iklb2

)
Sb2b1 ,

we see that the contribution above (up to a sign) is ξ 2B−n exp
(
iklγ̄

)
Aγ̄ . The result (30) now

follows since

sgn(ρ)(−1)
∑mρ

j=1 n j = (−1)
∑mρ

j=1(n j+1)(−1)
∑mρ

j=1 n j = (−1)mρ = (−1)mρ . �
3 Provided that all elements of the vertex scattering matrices are non-zero. This would not hold, for example, in the
case of equi-transmitting matrices [27] where back-scattering is prohibited.

7
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We now employ the unitarity of U (k) to get a Riemann–Siegel lookalike formula
which connects pairs of coefficients of the characteristic polynomial [34]. The characteristic
polynomial can be rewritten

Fξ (k) = det (−ξU (k)) det(ξ−1I − U†(k))

= det (−ξU (k))

2B∑
n=0

a∗
nξ

n−2B

= det(U (k))

2B∑
n=0

a∗
nξ

n. (33)

Comparing this to Fξ (k) = ∑2B
n=0 anξ

2B−n and using a2B = det(U (k)), we deduce the following
symmetry relation of the characteristic polynomial coefficients

an = a2Ba∗
2B−n. (34)

This symmetric expression allows us to express the secular function in terms of shorter pseudo
orbits, whose total number of bonds is less than or equal to the number of bonds of the graph.

Theorem 2. The secular function has the following expansion in terms of irreducible pseudo
orbits,

F(k) = 2
∑

γ̄ |Bγ̄ �B

(−1)mγ̄ Aγ̄ cos(k(lγ̄ − L) − θ (k))H(B − Bγ̄ ), (35)

where det S = exp (i2θ (k)), and H is the Heaviside function, see (39).

Proof. Plugging the symmetry relation (34) in the secular function expression (24) we obtain,

F(k) = det(U (k))−
1
2

2B∑
n=0

an

=
B−1∑
n=0

(
a

− 1
2

2B an + a
1
2
2Ba∗

n

) + a
− 1

2
2B aB

= �
{

2
B−1∑
n=0

a
− 1

2
2B an + a

− 1
2

2B aB

}
, (36)

where a−1/2
2B aB is a real number which can be seen from the symmetry relation as |a2B| = 1.

Combining this with theorem 1 we see

F(k) = �
⎧⎨
⎩2 (det S)−

1
2

B−1∑
n=0

∑
γ̄ | Bγ̄ =n

(−1)mγ̄ Aγ̄ exp(ik(lγ̄ − L))

+ (det S)−
1
2

∑
γ̄ |Bγ̄ =B

(−1)mγ̄ Aγ̄ exp(ik(lγ̄ − L))

⎫⎬
⎭ . (37)

The unitarity of S allows to denote det S = exp (i2θ (k)) and to rewrite the above as

F(k) = 2
B−1∑
n=0

∑
γ̄ | Bγ̄ =n

(−1)mγ̄ Aγ̄ cos(k(lγ̄ − L) − θ (k))

+
∑

γ̄ | Bγ̄ =B

(−1)mγ̄ Aγ̄ cos(k(lγ̄ − L) − θ (k)). (38)

8
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This expression is made more compact by using the Heaviside step function

H(x) =

⎧⎪⎨
⎪⎩

0 x < 0
1
2 x = 0

1 x > 0

. (39)

�
Finally, if we make the assumption that our graph has Neumann conditions at the vertices

then either θ = 0 or θ = π
2 with no k-dependence. This results in an expansion in terms of

either cosine or sine functions. In the remainder of the paper we will assume that the graph
has Neumann vertex conditions.

We also note that the point of truncation Bγ̄ � B in (35) is analogous to a cutoff at half of
the Heisenberg time. The Heisenberg time TH is 2π multiplied by the mean spectral density,
which for a graph is L/π , hence TH = 2L. If lav is the average length of a bond on our graph,
and we assume that the bond lengths are all close to lav, then lγ̄ ≈ lavBγ̄ and TH/2 = lavB.
Thus the cutoff Bγ̄ � B resembles lγ̄ � TH/2 used in the semiclassical expansions [6, 7, 28].
This in turn originated with the cutoff introduced in the functional equation of the Riemann
zeta function, known as the Riemann–Siegel formula. However, the argument leading to the
cutoff in (35) is due to the unitarity of U (k). A similar approach applies to the dynamical zeta
function [8, 9].

4. Variance of coefficients of the characteristic polynomial

As a first application of these results we are now in a position to write a simple expansion
for the variance of coefficients of the characteristic polynomial (30). The mean values of the
coefficients (other than a0 = 1) are zero as the average over k of eiklγ̄ is necessarily zero
for pseudo orbits of topological length n � 1. The second moment of the coefficients of the
characteristic polynomial, the variance, was investigated numerically in [34] where it is seen
that they may deviate from the random matrix predictions even for graphs whose spectral-
statistics match those of appropriate random matrix distributions. Tanner [42] considered the
variance of the coefficients for a related graph model which generates a unitary stochastic
matrix ensemble [41] over which the average is taken.

From theorem 1 the variance of the coefficients of the characteristic polynomial can be
expressed as a sum over pairs of irreducible pseudo orbits γ̄ , γ̄ ′,

〈|an|2〉k =
∑

γ̄ ,γ̄ ′|Bγ̄ =Bγ̄ ′ =n

(−1)mγ̄ +mγ̄ ′ Aγ̄ Aγ̄ ′ lim
K→∞

1

K

∫ K

0
eik(lγ̄ −lγ̄ ′ )dk

=
∑

γ̄ ,γ̄ ′|Bγ̄ =Bγ̄ ′ =n

(−1)mγ̄ +mγ̄ ′ Aγ̄ Aγ̄ ′ δlγ̄ ,lγ̄ ′ . (40)

So a pair of irreducible pseudo orbits of topological length n only contributes to the sum
when the total metric lengths of the pseudo orbits are equal. When the set of bond lengths is
incommensurate this implies that the two irreducible pseudo orbits visit a given pair of directed
bonds {b, b̂} the same number of times. Hence the variance is independent of the bond lengths,
provided that they are incommensurate. The formulation of the variance (40) also holds for
vertex scattering matrices that do not correspond to Neumann matching conditions provided
that the scattering matrices are independent of k.

4.1. Diagonal approximation

In the case of incommensurate bond lengths the first order contribution to the variance will
come from pairing an irreducible pseudo orbit γ̄ with itself, γ̄ ′ = γ̄ , or with any other orbit

9
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Figure 2. Variance of coefficients of the characteristic polynomial of a fully connected graph
with four vertices (shown in figure 1(a)) with random bond lengths chosen uniformly in [0, 1].
Numerical results were averaged over 200 000 values of k over a range of approximately 2000
mean level spacings and are compared with the pseudo orbit expansion, diagonal approximation
and random matrix theory.

γ̄ ′ obtained from γ̄ by reversing the direction of a subset of orbits in the pseudo orbit, as in
the diagonal approximation of Berry [5]. As γ̄ contains mγ̄ distinct orbits there are typically
2mγ̄ different pseudo orbits that can be obtained from γ̄ by reversing a subset of the orbits in
γ̄ . Making this diagonal approximation we obtain

〈|an|2〉k ≈
∑

γ̄ |Bγ̄ =n

2mγ̄ A2
γ̄ . (41)

Note that while making the diagonal approximation, we did not take into account the existence
of self retracing orbits. These orbits are equal to their reversed orbit. Pseudo orbits which
contain self-retracing orbits should therefore have a smaller prefactor in (41). However, the
proportion of self-retracing orbits among all periodic orbits decreases rapidly with their length,
which justifies the approximation.

As A2
γ̄ � 1 this suggests that the dominant contribution in the diagonal approximation will

come from pseudo orbits comprised of many distinct periodic orbits where mγ̄ is maximal.
Figures 2 and 3 show the variance of the coefficients of the characteristic polynomial for
the two graphs shown in figure 1 computed from the pseudo orbit expansion (40), the
diagonal approximation (41) and by directly averaging coefficients of Fξ (k) over a range
of approximately 2000 mean level spacings. The diagonal approximation works well for these
examples. One can also see that where the diagonal approximation fails, around n/2B = 1/2,
the diagonal approximation over estimates the actual value which suggests that for these small
graphs the over counting of the self-retracing orbits is significant.

The variance of the coefficients of the characteristic polynomial of a 2B × 2B random
matrix were obtained in [21]. For random matrices from the circular orthogonal ensemble
(COE) and circular unitary ensemble (CUE) (β = 1 and β = 2 respectively) the variance of
the coefficients are given by,

〈|an|2〉β =
⎧⎨
⎩1 + n(2B − n)

2B + 1
β = 1

1 β = 2
. (42)
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Figure 3. Variance of coefficients of the characteristic polynomial for the graph shown in figure 1(b)
with random bond lengths chosen uniformly in [0, 1]. Numerical results were averaged over 200 000
values of k over a range of approximately 1700 mean level spacings and are compared with the
pseudo orbit expansion, diagonal approximation and random matrix theory.

In the semiclassical limit the spectrum of generic quantum graphs is seen to approach
that of an appropriate random matrix ensembles. This goes back to the results of Kottos
and Smilansky for quantum graphs [34] which is the graph setting of the well known
correspondence of Bohigas, Giannoni and Schmit [10]. The semiclassical limit is the limit
of increasing spectral density, which for quantum graphs is the limit of a sequence of graphs
with increasing number of bonds [18]. In [4] Berkolaiko and Winn formalize the connection
between the spectrum of a scattering matrix and the spectrum of the corresponding Laplace
operator on the graph. Of particular relevance to the current discussion, when the spectrum
of the graph is distributed like the eigenvalues of a random matrix we also expect that the
eigenphases of the scattering matrix on the unit circle will have the same distribution. When
this is the case one must also anticipate that the coefficients of the characteristic polynomial of
the graph are distributed according to the random matrix prediction. As this was not observed it
appears that the variance of the coefficients of the characteristic polynomial is more sensitive to
the size of the graph used for the numerics than the spectrum itself. In [42] Tanner investigated
sequences of binary graphs without time-reversal symmetry where he observes converges to
a constant different from the random matrix result and dependent on the classical limit of an
underlying Markov process.

5. Zeta function

Let z = k + it with k, t real, following theorem 2 we will denote

F(z) = 2
∑

γ̄ |Bγ̄ �B

(−1)mγ̄ Aγ̄ cos(z(lγ̄ − L) − θ ) H(B − Bγ̄ ) (43)

so that the secular equation reads F(z) = 0. F(k) is an even or odd function of k depending on
whether θ is 0 or π/2, so we have a sum of either cosine or sine functions respectively. Notice

11
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Figure 4. Contours used to formulate ζ (s, λ) (a) before, and (b) after, the contour transformation.
Branch cuts are represented by zig-zag lines.

that F(k) must be even or odd as the k-spectrum is symmetric about zero. For Neumann vertex
conditions in the limit z → 0,

F(z) ∼
z→0

zB−V+2 + O(zB−V+4), (44)

which comes from the identity dim{ker(I − U (0))} = B − V + 2 [37]. We define

F̂(z) = F(z)

zB−V+2
. (45)

Importantly F̂ also has roots kn but does not vanish at zero, F̂(z) ∼ 1 + O(z2) as z → 0.
We see that F̂(−z) = F̂(z). To formulate the spectral zeta function we follow a procedure
introduced for graphs in [24] which we only sketch here. We take the function F̂(z) and use
the argument principle, evaluating an integral around a contour c enclosing the positive real
axis, see figure 4(a):

ζ (s, λ) = 1

2π i

∫
c
(z2 + λ)−s d

dz
log F̂(z) dz, (46)

which converges for �s > 1.
We may deform the contour c to c′ where the integral is along the imaginary axis,

figure 4(b).

ζ (s, λ) = sin πs

π

∫ ∞
√

λ

(t2 − λ)−s d

dt
log F̂(it) dt. (47)

The segment between i
√

λ and −i
√

λ does not contribute to the integral due to the symmetry of
F̂(z). Analysis of the integral shows that the representation of the zeta function (47) converges
in the strip 1/2 < �s < 1. As we will see, the restriction �s > 1/2 is due to the t → ∞
behavior of F̂(it):

F̂(it) = ±1

tB−V+2

∑
γ̄ |Bγ̄ �B

(−1)mγ̄ Aγ̄ ( et(L−lγ̄ ) ± et(lγ̄ −L)) H(B − Bγ̄ ), (48)

where the choice of sign for et(lγ̄ −L) depends on whether θ = 0 or π/2.4 As no directed bond
appears in γ̄ more than once lγ̄ < L. Hence

F̂(it) ∼
t→∞

etL

tB−V+2
, (49)

4 The sign of the whole function is not important as multiplying F̂ by a constant factor does not change its properties.

12
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which is the contribution of the null pseudo orbit 0; the pseudo orbit of length zero.
Consequently,

d

dt
log F̂(it) ∼

t→∞ L − B − V + 2

t
, (50)

and we see that (47) converges for �s > 1/2. To make the analytic continuation of the zeta
function to the left of the line �s = 1/2 we add and subtract the t → ∞ asymptotics in the
integral. We thus obtain an expression for ζ (s, λ) valid for �s < 1,

ζ (s, λ) = sin πs

π

∫ ∞
√

λ

(t2 − λ)−s d

dt
log(F̂(it)tB−V+2 e−tL) dt

+L(s − 1/2)

2
√

π(s)
λ

1
2 −s − B − V + 2

2
λ−s. (51)

6. Spectral determinants and vacuum energy

We are now in a position to use the zeta function to formulate the spectral determinant and
vacuum energy of the graph as sums over a finite set of pseudo orbits.

6.1. Spectral determinant

The spectral determinant, formally the product of the shifted eigenvalues (1), was defined as
S(λ) = exp(−ζ ′(0, λ)), see [24]. From (51) we see

ζ ′(0, λ) = [log(F̂(it)tB−V+2 e−tL)]∞√
λ
− L

√
λ + B − V + 2

2
log λ

= log A0 − log
(
F̂(i

√
λ)λ

B−V+2
2 e−√

λL) − L
√

λ + B − V + 2

2
log λ. (52)

Hence the spectral determinant is given as

S(λ) = 2

λ(B−V+2)/2

∑
γ̄ |Bγ̄ �B

(−1)mγ̄ Aγ̄ cosh(
√

λ(lγ̄ − L)) H(B − Bγ̄ ), (53)

when θ = 0 or the same formula with cosh replaced by sinh when θ = π/2. This concisely
formulates the spectral determinant of the graph in terms of a finite set of dynamical quantities.

6.2. Vacuum energy

A second application of the pseudo orbit approach is the zeta-regularized vacuum energy. The
vacuum energy, formally the sum of the square roots of the eigenvalues (2), is defined as

Ec = 1
2ζ (−1/2, 0). (54)

Were ζ (s, 0) to have pole at s = −1/2 a more general definition would be required, see e.g.
[30]; however, we will see that there is no pole in the present case. The Casimir force on a
bond b is given by − ∂

∂Lb
Ec.

The zeta function for λ = 0 is,

ζ (s, 0) = sin πs

π

∫ ∞

0
t−2s d

dt
log F̂(it) dt, (55)

in the strip 1/2 < �s < 1. Splitting the integral at t = 1

ζ (s, 0) = sin πs

π

(∫ 1

0
t−2s d

dt
log F̂(it) dt +

∫ ∞

1
t−2s d

dt
log F̂(it) dt

)
, (56)
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and the restriction to �s > 1/2 comes from the t → ∞ behavior in the second integral.
Adding and subtracting the asymptotic behavior (49) in the second integral (as in (51)) we
obtain,

ζ (s, 0) = sin πs

π

∫ 1

0
t−2s d

dt
log F̂(it) dt + sin πs

π

∫ ∞

1
t−2s d

dt
log(F̂(it)tB−V+2 e−tL) dt

+ sin πs

π

( L
2s − 1

+ V − B − 2

2s

)
, (57)

which is now valid for �s < 1. Using this representation we obtain

Ec = − 1

2π

∫ 1

0
t

d

dt
log F̂(it) dt + L

4π
+ V − B − 2

2π

+ 1

2π

∑
γ̄ |Bγ̄ �B

(−1)mγ̄ Aγ̄

∫ ∞

1

tlγ̄ e−tlγ̄ − t(2L − lγ̄ ) e−t(2L−lγ̄ )∑
γ̄ |Bγ̄ �B(−1)mγ̄ Aγ̄

(
e−tlγ̄ + e−t(2L−lγ̄ )

) dt. (58)

This is an exact trace formula for the vacuum energy where the lengths of orbits included in
the sum are truncated at a finite value. For a particular graph the integrals can be evaluated
numerically.

7. Conclusions

We have investigated a pseudo orbit approach to spectral questions on quantum graphs.
The possibility of a pseudo orbit expansion of the secular function of a graph was
described in [34]. Here, however, we have presented the explicit formula. As quantum graphs
provide a system where the spectral analysis can be carried out exactly, they serve as an ideal
example in which to investigate the various approaches to cancelations which appear in pseudo
orbit expansions. To this end while the permutation expansion of the determinant provides
a neat direct route to the expansion using irreducible pseudo orbits, we also describe other
methods of deriving this formula in the appendix. In these cases a sum over pseudo orbits is
seen to contain substantial cancelations when pseudo orbits are grouped appropriately.

Having obtained the expansion of the secular function in terms of pseudo orbits we
demonstrated how this can be applied to three spectral quantities, the variance of the coefficients
of the characteristic polynomial, the spectral determinant and the vacuum energy. We provide
an exact pseudo orbit expansion for these quantities using only dynamical information for a
finite set of short periodic orbits whose topological length is at most the length of the graph.
In the case of the vacuum energy it is particularly interesting to note that such a quantity can
be obtained from a finite set of dynamical properties. In more complex physically realistic
systems it is often hard to calculate the vacuum energy. If it is possible to extend these
techniques to compute the vacuum energy of higher dimensional systems one may be able
to describe the vacuum energy precisely using orbits with a finite cut off by length. This
would seem to offer the possibility of precise numerical evaluation of the vacuum energy
of general systems. It is a hard problem to provide an accurate numerical evaluation of the
vacuum energy, such calculations are often based on the proximity force approximation where
a rigorous justification is lacking.
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Appendix. More on cancelation mechanisms

The appendix is dedicated to a description of the various canceling mechanisms which play
a role in the derivation of pseudo orbit expansions. A combination of some of these schemes
provides an alternative proof of theorem 1. Some cancelation mechanisms were already
presented in the literature in various contexts (not necessarily for quantum graphs), as we
will mention. However, not all of them were fully developed to present the current pseudo
orbit expansion. The purpose of bringing them together here is to give a state of the art
description of the various mechanisms and their interrelations.

A.1. From an infinite expansion to a finite one

We start from the characteristic polynomial ofU (k) and use the matrix identity det(I−U (k)) =
exp Tr ln(I − U (k)) = exp Tr

(− ∑∞
j=1

U (k) j

j

)
to obtain5

Fξ (k) = ξ 2B det(I − ξ−1U (k)) = ξ 2B exp

⎛
⎝−

∞∑
j=1

ξ− jTj

j

⎞
⎠ , (A.1)

where we use the notation Tj := Tr[U (k) j].
The traces Tj can be expressed in terms of periodic orbits

Tj =
∑

γ | Bγ = j

j

rγ

Aγ eilγ k, (A.2)

see notation in section 3. Inserting (A.2) in (A.1) we see,

Fξ (k) = ξ 2B exp

⎛
⎝−

∞∑
j=1

∑
γ | Bγ = j

ξ− j Aγ eiklγ

rγ

⎞
⎠ . (A.3)

Fixing a primitive periodic orbit π and summing over its repetitions,

Fξ (k) = ξ 2B exp

⎛
⎝−

∑
π primitive

∞∑
r=1

ξ−rBπ
Ar

π eirklπ

r

⎞
⎠

= ξ 2B exp

⎛
⎝ ∑

π primitive

ln(1 − ξ−Bπ Aπ eiklπ )

⎞
⎠ (A.4)

= ξ 2B
∏

π primitive

(1 − ξ−Bπ Aπ eiklπ ).

Expanding the last line above, one would get an infinite sum, each of whose terms is
the contribution of some collection of primitive periodic orbits. Namely, each term would
correspond to a pseudo orbit which consists of only primitive orbits; a primitive pseudo orbit.
This is not to be confused with an irreducible pseudo orbit see section 3—which form a subset
of the primitive ones. Keeping in mind that the characteristic polynomial has only finite powers

5 This holds for k + iε which is to be understood in the limit ε → 0.

15



J. Phys. A: Math. Theor. 45 (2012) 325204 R Band et al

of ξ , Fξ (k) = ξ 2B
∑2B

n=0 anξ
−n, we see that the contribution of many of these pseudo orbits

cancel. The remaining pseudo orbits give the following expression for the nth coefficient of
the polynomial:

an =
∑

γ̃ primitive
Bγ̃ =n

(−1)mγ̃ Aγ̃ eiklγ̃ . (A.5)

A.2. Cancelations due to a combinatorial identity

A pseudo orbit expansion for quantum graphs appeared in [34]. The formula for evaluating the
pseudo orbits contributions was given there, but the coefficients were not computed explicitly.
We compute those coefficients and show that many cancelations occur due to a combinatorial
identity, leading again to the formula (A.5).

In the following we will relate pseudo orbits to partitions of an integer. A partition of
some positive integer, n, is an ordered set P = (m1, m2, . . . , mn) such that

∑n
j=1 j m j = n. In

other words, it is a way to present n as a sum of all positive integers smaller than n (each can
be taken once, more than once, or not at all). The set of all partitions of n is denoted by Pn.

We now relate a partition of n to a certain class of pseudo orbits. Let P =
(m1, m2, . . . , mn) ∈ Pn and denote by ̃P the set of all pseudo orbits, γ̃ , such that for all
1 � j � n, γ̃ contains mj periodic orbits of topological length j. Hence for γ̃ ∈ ̃P we have
Bγ̃ = n.

We begin the proof by employing Newton’s relations which connect coefficients of the
characteristic polynomial an to traces of powers of U (k) (see e.g. [20]). One form for these
identities is

an = −1

n

n−1∑
j=0

tr(Un− j(k))a j, (A.6)

with a0 = 1. We use this recursive relation to give a closed expression for the coefficients in
terms of the traces.

an =
∑
P∈Pn

1

m1!

(
−T1

1

)m1 1

m2!

(
−T2

2

)m2

· · · · · 1

mn!

(
−Tn

n

)mn

, (A.7)

where Tj := tr
(
U j(k)

)
. A similar expression appears in [20, 34]. In what follows we show

that (A.7) can be expanded as a sum over pseudo orbits and that careful book-keeping allows
a significant number of cancelations.

The traces Tj can be presented as sums over periodic orbits on the graph as in (A.2).
Substituting in (A.7) we obtain

an =
∑
P∈Pn

n∏
j=1

1

mj!

(
−Tj

j

)mj

=
∑
P∈Pn

n∏
j=1

⎧⎨
⎩ 1

mj!

⎛
⎝−1

j

∑
γ | Bγ = j

Bγ

rγ

Aγ eiklγ

⎞
⎠

mj
⎫⎬
⎭

=
∑
P∈Pn

n∏
j=1

⎧⎨
⎩ (−1)mj

mj!

⎛
⎝ ∑

γ | Bγ = j

1

rγ

Aγ eiklγ

⎞
⎠

mj
⎫⎬
⎭ . (A.8)
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One may expand the second sum and the product in the expression above. This results in a
sum, each of whose terms corresponds to a product over periodic orbits. Such a product can
be identified with a pseudo orbit. More specifically,

an =
∑

γ̃ |Bγ̃ =n

Cγ̃ Aγ̃ eiklγ̃ , (A.9)

where Cγ̃ is a coefficient that consists of combinatorial factors and repetition numbers. There
are many cancelations in this sum and we will show that eventually only primitive pseudo
orbits remain.

Let us fix some primitive periodic orbit, π . Consider all pseudo orbits γ̃ with Bγ̃ = n for
some fixed n, which contain only copies of π and its possible repetitions. For example, such a
pseudo orbit might be γ̃ = {5π, 2π3}, which means that γ̃ contains seven periodic orbits; five
copies of π and two copies of a periodic orbit where π is repeated three times. For all such
pseudo orbits Bγ̃ = n is a multiple of Bπ , and we denote q := Bγ̃ /Bπ . Summing the terms in
(A.9) over this collection of pseudo orbits and reading the expression for Cγ̃ from (A.8), we
obtain ⎧⎨

⎩
∑

Q∈Pq

(
q∏

r=1

(−1)nr
1

nr!

(
1

r

)nr
)⎫⎬

⎭ (Aπ eiklπ )q, (A.10)

where the sum is over partitions of q, Q = (n1, . . . , nq). To obtain (A.10) observe that;

(i) We only sum over pseudo orbits belonging to n-partitions in (A.8) with mj = 0 for all
j values which are not multiple of Bπ . So we may enumerate these by considering the
partitions of q = Bγ̃ /Bπ where nr = mrBπ

.
(ii) Each partition of q determines a unique pseudo orbit constructed only from π . Denoting

a q-partition by Q = (n1, . . . , nq), the repetition numbers of the orbits within our pseudo
orbit are just the indices of the nrs.

(iii) All these pseudo orbits are weighted by the same factor, (Aπ eiklπ )q.

Lemma 1 will show that the sum in (A.10) is zero for all q > 1. This implies that the
only surviving contribution comes from the pseudo orbit that contains π alone. Furthermore,
we can extend this cancelation argument as follows. Fix n and let π1 and π2 be two primitive
periodic orbits, such that n = q1Bπ1 + q2Bπ2 . We now examine all pseudo orbits with n bonds
which contain only copies of π1, π2, and their repetitions. Collecting the contributions of all
such orbits from (A.8), we arrive at∑
Q1∈Pq1

(
q1∏

r=1

(−1)nr
1

nr!

(
1

r

)nr
) ∑

Q2∈Pq2

(
q2∏

r=1

(−1)nr
1

nr!

(
1

r

)nr
)

(Aπ1 eiklπ1 )q1 (Aπ2 eiklπ2 )q2 .

Applying lemma 1 again, the sum above vanishes if either q1 > 1 or q2 > 1 and hence the
only contribution that does not vanish is for the primitive pseudo orbit {π1, π2}. Iterating this
argument we conclude that all contributions from non-primitive pseudo orbits cancel. Hence

an =
∑

γ̃ primitive
Bγ̃ =n

(−1)mγ̃ Aγ̃ eiklγ̃ , (A.11)

which agrees with (A.5) obtained using the first canceling mechanism.

Lemma 1. For all q ∈ N with q > 1,∑
P∈Pq

q∏
r=1

(−1)nr
1

nr!

(
1

r

)nr

= 0.
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Proof. The expression we wish to vanish is equal to the coefficient multiplying xq in the
following generating function,

∞∏
r=1

∞∑
nr=0

1

nr!

(
−xr

r

)nr

=
∞∏

r=1

exp

(
−xr

r

)

= exp

(
−

∞∑
r=1

xr

r

)

= exp (ln (1 − x))

= 1 − x. �

A.3. Further diagrammatic cancelations

Comparing the results of the two canceling mechanisms (A.5) and (A.11) with theorem 1,
we see the difference is between a sum over all primitive pseudo orbits and a sum only over
the irreducible ones. More specifically, in theorem 1 we do not sum over primitive pseudo
orbits which contain the same directed bond more than once. It is possible to show that the
contribution of all such periodic orbits cancel each other using a diagrammatic approach, as
was shown very nicely in [1]. One should note that in [1] the diagrammatic cancelations are
presented assuming each vertex scattering matrix, σ (v), has all its off diagonal entries equal.
However, their diagrammatic cancelations which can be used to transform (A.11) into (30)
do not require this assumption. We also note that a similar cancelation mechanism appears in
[8]. However, the derivation there is done for the dynamical zeta function and the cancelations
occur between orbits which pass through the same cell in the Poincaré surface of section.
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