
Ann. Henri Poincaré Online First
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Topological Properties of Neumann Domains

Ram Band and David Fajman

Abstract. A Laplacian eigenfunction on a two-dimensional manifold dic-
tates some natural partitions of the manifold; the most apparent one
being the well studied nodal domain partition. An alternative parti-
tion is revealed by considering a set of distinguished gradient flow
lines of the eigenfunction—those which are connected to saddle points.
These give rise to Neumann domains. We establish complementary
definitions for Neumann domains and Neumann lines and use basic
Morse homology to prove their fundamental topological properties. We
study the eigenfunction restrictions to these domains. Their zero set,
critical points and spectral properties allow to discuss some aspects
of counting the number of Neumann domains and estimating their
geometry.

1. Introduction

Topological properties of Laplacian eigenfunctions on domains and mani-
folds are of essential interest to mathematical physics in recent years [16,37].
Nodal patterns of eigenfunctions are a major and well developed research area
in this field. Nodal sets of eigenfunctions have been studied with respect
to their volume [6,8,10,13,18] and geometry [4,5] and nodal domains of
eigenfunctions have been studied with respect to their count [2,7,11,17,23]
and metric properties [26–28]. The study of related notions, called Neu-
mann lines and Neumann domains has been recently suggested in two inde-
pendent works by Zelditch [39] and McDonald and Fulling [29]. Neumann
lines and Neumann domains form a partition of the manifold, dictated by
the eigenfunction. The current paper is dedicated to the investigation of
those partitions from topological, geometric and spectral perspectives. We
note that Neumann domains are studied in computational topology and
computer graphics, where they are known as Morse–Smale complexes and
used for applications such as surface segmentation (see [40] and references
within).

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-016-0468-7&domain=pdf
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1.1. Preliminaries

Let M be a two-dimensional, connected, compact and orientable surface with-
out boundary with a smooth Riemannian metric g and let Δg be the Laplace–
Beltrami operator of g. Consider the eigenvalue problem

− Δgf = λf. (1.1)

We assume in the following that the eigenfunctions f are Morse functions,
i.e., have no degenerate critical points. We call such an f a Morse eigenfunction.
In fact, for generic metrics eigenfunctions are in this class, as shown in [38].
The smooth gradient vector field, ∇f , defines a smooth flow, ϕ, along the
integral curves of −∇f :

ϕ : R × M → M,

∂tϕ(t, x) = −∇f
∣
∣
ϕ(t, x)

,

ϕ(0, x) = x. (1.2)

We introduce the following notations. Let C (f) denote the set of critical points
of f , S (f) and X (f) the sets of saddle points and extrema, respectively. In
addition, let M− (f) and M+ (f) denote the sets of minima and maxima of f ,
respectively.

For a critical point x ∈ C (f), we denote by λx its index (the number of
negative eigenvalues of the Hessian of f at x) and define its stable and unstable
manifolds by

W s(x) = {y ∈ M
∣
∣ lim

t→∞ ϕ(t, y) = x} and

Wu(x) = {y ∈ M
∣
∣ lim

t→−∞ ϕ(t, y) = x}, (1.3)

respectively. Finally, we recall the following relevant definition. A Morse–
Smale function is a Morse function, which in addition fulfills the Morse–Smale
transversality condition, saying that stable and unstable manifolds intersect
transversely (cf. [1]). In two dimensions the Morse–Smale transversality con-
dition is equivalent to the condition that there are no two saddle points which
are connected by gradient flow lines. The definition of Neumann domains (Def-
inition 1.1) already appears in the Morse homology literature (see e.g., [1]).
There it is assumed that the function is Morse–Smale to obtain some basic
properties of Neumann domains. However, as there exist eigenfunctions which
are not Morse–Smale, we do not adopt this assumption. Not assuming this
forbids us from relying on existing results which could have simplified our
proofs.

1.2. Definitions and Main Results

In this section we assume f to be a general Morse function. Yet, some of the
results are specialized for Morse eigenfunctions, which are in the focus of this
paper. The following definition is motivated by Zelditch [39].
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Definition 1.1. A Neumann domain is a connected component of the set

Ωp,q (f) = W s (p) ∩ Wu (q) , (1.4)

where p ∈ M− (f) , q ∈ M+ (f).

In the following we omit the indices and denote a Neumann domain by Ω.
The next definition owes to the recent paper of McDonald and Fulling [29].
We allow a certain modification of the definition to adapt it to the present
approach.

Definition 1.2. The Neumann line set of f is

N (f) :=
⋃

r∈S (f)

W s(r) ∪ Wu(r). (1.5)

Figure 1 demonstrates the definitions above by showing the Neumann lines
and the Neumann domains for two eigenfunctions on the unit flat torus. The
next proposition states that Neumann lines and Neumann domains define a
partition of M , assuming that the set of saddle points is not empty.

Proposition 1.3. If N (f) �= ∅ then the following disjoint decomposition of the
manifold holds.

M =
⊔

p∈M−(f)
q∈M+(f)

{Ωp,q(f)}
⊔

N (f) (1.6)

The first main result concerns the topological properties of Neumann
domains on closed surfaces.

Figure 1. Two eigenfunctions of the eigenvalues 52π2 (left)
and 200π2 (right) on the unit flat torus T = [0, 1]× [0, 1]. The
nodal domains are colored red and blue and the nodal lines
are indicated by gray lines. Red (blue) circles mark maxima
(minima) and purple diamonds indicate saddle points. The
solid lines are the Neumann lines
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Theorem 1.4. Let M be a smooth, compact, two-dimensional, orientable man-
ifold without boundary and g a smooth Riemannian metric on M . Let f be
a Morse function with S (f) �= ∅. Let p ∈ M− (f) , q ∈ M+ (f) and Ω be a
connected component of W s (p) ∩ Wu (q), i.e., Ω is a Neumann domain. The
following properties hold.

Critical points location

(i) C (f) ⊂ N (f)
(ii) X (f) ∩ ∂Ω = {p, q}
(iii) If f is in addition a Morse–Smale function then ∂Ω consists of Neumann

lines connecting saddle points with extrema. In particular, the boundary,
∂Ω, contains either one or two saddle points.

Neumann domain topology

(iv) Ω is a simply connected open set.

Level sets of f |Ω
Let c ∈ (f (p) , f (q)) ⊂ R.

(v) Ω ∩ f−1 (c) �= ∅
(vi) Each connected component of Ω ∩ f−1 (c) has a non-empty intersection

with ∂Ω.
(vii) Ω∩f−1 (c) is an embedding of a closed one-dimensional interval, without

self-intersections, and it intersects ∂Ω only at its two endpoints.

We conclude that all Neumann domains are simply connected, which is
a fundamental difference to nodal domains. Moreover, all critical points are
located on the Neumann lines and the boundary of each Neumann domain
contains precisely one minimum and one maximum. Although the theorem is
stated for general Morse functions, in the sequel we apply it to Morse eigen-
functions. Under this further assumption, the nodal set plays an important
role as we clarify below.

Remark 1.5. The maxima of an eigenfunction are positive and its minima
are negative. Therefore, applying Theorem 1.4 to a Morse eigenfunction, we
may choose the value c = 0 in (v), (vi), (vii) of the theorem for all Neumann
domains. This yields that the intersection of a Neumann domain with the nodal
set is a non-self-intersecting curve touching the Neumann domain boundary
at two endpoints.

The generic structure of Neumann domains for a Morse–Smale eigenfunc-
tions which results from Theorem 1.4 is displayed in Fig. 2. The theorem, in
particular, allows to bound the number of Neumann domains in terms of the
nodal domain count.

Corollary 1.6. Let (M, g) be as in Theorem 1.4 and f a Morse eigenfunction
on M . Let μ denote the number of Neumann domains of f and ν denote the
number of its nodal domains. Then 2μ ≥ ν.
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Figure 2. The topological structure of a Neumann domain of
a Morse–Smale eigenfunction. The dashed lines mark the gra-
dient flow lines forming the boundary of the Neumann domain
and the solid line marks the nodal line of the eigenfunction
restricted to the Neumann domain. The eigenfunction critical
points on the boundary are indicated by q, p, r1, r2 (maxi-
mum, minimum and saddle points, respectively)

We proceed by discussing a fundamental spectral property of Neumann
domains. By Proposition 1.3 the boundary of a Neumann domain Ω of an
eigenfunction f consists of Neumann lines, which are particular gradient flow
lines, {ϕ (t, x)}t∈R

(see for instance in proof of Lemma 2.6). Hence the normal
derivative of f at ∂Ω vanishes. We conclude that f |Ω is an eigenfunction on
Ω with Neumann boundary conditions. Hence the name Neumann domains,
which was coined in [29]. A natural question concerns the position of f |Ω in
the spectrum of Ω. For a nodal domain, D, the answer to this question is
trivial, as f |D corresponds to the first eigenvalue in the Dirichlet spectrum of
D. This observation is a key ingredient in various nodal domain count results, a
fundamental of which is Pleijel’s [34]. Similar results for the Neumann domain
count may be obtained from estimating the position of f |Ω in the Neumann
spectrum of Ω. Theorem 1.4 (i), (ii), (iv), (vii) suggest that f |Ω cannot have
too rich a structure. This may lead to conjecture that there exists a positive
n ∈ N such that for every Neumann domain Ω, the restricted eigenfunction,
f |Ω, is at most the n-th eigenfunction of the restricted eigenproblem (see also
[39]). The following proposition constitutes a counter-example. For a domain
Ω and an eigenfunction f on Ω satisfying Neumann boundary conditions, we
denote by pos (f,Ω) the position of f in the spectrum of Ω. We set the position
of the trivial constant function to be pos (const,Ω) = 0 and for degenerate
eigenvalues the position is chosen to be the minimal one.

Proposition 1.7. Let T be the standard flat two-dimensional torus. There exists
a sequence {fk}∞

k=1 of Laplacian eigenfunctions on T with {Ωk}∞
k=1 a sequence

of Neumann domains, Ωk being a Neumann domain of fk, such that the
sequence

{

pos(fk|Ωk
,Ωk)

}∞
k=1

is unbounded.

The paper is structured as following. In the next section we treat manifolds
without boundary and prove Proposition 1.3, Theorem 1.4. In Sect. 3 we prove
analogous results for manifolds with Dirichlet boundary (Proposition 3.12,
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Theorem 3.13). In Sect. 4 we present some geometric and spectral properties
of Neumann domains; we estimate the diameter of Neumann domains (Theo-
rem 4.2), prove Proposition 1.7 and discuss the counter-example which stands
behind it. Finally, in Sect. 5 we prove Corollary 1.6 and its analogue for the
boundary case (Corollary 5.1), and relate the number of Neumann domains to
the number of critical points and their degrees.

2. The Structure of Neumann Lines and Neumann Domains:
Manifolds Without Boundary

2.1. Some Basics in Morse Theory

A fundamental theorem in Morse homology is the stable/unstable manifold
theorem, part of which we quote here.

Lemma 2.1 (part of Theorem 4.2 in [1]). Let f be a real Morse function on an
m−dimensional, compact Riemannian manifold and let x be a critical point of
f . The stable and unstable manifolds of x are smoothly embedded open disks of
dimension m−λx and λx, respectively, where λx is the Morse index of f at x.

In two dimensions the non-degenerate critical points are maxima, minima and
saddle points. According to the lemma above the stable manifold of a maximum
q ∈ M is {q}, and the unstable manifold is the embedding of a two-dimensional
open disk. The converse holds for a minimum. For a saddle point, r ∈ M ,
the stable and unstable manifolds are embeddings of open one-dimensional
intervals. Another useful tool is the decomposition of the manifold M into a
union of stable (or unstable) manifolds.

Lemma 2.2 (Proposition 4.22 in [1]). Let f : M → R be a Morse function on
a compact, smooth, closed Riemannian manifold (M, g), then M is a disjoint
union of the stable manifolds of f , i.e.,

M =
⊔

x∈C (f)

W s(x). (2.1)

Similarly,
M =

⊔

x∈C (f)

Wu(x). (2.2)

2.2. Proofs of Lemmata

Throughout this section we assume that M is a two-dimensional compact,
orientable surface without boundary and f is a Morse function on M . As
saddle points play a major role in defining the Neumann line set, N (f) (see
Definition 1.2), it is useful in what follows to understand the local behavior of
N (f) in the vicinity of saddle points. The following lemma summarizes results
of that kind, some of which appear in [29].

Lemma 2.3. Let M and f be as above and let r ∈ S (f). The following holds.
(i) There exists a neighborhood U of r such that N (f) ∩ U consists of four

curves which meet with right angles at r.
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(ii) There exists a neighborhood V of r such that the previous claim holds
in V and in addition, f−1 (f (r))∩V consists of four curves which meet
at r and interlace with the four curves N (f) ∩ U .

Remark 2.4. The case f (r) = 0 is particularly interesting as it relates the
nodal lines and the Neumann lines in the vicinity of r.

Proof. The first claim of the lemma is proved in [29] by examining the Taylor
expansion of f around r. The second claim follows similarly. �

We start by providing three basic lemmata which are required for proving that
Neumann lines and Neumann domains form complementary sets (cf. Proposi-
tion 1.3).

Lemma 2.5 (Proposition 3.19 in [1]). ∀x ∈ M , both limits limt→±∞ ϕ (t, x)
exist and they are both critical points of f , i.e., limt→±∞ ϕ (t, x) ∈ C (f).

Lemma 2.6. Let r ∈ S (f) . Then q ∈ W s (r)\W s (r) if and only if q ∈ C (f)
and W s (r)∩Wu (q) �= ∅. Similarly, p ∈ Wu (r)\Wu (r) if and only if p ∈ C (f)
and Wu (r) ∩ W s (p) �= ∅.
Proof. We start by proving the direction (⇒). By Lemma 2.1 we know that
W s (r) is homeomorphic to an embedded open one-dimensional interval. Let
x1, x2 ∈ W s (r) be two points in different connected components of W s(r)\{r}.
Each of the sets X1 := {ϕ (t, x1)}t∈R

, X2 := {ϕ (t, x2)}t∈R
is also homeomor-

phic to an embedded open one-dimensional interval, and we have the disjoint
decomposition W s (r) = X1 ∪ {r} ∪ X2. As limt→∞ ϕ (t, x1,2) = r we get
that W s (r)\W s (r) = {limt→−∞ ϕ (t, x1) , limt→−∞ ϕ (t, x2)}. In particular
we conclude that

q ∈ W s (r)\W s (r) ⇔ q ∈
{

lim
t→−∞ ϕ (t, x1) , lim

t→−∞ ϕ (t, x2)
}

. (2.3)

Combining this with the implication

q ∈
{

lim
t→−∞ ϕ (t, x1) , lim

t→−∞ ϕ (t, x2)
}

⇒ q ∈ C (f) ∧ {x1 ∈ Wu (q) ∨ x2 ∈ Wu (q)} , (2.4)

which follows from Lemma 2.5 we get

q ∈ W s (r)\W s (r) ⇒ q ∈ C (f) ∧ W s (r) ∩ Wu (q) �= ∅. (2.5)

For the other direction, we choose some x ∈ W s (r)∩Wu (q). For any sequence,
{tn} such that tn → −∞ we get that ϕ (tn, x) → q and thus q ∈ W s (r) as an
accumulation point of a sequence in W s (r). The assumption q ∈ C (f) gives
∇f |q = 0, which implies q /∈ W s (r), so that q ∈ W s (r)\W s (r). The second
part of the lemma is proven similarly. �

Lemma 2.7. If N (f) �= ∅ then N (f) =
{
⋃

r∈S (f) W s(r) ∪ Wu(r)
}
⊔
X (f).
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Proof. We observe that

N (f) ⊆
⎧

⎨

⎩

⋃

r∈S (f)

W s(r) ∪ Wu(r)

⎫

⎬

⎭

⋃

C (f)

=

⎧

⎨

⎩

⋃

r∈S (f)

W s(r) ∪ Wu(r)

⎫

⎬

⎭

⊔

X (f) , (2.6)

where the first line is a deduction from Lemma 2.6 and the second holds as
C (f) \X (f) = S (f) ⊂ ⋃r∈S (f) W s(r).

We proceed to show that the inclusion above is an exact equality. Let
q ∈ M be a maximum of f . We show that if N (f) �= ∅ then ∃r ∈ S (f)
such that q ∈ W s(r). Similar arguments can be used to show that if p ∈ M

is a minimum of f then ∃r ∈ S (f) such that p ∈ Wu(r) and in combination
this proves the lemma. We consider now the maximum q ∈ M in view of
the second decomposition stated in Lemma 2.2. According to it, M can be
decomposed into (a) stable manifolds of minima, which are two-dimensional
simply connected subsets of M , (b) stable manifolds of the saddle points,
which are open one-dimensional subsets of M and (c) the set of all maxima.
We assume that there is no saddle point, such that q belongs to the closure of
its stable manifold and show that this implies N (f) = ∅. By the assumption
and Lemma 2.6, there is an open neighborhood U of q, which does not intersect
with stable manifolds of saddle points and does not contain any other maxima.
By the decomposition of M from Lemma 2.2, the punctured neighborhood,
U\ {q}, can be covered by a finite number of stable manifolds of minima.
However, as these stable manifolds are open and disjoint this is only possible
if U\ {q} is covered by exactly one stable manifold of some minimum p. As
W s (p) is homeomorphic to an open two-dimensional disk we conclude that q
is a single connected component of this stable manifold’s boundary, ∂W s (p)
and this implies that W s (p) = M and M = S2. In particular, this leaves no
saddle points of f on M and therefore N (f) = ∅. �

2.3. Proofs of Proposition 1.3 and Theorem 1.4

Following Lemma 2.7, as long as the set of Neumann lines is non-empty, we
get that it is complementary to the union of the Neumann domains, which is
the statement of Proposition 1.3, proven below.

Proof of Proposition 1.3. Note the following disjoint decomposition of the
manifold

M =

⎧

⎪⎪⎨

⎪⎪⎩

⊔

p∈M−(f)
q∈M+(f)

[

W s (p) ∩ Wu (q)
]

⎫

⎪⎪⎬

⎪⎪⎭

⊔{ ⊔

r∈S (f)

[

W s(r)∪Wu(r)
]}⊔

X (f) .

(2.7)
One can check the validity of this decomposition by separation to cases. For
every x ∈ M , we get from Lemma 2.5 that limt→±∞ ϕ (t, x) ∈ C (f). If x
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is a critical point itself then both limits are equal to x and x ∈ C (f) =
X (f)\S (f). Otherwise, if both limits (limt→±∞ ϕ (t, x)) are different and
they are obtained at extremal points then

x ∈
⊔

p∈M−(f)
q∈M+(f)

[W s (p) ∩ Wu (q)] . (2.8)

Finally, there is also the case where at least one of the limits is obtained at
a saddle point and then x ∈ ⊔r∈S (f) [W s(r) ∪ Wu(r)]. The proposition is
proven as the last two terms of the union equal N (f) by Lemma 2.7. �

Remark 2.8. Let M be a two-dimensional manifold as above with genus g.
Let f be a Morse function on M with no Neumann lines, N (f) = ∅. From
the equivalence N (f) = ∅ ⇔ S (f) = ∅ and from Morse inequalities, 2 −
2g = |M+ (f)| − |S (f)| + |M− (f)| we deduce that g = 0 and f has a single
maximum and a single minimum. In this case f has a single Neumann domain
and the only points in M not belonging to it are the two extrema. All other
cases (N (f) �= ∅) are treated by Proposition 1.3.

Proof of Theorem 1.4.

(i) From Lemma 2.7, we deduce X (f) ⊂ N (f). In addition, S (f) ⊂ N (f)
by definition.

(ii) First we show that p, q ∈ ∂Ω. Since p, q /∈ Ω it suffices to show that p, q ∈
Ω. Start from any x ∈ Ω. Consider the flow line which passes through x,
X = {ϕ(t, x)}t∈R

. As x ∈ W s (p), we get by definition that X ⊂ W s (p).
Similarly, X ⊂ Wu (q) and therefore X ⊂ Ω. As limt→∞ ϕ (t, x) = p,
each neighborhood of p has a non-empty intersection with X (and hence
with Ω) and therefore p ∈ ∂Ω. A similar argument shows that q ∈ ∂Ω.
Now assume by contradiction that there is some other minimum, p̃ �= p
such that p̃ ∈ ∂Ω. Being on the boundary, we have that W s (p̃)∩Ω �= ∅.
From the definition of Ω, we get W s (p̃) ∩ W s (p) �= ∅, which gives a
contradiction. A similar argument shows that q is the only maximum of
f which belongs to ∂Ω.

(iii) This is an immediate deduction from the definition of a Morse–Smale
function.

(iv) Ω is open being the intersection of two open sets (Lemma 2.1) or a con-
nected component of such intersection. Examine the following sequence
of homomorphisms between homology groups Hn, Hn−1.

Hn (W s (p) ∪ Wu (q)) −→ Hn−1 (W s (p) ∩ Wu (q))
−→ Hn−1 (W s (p)) ⊕ Hn−1 (Wu (q)) . (2.9)

This sequence is exact, being part of the Mayer–Vietoris sequence
(cf. [3]) and using that the sets W s (p) , Wu (q) are open. For n ≥ 2 we
have that Hn (W s (p) ∪ Wu (q)) = 0 as M is two-dimensional and also as
W s (p)∪Wu (q) � M (which holds as S (f) �= ∅). For n ≥ 2 we also have
that Hn−1 (W s (p)) = Hn−1 (Wu (q)) = 0, as W s (p) , Wu (q) are both
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embeddings of a two-dimensional open disk, by Lemma 2.1. We thus con-
clude from the exact sequence above that Hn−1 (W s (p) ∩ Wu (q)) = 0
for n ≥ 2. In particular, for n = 2 we conclude that, Ω is sim-
ply connected if it is path connected. A Neumann domain is indeed
path connected, as W s (p) and Wu (q) are smooth embeddings of two-
dimensional disks, by Lemma 2.1.

(v) As c ∈ (f (p) , f (q)), by continuity, f must obtain the value c somewhere
in Ω.

(vi) Assume by contradiction that there is a connected component of Ω ∩
f−1 (c) which does not intersect ∂Ω. As Ω is simply connected, this
means that there is a subdomain ω ⊂ Ω such that either f |ω ≥ c or
f |ω ≤ c and f |∂ω = c. f cannot be identically equal to c in ω, being a
Morse function, and therefore there is either a maximum or minimum
of f inside ω, which contradicts (i).

(vii) We deduce from (iv) that ∂Ω has a single connected component. This
boundary, ∂Ω, decomposes into two curves, γ1, γ2, whose endpoints are
p, q. Namely, ∂Ω = γ1 ∪ γ2 and γ1 ∩ γ2 = {p, q}. The restriction, f |∂Ω

is monotonic on γ1 and γ2. As c ∈ (f (p) , f (q)) we conclude that f |∂Ω

equals c at exactly two points, x ∈ γ1, y ∈ γ2. By (i) f−1 (c) has no
critical points in Ω, so we deduce from the inverse function theorem
that f−1 (c) is a union of one-dimensional non intersecting curves. The
endpoints of these curves are x, y. Yet, if there is more than one curve
in this union, this implies the existence of a subdomain ω ⊂ Ω such that
either f |ω ≥ c or f |ω ≤ c and f |∂ω = c. This was already ruled out in
(vi). �

Theorem 1.4 implies that the eigenfunction restriction to a Neumann domain,
f |Ω, has a relatively simple structure. According to claim (i), f |Ω does not
have any critical points. Claim (ii) shows that there are only two extremal
points of f |Ω, which lie on the boundary, ∂Ω, and they are exactly the defining
minimum and maximum, p, q, of the Neumann domain, Ωp,q = W s (p)∩Wu (q).
According to claim (iv) a Neumann domain, Ω, is simply connected and this
is used in proving claims (v)–(vii), which deal with the level set contained
within Ω. By claim (vii), the level pattern of f |Ω is simple; it is a single
line without self-intersections and with two endpoints on the boundary, ∂Ω.
For the additional assumption of Morse–Smale, a typical structure of f |Ω is
demonstrated in Fig. 2. For a Morse function which is not Morse–Smale it is
possible that there are more than two saddle points on the boundary of the
Neumann domain.

3. Manifolds with Dirichlet Boundary

In this section we discuss the structure of Neumann domains on surfaces with
boundary. The manifolds, M , which we consider are simply connected, com-
pact subsets of a compact, closed two-dimensional smooth manifold M. We
assume that M has a piecewise smooth boundary with Dirichlet boundary
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conditions. If M has angles we assume that they are all non-zero. Many of
the explicit examples which are used to study the characteristic structures of
eigenfunctions are of this type (for example billiards [2]). A particular com-
plication that arises for the case with boundary is due to the fact that the
structure of stable and unstable manifolds at the boundary is not easily acces-
sible in general. To circumvent this issue we restrict our study to a class of
eigenfunctions which we introduce in the following.

Definition 3.1. Let f : M → R be a Morse eigenfunction on M . We say
f has the extension property if there exists an open neighborhood M̂ with
M ⊂ M̂ ⊂ M and a Morse function f̂ : M̂ → R such that

f̂ |M ≡ f. (3.1)

Morse eigenfunctions with the extension property have the following
stronger extension property to Morse functions on M.

Lemma 3.2. Let f : M → R be a Morse eigenfunction with the extension
property, then there exists a Morse function f̃ : M → R that extends f , i.e.,

f̃ |M ≡ f. (3.2)

Proof. It follows from the extension property that there exist an open neigh-
borhood W of M and a closed neighborhood A of M as well as an extension
f̂ such that

C (f̂ |W ) ⊂ Å ⊂ A ⊂ W ⊂ M, (3.3)

where C (f̂ |W ) ⊂ Å follows as f̂ has isolated critical points, so that A can be
chosen to satisfy this inclusion. The existence of the extension f̃ to M follows
immediately from lemma 4.15 of [36]. �

Remark 3.3. Determining general criteria for M such that all Morse eigen-
functions have the extension property appears to be a non-trivial problem. In
[30] local extendibility of eigenfunctions as solutions under certain restrictive
conditions is discussed. However, to apply the extendibility of [36] one requires
an extension to a neighborhood of the whole domain. It seems therefore rea-
sonable to restrict to functions that allow for such an extension. In particular,
the extension property holds for Morse eigenfunctions on rectangular domains
and on the disk, which follows from their explicitly given eigenfunctions. Fur-
thermore, it seems possible to extend the treatment presented here to eigen-
functions which are weakly Morse in the sense that they allow for degenerated
saddle points. This would require a more careful study of these cases beyond
the standard theory for Morse functions which we employ here.

We use the notation S (f) for the set of saddle points, which now also
includes the saddle points of f on ∂M , and similarly for C (f). For extrema the
sets M+ (f) and M− (f) remain the same; these cannot lie on the boundary
since f is an eigenfunction with Dirichlet boundary conditions. In the following
we define Neumann domains and Neumann lines for manifolds with Dirichlet
boundary (in Definition 3.7 and its preceding discussion) and prove that the
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results stated in Proposition 1.3 and Theorem 1.4 hold in a slightly different
form in the boundary case (the analogues are Proposition 3.12 and Theorem
3.13).

3.1. Gradient Flow in the Boundary Case

Before discussing the structure of stable and unstable manifolds, we introduce
an adapted version of the gradient flow given in (1.2), for manifolds with
boundary. Let f be a Morse eigenfunction on M with the extension property
and f̃ the extended Morse function on M, as given in Lemma 3.2. Let ϕ̃ be
the gradient flow of f̃ on M, as defined in (1.2). We define the gradient flow
of f on M as
ϕ : R × M → M,

ϕ(t, x)

=

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ̃ (t, x)
(

t ≥ 0 and {ϕ̃ (t0, x)}t0∈[0,t] ⊂ M
)

or
(

t < 0 and {ϕ̃ (t0, x)}t0∈[t,0] ⊂ M
)

ϕ̃ (t0, x) (t > 0 with t0 ∈ [0, t] being the minimal such that ϕ̃ (t0, x) ∈ ∂M) or

(t < 0 with t0 ∈ [t, 0] being the maximal such that ϕ̃ (t0, x) ∈ ∂M)

(3.4)

The flow above is along gradient lines and when a gradient line intersects
with the boundary, the flow is defined to stop at the intersection point, or
emanate from it, depending on the gradient direction. We note that there is
no essential need to use the extended function when defining the flow above.
However, using it somewhat simplifies both the flow definition and the proofs
to follow.

Note that the flow above is well-defined. For t > 0, for example, if the
condition {ϕ̃ (t0, x)}t0∈[0,t] ⊂ M fails to hold then there exists some t1 ∈ (0, t]
such that ϕ̃ (t1, x) /∈ M . By definition of the flow ϕ̃ we have ϕ̃ (0, x) ∈ M . This
together with the continuity of the flow implies the existence of t0 ∈ [0, t] such
that ϕ̃ (t0, x) ∈ ∂M . In particular there is a minimal t0 which satisfies this, as
is required in (3.4).

We claim that the gradient flow defined above does not depend on the
specific extension f̃ .

Lemma 3.4. Let f be a Morse function on M . Let f̃1 and f̃2 be extensions
of f from M to M, ϕ̃1, ϕ̃2 the corresponding gradient flows and ϕ1, ϕ2 the
corresponding flows induced by (3.4). Then ϕ1 = ϕ2.

Proof. Assume by contradiction that there exists t ∈ R, x ∈ M such that
ϕ1 (t, x) �= ϕ2 (t, x). This implies that t �= 0, as ϕ1 (0, x) = ϕ2 (0, x) = x,
by definition. We may assume without loss of generality that t > 0. If
{ϕ̃1 (t0, x)}t0∈[0,t] ⊂ M then we get by the flow definition (1.2) that ∀t0 ∈
[0, t] , ϕ̃1 (t0, x) = ϕ̃2 (t0, x), since ∇f̃1|M = ∇f̃2|M . Hence ϕ̃1 (t, x) = ϕ̃2 (t, x),
contradicting the assumption. Therefore, there exists a minimal t1 ∈ [0, t] such
that ϕ̃1 (t1, x) ∈ ∂M and a minimal t2 ∈ [0, t] such that ϕ̃2 (t2, x) ∈ ∂M . This
means that ∀t0 ∈ [0, t1) ϕ̃1 (t0, x) ∈ M and implies ∀t0 ∈ [0, t1) ϕ̃1 (t0, x) =
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ϕ̃2 (t0, x). By the continuity of the flow ϕ̃2 (t1, x) = ϕ̃1 (t1, x) ∈ ∂M , so that
t1 ∈ [0, t] is the minimal such that ϕ̃2 (t1, x) ∈ ∂M . Therefore, t1 = t2 and
ϕ̃1 (t1, x) = ϕ̃2 (t2, x), contradicting the assumption. �

This definition of the flow allows to define the stable and unstable manifolds
similarly to the non-boundary case by

W s(x) = {y ∈ M
∣
∣ lim

t→∞ ϕ(t, y) = x}
Wu(x) = {y ∈ M

∣
∣ lim

t→−∞ ϕ(t, y) = x}.
(3.5)

Note that the above is defined not only for critical points, but also for x ∈ ∂M .
To prove properties of the stable and unstable manifolds, we need the following
lemma.

Lemma 3.5 (follows from proposition 3.18 in [1]). Let M be a smooth Rie-
mannian manifold with or without boundary. Let x ∈ M and t ∈ R be such
that ϕ(t, x) /∈ ∂M . Then

d
dt

f (ϕ(t, x)) = −‖(∇f) (ϕ(t, x))‖2 ≤ 0. (3.6)

The next lemma is analogous to Lemma 2.1, for the case with boundary.

Lemma 3.6. Let M be a manifold with boundary as above. Let f be a Morse
eigenfunction on M with the extension property. Let p ∈ C (f) and let λp be the
Morse index of f at p. The intersection of the stable (unstable) manifold with
the interior of M , W s(p)∩ intM (Wu(p)∩ intM) is an open simply connected
set of dimension 2 − λp (λp).

Proof. We prove the statement above separately for the three different cases,
λp = 2, 1, 0 and only for W s(p) ∩ intM . The first case (λp = 2) holds due
to the fact that extrema of eigenfunctions with Dirichlet boundary conditions
belong to the interior of M , therefore Lemma 2.1 applies to this case and
W s (p) ∩ IntM = {p}.
For the second and third cases (λp = 1, 0), we use the extension property
and extend the eigenfunction to a smooth Morse function f̃ on M. We now
prove the λp = 1 case. Denote the stable manifold of p with respect to f̃ by
W̃ s (p). This stable manifold is defined with respect to the standard gradient
flow on M, which we denote by ϕ̃ : R × M → M. Note that the flows ϕ̃ and
ϕ coincide in the interior of M . By Lemma 2.1 the stable manifold W̃ s (p)
is an embedded open interval in M. If its intersection with the interior of M

is connected, this would imply the claim. If W̃ s(p) ∩ intM is not connected,
then one of the integral curves in W̃ s (p) (i.e., {ϕ̃ (t, x)}t∈R

which is contained
in W̃ s (p)) must intersect ∂M at least at two points. Denote these points on
the boundary by x1, x2 and let t2 > 0 such that x2 = ϕ̃ (t2,x1). According
to Lemma 3.5, the values of f̃ decrease monotonically along the flow line,
{ϕ̃ (x1; t)}0≤t≤t2

. As f̃ vanishes at both x1 and x2, we conclude from Lemma
3.5 that d

dtf (ϕ̃ (x; t)) = −‖(∇f) (ϕ̃ (x1, t))‖2 = 0 ∀0 ≤ t ≤ t2. The existence
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of non-isolated critical points contradicts f̃ being a Morse function and finishes
the proof of the second claim.
To prove the third case (λp = 0), let p ∈ M− (f). Then the stable manifold
W̃ s(p) is an embedded open disk in M and in particular simply connected.
Since M is simply connected, we may use the same argument as in the proof
of Theorem 1.4(iv) to conclude that W̃ s(p) ∩ intM is simply connected if it
is path connected. The set W̃ s(p) ∩ intM is indeed path connected as x, y ∈
W̃ s(p)∩intM are connected by the path {ϕ̃ (t, x)}t≥0∪{ϕ̃ (t, y)}t≥0. This holds
since the gradient flow lines {ϕ̃ (t, x)}t≥0, {ϕ̃ (t, y)}t≥0 are fully contained in
intM (as is explained in the previous paragraph) and p is a common point in
the closures of these (limt→−∞ ϕ̃ (t, x) = limt→−∞ ϕ̃ (t, y) = p). W̃ s(p) ∩ intM
is therefore a simply connected open set and hence homeomorphic to a two-
dimensional disk. �
3.2. Neumann Domains in the Boundary Case

Let M be a connected compact 2-manifold with boundary as described in
the beginning of this section and consider a Morse eigenfunction f with the
extension property, which obeys Dirichlet boundary conditions on ∂M . The
definition of the set of Neumann lines, N (f), in this case is unaltered and
is still given by Definition 1.2. The definition of Neumann domains, however,
should be modified as follows.

Definition 3.7. A Neumann domain of f as above is a connected component
of one of the following sets

(i) Ωp,q(f) = W s (p) ∩ Wu (q) , where p ∈ M+ (f) , q ∈ M− (f)

(ii) Ωp,◦(f) = W s (p) ∩
(
⋃

y∈∂M\S (f) Wu (y)
)

, where p ∈ M− (f)

(iii) Ω◦,q(f) =
(
⋃

y∈∂M\S (f) W s (y)
)

∩ Wu (q) , where q ∈ M+ (f)

Neumann domains of type (1) are called inner Neumann domains and those
of types (2) and (3) are called boundary Neumann domains.

Similarly to Lemma 2.2, we have an analogue decomposition of M .

Lemma 3.8. Let M and f be as above, then we have the following disjoint
decompositions

M =

⎧

⎨

⎩

⊔

x∈C (f)

Wu (x)

⎫

⎬

⎭

⊔

⎧

⎨

⎩

⊔

y∈∂M\S (f)

Wu (y)

⎫

⎬

⎭
. (3.7)

Similarly,

M =

⎧

⎨

⎩

⊔

x∈C (f)

W s (x)

⎫

⎬

⎭

⊔

⎧

⎨

⎩

⊔

y∈∂M\S (f)

W s (y)

⎫

⎬

⎭
. (3.8)

Proof. Both decompositions follow as each point belongs to a unique (un)stable
manifold and there are no extremal points on a Dirichlet boundary. �
The following lemma is the analogue of Lemma 2.5.



Topological Properties of Neumann Domains

Lemma 3.9. Let x ∈ M . Then both limits limt→∞ ϕ (t, x) and limt→−∞ ϕ (t, x)
exist and each is either a critical point of f or an element of ∂M , i.e.,
limt→±∞ ϕ (t, x) ∈ C (f) ∪ ∂M .

Proof. Let x ∈ M . If {ϕ (t, x)}t∈R
∩∂M = ∅ then Lemma 2.5 applies and we get

that the limits limt→∞ ϕx (t, x) and limt→−∞ ϕ (t, x) exist and both belong to
C (f) (and it might be that any of these limits belongs to the boundary, ∂M).
Otherwise, there exists t0 ∈ R such that ϕ (t0, x) = y and y ∈ ∂M . Assume
without loss of generality that t0 < 0. Note that due to the reversibility of
the flow, the gradient cannot vanish at y, i.e., ∇f |y �= 0. We conclude that y

cannot be a corner of the boundary as this would imply y ∈ S (f). Therefore,
y belongs to the smooth part of the boundary and ∇f |y is orthogonal to the
boundary, which is a level set of f . By the definition of the flow, we get that
∀t < t0, ϕ (t, x) = y and therefore limt→−∞ ϕ (t, x) = y. �

The next two lemmata are the analogues of Lemmata 2.6 and 2.7.

Lemma 3.10. Let r ∈ S (f) . Then q ∈ W s (r)\W s (r) if and only if q ∈ C (f)
and W s (r)∩Wu (q) �= ∅. Similarly, p ∈ Wu (r)\Wu (r) if and only if p ∈ C (f)
and Wu (r) ∩ W s (p) �= ∅.
Proof. The proof of direction (⇐) is identical to that of Lemma 2.6. The proof
of the other direction is only slightly modified (using Lemmata 3.6, 3.9 which
are analogous to Lemmata 2.1, 2.5) and is not repeated. The only element of
proof which we do mention here concerns points on the boundary ∂M . Let
y ∈ ∂M ∩ W s (r). Then we have that y ∈ W s (r) if and only if y /∈ C (f). In
particular, if y ∈ ∂M then y ∈ W s (r)\W s (r) if and only if y ∈ C (f). �

The main content of the following lemma (similarly to Lemma 2.7) is that
all extremal points belong to the set of Neumann lines, N (f). The proof is
somewhat more involved here than the proof of the analogous lemma in the
non-boundary case. Intuitively, this can be understood as following. Given an
eigenfunction, f , on the manifold with boundary M , we extend it to a Morse
function, f̃ , on the manifold M. Yet, it might occur that N(f) � N(f̃) ∩ M .
Namely, some Neumann lines of f̃ might be absent from those of f even if
originally they had a non-empty intersection with M . This happens exactly
when a saddle point of f̃ lies outside M , but has a stable or unstable manifold
which intersects with M . In particular, having less Neumann lines means that
it is harder to guarantee that all extremal points belong to the Neumann lines,
in the boundary case. Hence the difference in the complexity of the proofs.

Lemma 3.11. If N (f) �= ∅ then

N (f) =

⎧

⎨

⎩

⋃

r∈S (f)

W s(r) ∪ Wu(r)

⎫

⎬

⎭

⊔

X (f) . (3.9)

Proof. The proof partly follows the lines of the one for Lemma 2.7, if we
replace Lemmata 2.1, 2.5 and 2.6 by the analogous Lemmata 3.6, 3.9 and
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3.10. However, this proof deviates at some point and additional arguments are
supplied. We observe that

N (f) ⊆
⎧

⎨

⎩

⋃

r∈S (f)

W s(r) ∪ Wu(r)

⎫

⎬

⎭

⋃

C (f)

=

⎧

⎨

⎩

⋃

r∈S (f)

W s(r) ∪ Wu(r)

⎫

⎬

⎭

⊔

X (f) , (3.10)

where the first line is a deduction from Lemma 3.10 and the second equality
holds as C (f)\X (f) = S (f) ⊂ ⋃r∈S (f) W s(r).

We proceed to show that the relation above is an exact equality. Let q
be a maximum of f . We show that ∃r ∈ S (f) such that q ∈ W s(r). Similar
arguments can be used to show that if p is a minimum of f then ∃r ∈ S (f)
such that p ∈ Wu(r) and in combination this proves the lemma. Examine
Wu (q). If ∂M ⊂ Wu (q) we conclude S (f) = ∅ and therefore also N (f) = ∅.
This conclusion owes to Wu (q) ∩ intM being simply connected (Lemma 3.6),
so that its boundary equals ∂M and therefore M = Wu (q), which implies
S (f) = ∅.

We now consider the case Wu(q) ∩ ∂M = ∅. In particular, the unstable
manifold of q is contained in M and therefore coincides with that of the exten-
sion W̃u(q), Wu(q) = W̃u(q). For M we can proceed as in the proof of Lemma

2.7 and deduce the existence of a saddle point r ∈ S (f̃) with q ∈ W̃ s(r).
In particular, there is a gradient flow line connecting q and r. This gradient
flow line is contained in Wu(q) by definition and in turn it is contained in M .
Therefore, r ∈ M is the desired saddle point.

If Wu(q) ∩ ∂M �= ∅, we consider ∂Wu (q), taking the boundary with
respect to the topology of M . ∂Wu (q) is not empty as we have shown that
Wu (q) � M . ∂Wu (q) is a compact set so that f attains a maximum on it,
at some r ∈ ∂Wu (q). We first assume that r /∈ ∂M and show that ∇f |r = 0.
First, note that ∂Wu (q) is a one-dimensional curve being part of the boundary
of an embedded two-dimensional disk, by Lemma 3.6. If ∂Wu (q) is smooth at
r, then, since r is a local maximum of f |∂W u(q), we get that ∇f |r is orthogonal
to the tangent of ∂Wu (q) at r. If ∇f |r �= 0 this implies that {ϕ (t, r)}t∈R

∩
Wu (q) �= ∅ and therefore limt→−∞ ϕ (t, r) = q, contradicting r ∈ ∂Wu (q). If
∂Wu (q) has a corner at r, ∇f |r is orthogonal to both right and left tangents
of ∂Wu (q) at r and once again ∇f |r = 0. If r ∈ ∂M then ∇f |r is orthogonal
to both ∂Wu (q) and ∂M (as the latter is a level set) so that ∇f |r = 0. We
conclude that r ∈ C (f). Obviously, r cannot be a minimum and it also cannot
be a maximum since this would yield Wu (q) ∩ Wu (r) �= ∅. Therefore, r ∈
S (f). Wu (r) cannot intersect Wu (q) and therefore it is tangential to ∂Wu (q)
at r. From the local structure of N (f) near r, as given in Lemma 2.3(i) we
deduce that W s (r) is transversal to ∂Wu (q). Therefore, W s (r) ∩ Wu (q) �= ∅
and we conclude from Lemma 3.10 that q ∈ W s(r) as desired.
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It is left to consider the case r ∈ ∂M . If there is some other isolated
maximum on ∂Wu (q), we pick it as r and proceed as before. Otherwise, either
f |∂W u(q) ≡ 0 or f |∂W u(q) < 0. The case f |∂W u(q) ≡ 0 can be ruled out
as then for x ∈ ∂Wu (q) we have ∇f (x)⊥∂Wu (q) which either contradicts
x ∈ ∂Wu (q) or implies x ∈ S (f). We therefore get that ∂Wu (q) ⊂ S (f),
which contradicts f being a Morse function. We conclude that f (x) < 0 ∀x ∈
∂Wu (q). The strict negative sign of f on the boundary of the unstable manifold
in combination with f (q) > 0 implies

Wu (q) ∩ f−1 (0) �= ∅. (3.11)

This set cannot contain a closed nodal line in the interior of M for the following
reason. In case the maximum is contained in the corresponding nodal domain,
this would imply that gradient flow lines connecting the maximum and the
boundary, ∂M , attain the zero value twice, which contradicts the monotonicity
of f along gradient flow lines (Lemma 3.5). Assuming that the corresponding
nodal domain does not contain the maximum, it contains another extremal
point of the eigenfunction. But no extremal point other than q is an element
of the unstable manifold of q, by definition. We therefore deduce that the nodal
set f−1 (0) has a non-empty intersection with the boundary,

f−1 (0) ∩ ∂M ∩ Wu (q) �= ∅, (3.12)

as nodal lines are either closed or end at the boundary. We pick s ∈ f−1 (0) ∩
∂M ∩Wu (q) and claim that this is the required saddle point. The fact that it
is a saddle point follows immediately since nodal lines intersect the boundary
of M at saddle points of f on the boundary. The local structure of N (f)
and f−1 (0) in the vicinity of s, as described in Lemma 2.3(ii) implies that
W s (s) ∩ Wu (q) �= ∅ and we conclude from Lemma 3.10 that q ∈ W s(s) as
desired. �

Finally, the analogue of Proposition 1.3 is

Proposition 3.12. If N (f) �= ∅ then the following disjoint decomposition of the
manifold holds.

M =

⎧

⎪⎪⎨

⎪⎪⎩

⊔

p ∈ M− (f)
q ∈ M+ (f)

Ωp,q(f)

⎫

⎪⎪⎬

⎪⎪⎭

⊔

⎧

⎪⎪⎨

⎪⎪⎩

⊔

p ∈ M− (f)

Ωp,◦(f)

⎫

⎪⎪⎬

⎪⎪⎭

⊔

⎧

⎪⎪⎨

⎪⎪⎩

⊔

q ∈ M+ (f)

Ω◦,q(f)

⎫

⎪⎪⎬

⎪⎪⎭

⊔

N (f) . (3.13)
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Proof. Note the following disjoint decomposition of the manifold

M =

⎧

⎪⎪⎨

⎪⎪⎩

⊔

p∈M−(f)
q∈M+(f)

[W s (p) ∩ Wu (q)]

⎫

⎪⎪⎬

⎪⎪⎭

⊔

⎧

⎪⎨

⎪⎩

⊔

p∈M−(f)

⎡

⎢
⎣W s (p) ∩

⎛

⎜
⎝

⋃

y∈∂M\S (f)

Wu (y)

⎞

⎟
⎠

⎤

⎥
⎦

⎫

⎪⎬

⎪⎭

⊔

⎧

⎪⎨

⎪⎩

⊔

q∈M+(f)

⎡

⎢
⎣

⎛

⎜
⎝

⋃

y∈∂M\S (f)

W s (y)

⎞

⎟
⎠ ∩ Wu (q)

⎤

⎥
⎦

⎫

⎪⎬

⎪⎭

⊔

⎧

⎪⎨

⎪⎩

⊔

r∈S (f)

[W s(r) ∪ Wu(r)]

⎫

⎪⎬

⎪⎭

⊔

X (f) , (3.14)

whose validity follows from separation into cases (see beginning of the proof
of Proposition 1.3) together with f having no extremal points on the Dirichlet
boundary. The proposition now follows from Definition 3.7 and Lemma 3.11.

�

The following structural theorem provides the same results as Theorem
1.4 for inner Neumann domains and analogous results for the boundary Neu-
mann domains.

Theorem 3.13. Let M be a simply connected, compact subset of a compact,
closed two-dimensional, smooth, orientable manifold M. Let ∂M be piecewise
smooth, all of whose angles are strictly positive and let g be a Riemannian
metric on M . Let f be a Morse eigenfunction of −Δg with the extension
property, which obeys Dirichlet boundary conditions and is such that S (f) �=
∅.
The following holds.

(i) C (f) ⊂ N (f)

Inner Neumann domains

(ii) Claims (ii) and (iv)–(vii) of Theorem 1.4 hold for all inner Neumann
domains of f .

Boundary Neumann domains

Let p ∈ M− (f) and let Ω be a connected component of Ωp,◦(f). Then

(iii) ∂Ω ∩ X (f) = {p}
(iv) Ω is simply connected.
(v) f |Ω\∂M < 0 and therefore Ω ∩ f−1(0) = Ω ∩ ∂M .

Analogous claims hold for boundary Neumann domains of maxima.
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Proof. Claims (i), (ii) here are proven identically as in Theorem 1.4 (with
Lemma 3.11 as the analogue of Lemma 2.7). Claim (iv) for boundary Neumann
domains is also proven as its analogue (claim (iv)) in Theorem 1.4.
[(v)] Assume by contradiction that there exists x ∈ Ω\∂M such that f (x) ≥ 0.
Consider the set {ϕ (t, x)}t>0. By definition of Ω, limt→−∞ ϕ (t, x) ∈ ∂M
and therefore limt→−∞ f (ϕ (t, x)) = 0. Lemma 3.5 states that f cannot
increase along gradient flow lines and therefore f (ϕ (t, x)) = 0 ∀t ≤ 0 and
we conclude that d

dtf (ϕ (t, x)) = −‖(∇f) (ϕ (t, x))‖2 = 0 for t ≤ 0 . We
get a set, {ϕ (t, x)}t≤0, of non-isolated critical points of f , in contradiction
to f being a Morse function. We therefore have f |Ω\∂M < 0 and conclude
Ω ∩ f−1(0) = Ω ∩ ∂M .
[(iii)] Proving that ∂Ω ∩M− (f) = {p} is done similarly to the analogue claim
in Theorem 1.4 (claim (ii)). It is then left to show that ∂Ω ∩ M+ (f) = ∅. As
f |Ω\∂M < 0 by claim (v), we conclude f |Ω = f |Ω\∂M ≤ 0. Since f is positive
at its maxima, being an eigenfunction, we conclude that Ω ∩ M+ (f) = ∅ as
required. �

In addition to the theorem above, one can make some straightforward obser-
vations regarding Neumann lines which intersect with the boundary. We first
note that every critical point on the boundary is a saddle point. In the vicin-
ity of those saddle points the eigenfunction behaves locally as it does in the
neighborhood of a nodal line intersection (which is like a harmonic polynomial,
[9]). The Neumann line structure near those boundary saddle points can be
deduced from Lemma 2.3. More explicitly, there are two types of saddle points
at the boundary. Those that are located at corners of the manifold (each corner
has such a saddle point) and those which are located at a point on the smooth
part of the boundary. The former have a single Neumann line to which they
are connected. The latter are connected to two perpendicular Neumann lines
and to a nodal line which lies in between.

Remark 3.14. We briefly comment on surfaces with Neumann boundary con-
ditions. The flow in this case may be defined as in (1.2) and the boundary of
such a surface is naturally a union of gradient flow lines. Neumann domains
and Neumann lines are defined as for non-boundary surfaces (Definitions 1.1
and 1.2). Proposition 1.3 and all claims of theorem (1.4), except (iii) hold.

4. Geometric and Spectral Properties of Neumann Domains

We have discussed so far the topological structure of Neumann domains. We
proceed by pointing out a connection between the aforementioned results and
geometric and spectral properties of Neumann domains.

4.1. On the Outer Radius of Neumann Domains

The volume of nodal domains of an eigenfunction is bounded from below in
terms of the eigenvalue (by the Faber–Krahn inequality, [14,24]). A lower
bound on the Neumann domain volume does not exist. In particular, there
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are continuous families of eigenfunctions of a fixed multiple eigenvalue on the
standard 2-torus which possess Neumann domains whose volumes go to zero
(cf. [29]). However, the next theorem provides a lower bound on the number
of “large-diameter” Neumann domains.

Definition 4.1. Let (M, g) be a two-dimensional Riemannian manifold without
boundary and Ω an open simply connected subset of M . Let Br(x0) denote a
geodesic ball of radius r around x0. Then we define the outer radius R(Ω), by

R(Ω) = inf{r > 0 : ∃x0 ∈ M : Ω ⊂ Br(x0)}. (4.1)

Theorem 4.2. Let (M, g) be a two-dimensional Riemannian manifold without
boundary and f a Morse eigenfunction of the Laplace-Beltrami operator with
eigenvalue λ. Let ν denote the number of nodal domains of f . Then there exists
a real positive constant C only depending on the metric g such that for at least
�ν/2� Neumann domains {Ωi}1≤i≤�ν/2	 of f

R(Ωi) ≥ Cλ−1/2. (4.2)

Proof. This theorem follows from the structure of Neumann domains (Theo-
rem 1.4) and the bound on the inner radius of nodal domains by Mangoubi [27]
(see also [31]). Each nodal domain D of f has a global extremum of f |D. Each
of these ν extrema belongs to the boundary of at least one Neumann domain,
by Theorem 1.4. Let q be one of those maxima and Dq, the corresponding
nodal domain of f . By Section 3 of [27] there is a positive constant C ′ inde-
pendent of λ and a geodesic ball BC′/√λ

(q) such that BC′/√
λ
(q) ⊂ Dq. Let Ω be

a Neumann domain such that q ∈ ∂Ω and let p be the unique minimum on ∂Ω
(not necessarily a global minimum). Let γ (p, q) be the geodesic ray between
p and q and d (p, q) its length. As f (p) < 0, f (q) > 0 and by continuity of f ,
there exists x ∈ γ (p, q) such that f (x) = 0. We therefore get that

R (Ω) ≥ 1
2
d (p, q) ≥ 1

2
d (x, q) ≥ 1

2
C ′λ−1/2. (4.3)

The argument above holds for each extremum which is global within its
nodal domain. Yet, as a Neumann domain may contain two such extrema
on its boundary, we deduce that (4.3) holds for at least �ν/2� of the Neumann
domains. �
Remark 4.3. The number of Neumann domains for which the theorem holds,
�ν/2�, may be improved by studying the number of Neumann lines to which the
extremal points are connected. This number equals the number of Neumann
domains which share the same extremal point on their boundary and we call
it the valency of the extremal point (see also Sect. 5). In addition, there are
eigenfunctions for which all nodal domains have a unique extremum. From the
proof above we conclude that for those eigenfunctions all Neumann domains
obey (4.2). Such eigenfunctions are given for example in (4.7) and Fig. 3.

There is no general upper bound on the outer radius of Neumann
domains. This can be demonstrated on the following family of separable eigen-
functions on the unit torus, {cos (2πx) cos (2πny)}∞

n=1 (see Fig. 3). All of those
eigenfunctions possess Neumann domains whose diameter equals 1/2.
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Figure 3. The Neumann lines of the unit torus eigenfunc-
tion f (x, y) = cos (2πx) cos (6πy). It is a member of an infi-
nite sequence of eigenfunctions which shows that there is no
uniform bound for p(λ, f)

4.2. On the Restriction of Eigenfunctions to Neumann Domains

All Laplacian eigenfunctions have the following fundamental property—their
restriction to any nodal domain equals the first eigenfunction of this domain.
This has been used already in Pleijel’s asymptotic result for the nodal count
[34]. It is therefore natural to ask whether a similar statement holds for Neu-
mann domains. The restriction of an eigenfunction to one of its Neumann
domains corresponds to an eigenfunction with Neumann boundary conditions
on that domain. See also the discussion preceding Proposition 1.7. However,
we provide here a counter-example, showing that the position of the ‘global’
eigenvalue in the spectrum of a single Neumann domain is not always (i.e., for
all manifolds) bounded from above. We remark that the counter-example does
not rule out that there are specific classes of manifolds or domains M for which
there is an upper bound.

Proof of Proposition 1.7. Let T = [0, 1] × [0, 1] be the unit flat torus with the
corresponding Euclidean metric. Assume by contradiction that there exists an
N ∈ N such that for all eigenfunctions f and all Neumann domains Ω of f

pos(f |Ω ,Ω) ≤ N. (4.4)

By [25] we have the following bound

∀λ, f,Ω λ ≤ 8πN

A (Ω)
, (4.5)

where A (Ω) denotes the area of the Neumann domain. Summing λA (Ω) ≤
8πN over all Neumann domains one gets λA (T) ≤ 8πNμ and we obtain that
the number of Neumann domains μ obeys the following lower bound
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μ ≥ A (T)
λ

8πN
. (4.6)

We now point on an example which contradicts the bound (4.6). Consider
the following eigenfunction

f (x, y) = cos (2πnxx) cos (2πnyy) , (4.7)

with eigenvalue and number of Neumann domains

λ = 4π2
(

n2
x + n2

y

)

,

μ = 8nxny,
(4.8)

respectively (see Fig. 3). The contradiction with (4.6) can be easily seen if one
chooses nx = 1, ny � 1. �

One may get an insight on the counter-example in the proof above by
investigating the shape of the Neumann domains obtained from the choice
nx = 1, ny � 1. The eigenfunction (4.7) on the flat torus has Neumann
domains of two distinguished shapes, which we call lense-like, and star-like
(Fig. 3). We show in the following that for a sufficiently large value of ny/nx

the eigenfunction restriction to a lense-like Neumann domain does not equal
the second eigenvalue of this domain.

Lemma 4.4. Let T be the unit flat two-dimensional torus and f (x, y) =
cos (2πnxx) cos (2πnyy) its eigenfunction with nx, ny ∈ Z. Let Ω be a lense-
like Neumann domain of f(nx,ny). Then ∃c > 0 such that ny/nx > c ⇒
pos (f |Ω , Ω) > 1.

Proof. The major and minor axes of the lense-like Neumann domain, Ω, are
of lengths 	x = 1/2nx, 	y = 1/2ny. This Neumann domain is convex and we may
apply theorem 1.2(a) of [20]. According to that theorem, for a fixed value of
	x (obeying 	x > 	y) there is a constant C (	x dependent) such that the nodal
set of the second eigenfunction is contained within a vertical strip of width
2C	y around the center of Ω. Namely, if ϕ is the second eigenfunction then
ϕ (x, y) = 0 ⇒ |x| < C	y, with the origin taken at the center of Ω. Since in
our case, the nodal set of f |Ω is horizontal along Ω (see Fig. 3), we conclude
that for small enough value of 	y the nodal set will not belong to the allowed
strip and therefore f |Ω cannot be the second eigenfunction of Ω. �

5. The Number of Neumann Domains

In this section we denote the number of Neumann domains by μ and the
number of nodal domains by ν. If the manifold has boundary, we denote by
μin, μbd the number of inner and boundary Neumann domains, respectively,
and have μ = μin +μbd. For manifolds without boundary we already stated in
Corollary 1.6, which we prove below, that the number of Neumann domains is
bounded from below by half the number of nodal domains.
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Proof of Corollary 1.6. Applying Theorem 1.4(vii) with c = 0, we have that a
Neumann domain contains only a single non-self-intersecting nodal line. Hence,
each Neumann domain intersects with exactly two nodal domains. It is possible
that different Neumann domains intersect with the same nodal domain. The
number of nodal domains is therefore bounded from above by 2μ. �

The same bound holds also for manifolds with boundary. Furthermore,
it may be slightly improved if separating between the count of boundary and
inner Neumann domains.

Corollary 5.1 (Theorem 3.13). Let (M, g) be as in Theorem 3.13 and f a Morse
eigenfunction on M . Then 2μin + μbd ≥ ν and 2μ ≥ ν.

Proof. From Theorem 3.13(ii) we deduce as in the proof of Corollary 1.6 that
inner Neumann domains intersect with exactly two nodal domains. From The-
orem 3.13(v) we deduce that boundary Neumann domains intersect with a
single nodal domain. Different Neumann domains may intersect with the same
nodal domain and hence 2μin+μbd ≥ ν. We also get 2μ = 2μin+2μbd ≥ ν. �

The number of Neumann domains may also be studied by examining the graph
structure of the Neumann line set. The vertices of such a graph are the critical
points and the edges are the Neumann lines connecting them. It is then natural
to define the valency of a critical point, val (x), as the number of Neumann
lines which are connected to x. The following discussion is restricted to the
case of manifolds without boundary. Combining Euler’s formula and Morse
inequalities we get

χ (M) = V − E + F = |M− (f)| − |S (f)| + |M+ (f)| , (5.1)

where V, E, F are correspondingly the numbers of vertices, edges and faces of
the graph. The number of vertices is

V = |M− (f)| + |S (f)| + |M+ (f)| (5.2)

and the number of edges obeys

E ≤ 4 |S (f)| , (5.3)

as at least one endpoint of each edge is a saddle point and all saddles are
of valency four. The faces correspond to Neumann domains, F = μ, and we
therefore get that their number obeys

μ ≤ 2 |S (f)| . (5.4)

If we further assume a Morse–Smale function we get equalities in both (5.3)
and (5.4). We now wish to obtain a lower bound on the number of Neumann
domains. Observe that

E =
1
2

∑

x∈C (f)

val (x) =
1
2

⎛

⎝4 |S (f)| +
∑

p∈X (f)

val (p)

⎞

⎠ , (5.5)
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where we used that saddles are of valency four. Plugging (5.2), (5.5) and F = μ
in (5.1) we get

μ =
1
2

∑

p∈X (f)

val (p) ≥ 1
2

|X (f)| =
1
2
χ (M) +

1
2

|S (f)|. (5.6)

We now assume that the manifold has boundary and is equipped with
Dirichlet boundary conditions (as in Sect. 3). We note that each inner Neu-
mann domain has a single minimum and a single maximum on its boundary
(Theorem 1.4(ii)) and each boundary Neumann domain has either a minimum
or a maximum on its boundary (Theorem 3.13(iii)). The valency of a critical
point equals the number of Neumann domains whose boundary contain this
critical point. We therefore obtain for manifolds with boundary

2μin + μbd =
∑

p∈X (f)

val (p) , (5.7)

which leads to

1
2

|X (f)| ≤ 1
2

∑

p∈X (f)

val (p) ≤ μ ≤
∑

p∈X (f)

val (p) ≤ 4 |S (f)| , (5.8)

where the right inequality holds as each Neumann line emanating from an
extremum ends at a saddle point and each saddle point is connected by Neu-
mann lines to at most four different extremal points. The relations above moti-
vate the study of the extremal points valencies even if just in the distributional
sense.

Finally, let us discuss the asymptotics of the Neumann domain count. The
existence of subsequences of eigenfunctions whose nodal count goes to infinity
was recently proved [15,21,22]. In [15] it was done for the arithmetic case and
in [21,22] it was shown for a class of non-positively curved manifolds. From
Corollary 1.6, we conclude that in these cases there exists a subsequence of
eigenfunctions whose Neumann domain count goes to infinity as well. Further-
more, numerical experiments suggest that the number of Neumann domains
goes to infinity as λ → ∞. This is the case even for sequences of eigenfunc-
tions for which the number of nodal domains is bounded (see for example Fig. 4
which describes the well-known example by Stern given in [12]). However, the
statement above does not hold for all metrics. There are known examples of
metrics on the torus constructed by Jakobson and Nadirashvili [19], which have
subsequences of eigenfunctions corresponding to eigenvalues λ → ∞ with uni-
formly bounded number of critical points. As the saddle points in this example
are non-degenerate ones [33], the boundedness of number of saddles implies by
(5.4) that the number of Neumann domains for these subsequences is also uni-
formly bounded. In other words, eigenfunctions corresponding to arbitrarily
high eigenvalues might have a small number of Neumann domains.
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Figure 4. The Neumann lines for the eigenfunction
sin(2rx) sin (y) + μ sin(2rx) sin (y) with r = 5, μ ≈ 1 on a
square of edge size π and Dirichlet boundary conditions. It
belongs to a family of eigenfunctions with only two nodal
domains, but with number of Neumann domains which is pro-
portional to r2. Cf. the example in page 396 of [12]

6. Summary

This paper studies Laplacian eigenfunctions on surfaces by investigating their
Neumann domains. Given an eigenfunction, we define Neumann lines and Neu-
mann domains and show that they form a partition of the manifold. Further-
more, we claim that this partition is as natural as the partition dictated by the
nodal set. However, numerous essential questions that are being investigated
for nodal domains are open for Neumann domains. The present paper develops
this study by discussing and answering some of those questions.

Let us specify some points of comparison between Neumann domains and
nodal domains. From a topological point of view, Neumann domains are simply
connected (Theorems 1.4(iv) and 3.13(iv)), whereas nodal domains are not
in general [32,35]. The simplicity of the Neumann partition is also apparent
in the eigenfunction restriction to a Neumann domain, f |Ω. Theorems 1.4
and 3.13 show that the structure of f |Ω cannot be too complex in terms
of the position and number of critical points and the nodal set within f |Ω.
As f |Ω is also an eigenfunction of the domain Ω with Neumann boundary
conditions, its structural simplicity suggests that the position of f |Ω in the
spectrum of Ω cannot be too high. A similar question for nodal domains is
easy to answer and for each nodal domain D of f , it is known that f |D is the
first Dirichlet eigenfunction of D. This observation was used by Pleijel [34] to
obtain an asymptotic bound on the nodal domain count. Similarly, answering
the analogous question for Neumann domains would help in estimating the
number of Neumann domains, as is discussed in Sect. 4.2. In particular, we
already show that the number of Neumann domains is bounded from below by



R. Band and D. Fajman Ann. Henri Poincaré

half the number of nodal domains (Corollary 1.6) for the types of manifolds
we consider.

It is well known that the number of nodal domains is affected by the
stability of the nodal set. This is apparent for example in the case of multiple
eigenvalues. Such eigenvalues may possess eigenfunctions where nodal lines
intersect. Perturbations of these eigenfunctions may prevent these crossings
and the intersecting lines resolve into two separate nodal lines. The nature of
this resolution of the intersection crucially affects the topology and number of
nodal domains and makes their counting a difficult task. Neumann domains,
however, show a different behavior. A crossing of nodal lines always occurs at
a saddle point of the function and therefore it also coincides with a Neumann
line intersection. Such a Neumann line crossing is stable with respect to pertur-
bations and thus there is no change in the number of Neumann domains when
the eigenfunction is perturbed. This was already observed in [29] and it was
suggested that the Neumann line pattern is relatively robust and hence the rel-
ative ease (in comparison with nodal domains) of the Neumann domain count.
Yet, there is an additional phenomenon which complicates the count of Neu-
mann domains. Considering a multiple eigenvalue and some non Morse–Smale
eigenfunction which belongs to it, a perturbation might cause an appearance
of a new Neumann domain. Such a domain appears at the Neumann line which
connects some two saddle points and its volume may be arbitrarily small. The
purpose of Theorem 4.2 is to place a restriction on the number of such shrink-
ing domains, by providing a lower bound on the outer radius of some of the
Neumann domains.
Finally, we wish to point out open problems and possible exploration direc-
tions for the study of Neumann domains. In the following M denotes a two-
dimensional compact orientable manifold with or without boundary, (λ, f)
denotes an eigenpair of the Laplacian on M and Ω is some Neumann domain
of f .

(i) Let M be a two-dimensional surface. For a Morse eigenfunction, f , of
M , denote (see also Proposition 1.7 and the preceding discussion)

p (f) := max
Ω

{pos (f |Ω ,Ω) | Ω is a Neumann domain of f} .

What conditions on M does one need to assure that {p(f)| f is a Morse
eigenfunction} is either bounded or possesses a bounded subsequence?
Such boundedness imposes lower bounds and asymptotic results for
the Neumann domain count (see proof of Proposition 1.7).

(ii) What are the asymptotics of the Neumann domain count? More specif-
ically, does the limit of {μn/n}∞

n=1 exist, in general or for some classes
of manifolds? If so, could it be bounded from below?
An easier task would be to bound lim infn→∞ μn

n from below.
In addition, is it possible to obtain a Courant-like bound? Namely,
obtain an upper bound of the form μn ≤ h (n), with h being some
function (possibly linear).
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(iii) Improving the inequality established in Corollary 1.6 between the nodal
count and the Neumann domain count or the lower bound (5.6) on the
Neumann domain count. This can be done, for example, by bounding
from below the valencies of extremal points (see discussion in Sect. 5).

(iv) Bounding the total length of the Neumann line set in terms of the
eigenvalue.

(v) Providing a global upper bound for the volume of a single Neumann
domain in terms of the eigenvalue.

(vi) Is it possible to improve the lower bound on the outer radius of a
Neumann domain in Theorem 4.2? The main improvement might be
to make this bound global, so that it applies to all Neumann domains
of the eigenfunction.

(vii) Provide an upper bound on the inner radius of a Neumann domain.
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