
Eur. Phys. J. Special Topics 145, 171–179 (2007)
c© EDP Sciences, Springer-Verlag 2007
DOI: 10.1140/epjst/e2007-00154-3

THE EUROPEAN
PHYSICAL JOURNAL
SPECIAL TOPICS

Resolving the isospectrality of the dihedral graphs
by counting nodal domains

R. Banda and U. Smilanskyb

Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot 76100, Israel

Abstract. We discuss isospectral quantum graphs which are not isometric. These
graphs are the analogues of the isospectral domains in R2 which were introduced
recently in [1–5] all based on Sunada’s construction of isospectral domains [6].
After discussing some of the properties of these graphs, we present an example
which support the conjecture that by counting the nodal domains of the corre-
sponding eigenfunctions one can resolve the isospectral ambiguity.

1 Introduction

M. Kac’s classical paper “Can one hear the shape of a drum” [7], triggered intensive research
in two complementary aspects of this problem. On the one hand, a search for systems for which
Kac’s question is answered in the affirmative was conducted, and, on the other hand, various
examples of pairs of systems which are isospectral but not isometric were identified. In the
present paper we shall focus our attention to quantum graphs and in the following lines will
review the subject of isospectrality in this limited context. The interested reader is referred to
[1–11] for a broader view of the field where spectral inversion and its uniqueness are discussed.
Shortly after the appearance of Kac’s paper, M. E. Fisher published his work “On hearing the

shape of a drum” [12], where he addresses isospectrality for the discrete version of the Laplacian.
Since then, the study of isospectral combinatorial graphs made very impressive progress. In
particular, several methods to construct isospectral yet different graphs were proposed. A review
of this problem can be found in [14]. In particular, a method which was originally put forward
by Sunada [6] to construct isospectral Laplace-Beltrami operators on Riemann manifolds, was
adapted for the corresponding problem in the context of combinatorial graphs. Here we shall
go one step further, and show that it can be also adapted for quantum graphs.
The conditions under which the spectral inversion of quantum graphs is unique were studied

previously. In [15,16] it was shown that in general, the spectrum does not determine uniquely
the length of the bonds and their connectivity. However, it was shown in [13] that quantum
graphs whose bond lengths are rationally independent “can be heard” – that is – their spectra
determine uniquely their connectivity matrices and their bond lengths. This fact follows from
the existence of an exact trace formula for quantum graphs [17,18]. Thus, isospectral pairs
of non congruent graphs, must have rationally dependent bond lengths. The Sunada method,
which is based on constructing the isospectral domains by concatenating several copies of a
given building block, automatically provides us with graphs with rationally dependent lengths.
An example of a pair of metrically distinct graphs which share the same spectrum was already
discussed in [13]. In a previous report we have shown that all the known isospectral domains
in R2 [3,4] have corresponding isospectral pairs of quantum graphs [20]. Here, we shall take
the subject one step further, and propose that isospectral graphs can be resolved by counting

a e-mail: rami.band@weizmann.ac.il
b e-mail: uzy.smilansky@weizmann.ac.il



172 The European Physical Journal Special Topics

their nodal domains. That is, the nodal counts of eigenfunctions belonging to the same spectral
value are not the same. The idea that nodal counts resolve isospectrality was suggested in [19]
for a family of isospectral flat tori in 4-d, and was tested numerically. The present work offers
a rigorous proof of this conjecture for a certain example of isospectral graphs.

1.1 A short introduction to quantum graphs

We consider finite graphs consisting of V vertices connected by B bonds. The V ×V connectivity
matrix will be denoted by Ci,j : Ci,j = r when the vertices i and j are connected by r bonds,
and it vanishes otherwise. The group of bonds which emerge from the vertex i form a “star”
which will be denoted by S(i). The valency vi of a vertex is defined as the cardinality of the star
S(i) (the total number of vertices connected to the vertex i) and vi =

∑
j Ci,j . Vertices with

vi = 1 belong to the graph boundary. The vertices with vi > 1 belong to the graph interior.
The bonds are endowed with the standard metric, and the coordinates along the bonds b are
denoted by xb. The length of the bonds will be denoted by Lb, and the total length of the graph
is L =∑b Lb.
The domain of the Schrödinger operator on the graph is the space of functions which belong

to Sobolev space H2(b) on each bond b and at the vertices they are continuous and obey
boundary conditions as is mentioned in (1). The operator is constructed in the following way.
On the bonds, it is identified as the Laplacian in 1-d −d2/dx2. It is supplemented by boundary
conditions on the vertices which ensure that the resulting operator is self adjoint. We shall
consider in this paper the Neumann and Dirichlet boundary conditions:

Neumann ∀i :
∑
b∈S(i)

d

dxb
ψb(xb)

∣∣∣∣
xb=0

= 0, (1)

Dirichlet ∀i : ψb(xb)|xb=0 = 0.

The derivatives in (1) are directed out of the vertex i. Comment: The Neumann boundary
conditions will be assumed throughout, unless otherwise stated. A wave function with a wave
number k can be written as

ψb(xb) =
1

sin kLb
(φi sin k(Lb − xb) + φj sin kxb) (2)

where b connects the vertices i and j, where the wave function ψb takes the values φi and
φj respectively. The form (2) ensures continuity. The spectrum {kn} and the corresponding
eigenfunctions are determined by substituting (2) in (1). The resulting homogeneous linear
equations for the φi are written as

∀ 1 ≤ i ≤ V :
B∑
j=1

Ai,j(L1, . . . , LB ; k)φj = 0, (3)

and a non trivial solution exists when

f(L1, . . . , LB ; k)
.
= detA(L1, . . . , LB ; k) = 0. (4)

The spectrum {kn}, which is a discrete, positive and unbounded sequence is the zero set of the
secular function f(L1, . . . , LB ; k). The secular functions of the type (4) have poles on the real
k axis, which renders them rather inconvenient for numerical studies. The secular function can
be easily regularized in various ways (see e.g., [18,20]).
It is easy to show that the complete wave function can be written down in terms of the

vertex wave functions at the interior vertices with vi ≥ 3 only. In the sequel we shall denote
their number by Vint. This reduces the dimension of the matrix A above from V to Vint.
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1.2 The nodal domains of quantum graphs

The nodal domains of the eigenfunctions (the connected domains where the wave function is of
constant sign), are of two types. The ones that are confined to a single bond are rather trivial.
Their length is exactly half a wavelength and their number is on average kL/π. The nodal
domains which extend over several bonds emanating from a single vertex vary in length and
their existence is the reason why counting nodal domains on graphs is not a trivial task. The
number of nodal domains in a general graph can be written as

νn =
1

2

∑
i

∑
b∈S(i)

{⌊
knLb

π

⌋
+
1

2

(
1− (−1)� knLbπ �sign[φi]sign[φj ]

)}
−B + V. (5)

where �x� stands for the largest integer which is smaller than x, and φi, φj are the values of
the eigenfunction at the vertices connected by the bond b [21]. (5) holds for the case of an
eigenfunction which does not vanish on any vertex: ∀i φi �= 0.
Sturm’s oscillation theorem for systems in 1-d, and its extension by Courant to any dimen-

sion, establish the connection between the number of nodal domains and the spectrum: The
number of nodal domains νn of the n’th eigenfunction is bounded by n. (the eigenfunctions are
arranged by increasing value of their eigenvalues). Courant’s theorem for combinatorial graphs
and for quantum graphs was proved in [21,24], respectively. Recently Schapotschnikow [22]
proved that Sturm’s Oscillation Theorem extends to finite tree (loop-less) graphs: the number
of nodal domains of the n’th eigenfunction (ordered by increasing eigenvalues) is n. Berkolaiko
[23] has shown that the number of nodal domains is bounded to the interval [n − l, n] where
l is the minimal number of bonds which should be cut so that the resulting graph is a tree.
Nodal domains can be also defined and counted in an alternative way which makes use of

the vertex wave functions {φi} (see (2)) exclusively:
A nodal domain consists of a maximal set of connected interior vertices (vi ≥ 3)

where the vertex wave functions have the same sign.
This definition has to be modified if any of the φi vanishes. Then, the sign attributed to it

is chosen to maximize the number of nodal domains [24].
We thus have two independent ways to define and count nodal domains. To distinguish

between them we shall refer to the first as metric nodal domains, and the number of metric
domains in the n’th eigenfunction will be denoted by νn. Berkolaiko’s theorem states that
(n− l) ≤ νn ≤ n. The domains defined in terms of the vertex wave functions will be referred to
as the discrete nodal domains. The number of discrete nodal domains of the n’th vertex wave
function will be denoted by µn. The sequences of metric and discrete nodal domains counts
{νn} and {µn} are the main objects of study of the present paper.

2 Isospectral quantum graphs

The first pair of isospectral planar domains which was introduced by Gordon, Web and Wolpert
[1] is a member of a much larger set which was discussed in [3,4]. This was extended in [5] to
include domains which differ in the distribution of boundary conditions (Dirichlet or Neumann)
along their boundaries. The common feature of these sets of pairs of isospectral domains is that
they are constructed using the Sunada method [6].
The most simple pair of isospectral graphs can be built by applying the Sunada method to

the dihedral group D4 [27]. The resulting graphs are shown in figure 1, where the letters D or
N specify the boundary conditions at the boundary vertices. (The boundary conditions at the
interior vertices are always Neumann).
The resulting dihedral graphs have secular determinants which can be shown to be identical

functions of k. This is an explicit demonstration that the graphs are indeed isospectral (another
indication of the isospectrality is through the transplantation to be presented soon). The secular
equation is obtained from
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Fig. 1. The isospectral pair with boundary conditions. D stands for Dirichlet and N for Neumann.

A(a, b, c; k) =

(
η − (β + γ) −α

−α η + (β + γ)

)

α(a; k) =
1

sin(2ka)
; β(b; k) =

1

sin(2kb)
; γ(a; k) =

1

sin(2kc)
(6)

η(a, b, c; k) = cot(2ka) + cot(2kb) + cot(2kc)

The corresponding vertex eigenfunction φI = (φI1, φ
I
2) is the eigenvector of A(a, b, c; kn) with

a vanishing eigenvalue. As can be easily seen, detA has poles, and to get a regular secular
function we have to multiply it by sin(2ka) sin(2kb) sin(2kc). It takes the form

f(a, b, c; k) = sin(2ka) (−2 + 2 cos(2kb) cos(2kc)− 3 sin(2kb) sin(2kc))+2 cos(2ka) sin(2kb+2kc)
(7)

The eigenfunctions corresponding to the same eigenvalue are related to each other by a
transplantation. That is, the eigenfunction in a subgraph of one graph can be expressed as a
linear combination of the eigenfunction in several subgraphs of the other graph. The transplan-
tation matrix is independent of the considered eigenvalue. The transplantation of the dihedral
pair is described in figure 2. We exploit the fact that the eigenfunctions are defined up to a
multiplication by a scalar to write the transplantation matrix as:

T =
1√
2

(
1 −1
1 1

)
, so thatφII = TφI . (8)

The eigenvectors φI,II point at the directions θI,II , with tan(θI,II) = φ I,II2 /φ I,II1 . The trans-
plantation (8) implies that φII is obtained from φ I by a rotation of π/4 counterclockwise.
Direct substitutions shows that

tan[θI(kn)] = g(a, b, c; kn), (9)

where,

g(a, b, c; k) = cos(2ka) + sin(2ka)

[
cos(2kb)− 1
sin(2kb)

+
cos(2kc)− 1
sin(2kc)

]
. (10)

The explicit form of the functions f(a, b, c; k) and g(a, b, c; k) will be used in the discussion
of nodal counting in the next section.

3 Nodal counts and the resolution of isospectrality

Given a pair of isospectral domains. Are the sequences of nodal counts {νn}∞n=1 identical? In
other words, can one use the information stored in the nodal sequences to resolve isospectrality?
This question was recently discussed in the context of isospectral flat tori in d ≥ 4 [19], and
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GII

Fig. 2. The transplantation of the dihedral graphs.

numerical as well as analytical evidence was brought to substantiate the conjecture that the
nodal sequences resolve isospectrality. In this section we show that the same is true for isospec-
tral quantum graphs of the types discussed above. We shall start by discussing the discrete
nodal sequences and then proceed to the metric nodal sequences.

3.1 The discrete nodal sequences

The discrete nodal domains were defined as the maximally connected sets of interior vertices
with vertex wave functions of equal sign. Their number is denoted by µn, and the nodal sequence
is {µn}∞n=1. We shall prove here that for the dihedral graphs half of the entries in the sequences
of discrete nodal counts are different.
The number of discrete nodal domains for this pair of dihedral graphs (see figure 1) can be

either one or two, depending on whether the signs of the components of the (two dimensional)
vertex eigenfunctions have the same sign or not. In other words (see (9)), the number of nodal
domains depend on the quadrant in the (φ1, φ2) plane where the eigenvectors point: µ = 1 in
the first and the third quadrants, and µ = 2 in the second and the fourth quadrants:

µn = 1 +
1

2
[1− sign(tan θn)] . (11)

The transplantation implies that the eigenvectors φ IIn are obtained by rotating φ In by π/4
counterclockwise. Therefore, µIn �= µIIn if the transplantation rotates the vectors across the
quadrant borders. In other words,

µIn �= µIIn ⇐⇒ tan(θn) ∈ {(−1, 0) ∪ (1,∞)} (12)

This observation is essential to our discussion since it expresses the problem of nodal counting
in geometrical terms.
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It is convenient to construct finite subsequences {µIn} and {µIIn } of discrete nodal count of
graphs I and II, restricted to the spectral points in the interval 0 ≤ kn ≤ K. We denote the
number of terms by N(K). Define

P (K) =
1

N(K)
#
{
n ≤ N(K) : µIn �= µIIn

}
. (13)

We shall now prove

Theorem 1 Consider the dihedral graphs I, II discussed above with rationally independent bond
lengths a, b, c. Then

lim
K→∞

P (K) =
1

2
. (14)

Proof of theorem 1: The rational independence of a, b, c implies that the eigenfunctions never
vanish on the inner vertices and hence that the spectrum is simple.
In order to study P (K) above, we consider the distribution of the directions of the eigen-

functions φIn in the spectral interval. Using (7,9, 10) we get

h(x;K) = 〈δ(x− tan θn)〉K = 1

N(K)

∫ K
0

dk δ(f(a, b, c; k))

∣∣∣∣dfdk
∣∣∣∣ δ[x− g(a, b, c; k)] (15)

In taking the limit K →∞ we use N(K) = 2a+2b+2c
π

K [18]. Moreover, since a, b, c are assumed
to be rationally independent, k creates an ergodic flow on the 3-torus T3 spanned by r =
2ka mod2π, s = 2kb mod2π, t = 2kc mod2π [25]. Ergodicity implies that the integral over k in
(15) may be replaced by an integral over T3 leading to

h(x) =
π

2(a+ b+ c)

1

π3

∫ 2π
0

dr

∫ 2π
0

ds

∫ 2π
0

dt δ(f(r, s, t))

∣∣∣∣ dfdk
∣∣∣∣ δ[x− g(r, s, t)]

=
1

2(a+ b+ c)π2

∫ 2π
0

ds

∫ 2π
0

dt

{∫ π
0

drδ(f(r, s, t))

∣∣∣∣ dfdk
∣∣∣∣ δ[x− g(r, s, t)] (16)

+

∫ 2π
π

drδ(f(r, s, t))

∣∣∣∣ dfdk
∣∣∣∣ δ[x− g(r, s, t)]

}

=
1

2(a+ b+ c)π2

∫ 2π
0

ds

∫ 2π
0

dt [I1(s, t;x) + I2(s, t;x)]

Now we note that under the transformation r �→ r′ = (r + π) mod2π we have

f(r′, s, t) = −f(r, s, t) df

dk
(r′, s, t) = −df

dk
(r, s, t) g(r′, s, t) = −g(r, s, t)

Thus, we conclude that

I1(s, t;x) = I2(s, t;−x) ⇒ h(x) = h(−x)
⇒
∫ −1
−∞

h(x)dx+

∫ 1
0

h(x)dx =

∫ 0
−1
h(x)dx+

∫ ∞
1

h(x)dx =
1

2

⇒ lim
K⇒∞

P (K) =
1

2
��

3.2 The metric nodal sequences

Consider the pair of dihedral graphs, and let {νI,IIn } denote the metric nodal counts of graphs
I and and II. Using (5) we express the difference νIn − νIIn as

δνn = νIn − νIIn =
1

2

{
1− sign[φI2,n sin(2kna)] + sign[φII2,n sin(2knb)] + sign[φII2,n sin(2knc)]

}
(17)
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To obtain (17) a slight modification of (5) was needed: the term in the sum that corresponds to
a bond with boundary vertex that has Dirichlet boundary conditions should be modified to be

�knLb
π
� instead of �knLb

π
�+ 12 (1− (−1)�

knLb
π �sign[φi]sign[φj ]). In addition while deriving (17) we

made use of the identity � 2x
π
� − 2� x

π
� = 1

2{1− sign[sin(2x)]} and of the freedom to choose the
sign of the first component of the wave-functions to be positive. A theorem by Berkolaiko [23]
guarantees that δνn can only take the values 0 and 1. We would like to compute the distribution
of these values on the spectrum. For this purpose we consider the spectral interval 0 < kn < K
and study the function

Q(x;K) =
1

N(K)
#{n ≤ N(k) : δνn = x} (18)

and prove the following theorem.

Theorem 2 Consider the dihedral graphs I, II discussed above with rationally independent bond
lengths a, b, c. Then

∃ lim
K→∞

Q(x,K) = Q(x) and Q(0) = Q(1) =
1

2
. (19)

Proof of theorem 2: In order to study the Q(x,K) above we consider the distribution of δνn,
which is given by the integral

h(x;K) = 〈δ(x− δνn)〉K = 1

N(K)

∫ K
0

dkδ(f(a, b, c; k))

∣∣∣∣dfdk
∣∣∣∣ δ[x− δν(a, b, c; k)], (20)

where the spectral secular function f(a, b, c; k) is defined in (7) above, and δν(a, b, c; k) coincides
with δνn for k = kn and can be written explicitly as

δν(a, b, c; k) =
1

2

{
1

− sign
[
cos(2ka) sin(2ka) + sin2(2ka)

(
cot(2kb) + cot(2kc)− 1

sin(2kb)
− 1

sin(2kc)

)]

+ sign

[
sin2(2kb) sin(2kc)

sin(2kb) + sin(2kc)

(
1

sin(2ka)
+ cot(2ka) + cot(2kb) + cot(2kc)

)]

+ sign

[
sin(2kb) sin2(2kc)

sin(2kb) + sin(2kc)

(
1

sin(2ka)
+ cot(2ka) + cot(2kb) + cot(2kc)

)]}
. (21)

Following the same route as in the proof of theorem (1) we take the limit K →∞ while making
use of the ergodic theorem, and replace the k integration by an integration over the 3 - torus
with coordinates r = 2ka mod2π, s = 2kb mod2π, and t = 2kc mod2π.

h(x) =
π

2a+ 2b+ 2c

1

π3

∫ 2π
0

dr

∫ 2π
0

ds

∫ 2π
0

dtδ(f(r, s, t))

∣∣∣∣dfdk
∣∣∣∣ δ[x− δν(r, s, t)]

= Q(−1)δ(x− (−1)) +Q(0)δ(x) +Q(1)δ(x− 1) +Q(2)δ(x− 2) (22)

The last line follows from the fact that x is an integer which is written as half the sum of
four unimodular numbers. Next we note that under the transformation r �→ r′ = (−r) mod2π,
s �→ s′ = (−s)mod2π, t �→ t′ = (−t)mod2π we have

f(r′, s′, t′) = −f(r, s, t) df

dk
(r′, s′, t′) =

df

dk
(r, s, t) δν(r′, s′, t′) = 1− δν(r, s, t)

Thus, we conclude that Q(−1) = Q(2) ∧ Q(0) = Q(1). But due to Berkolaiko’s theorem [23]
Q(−1) = Q(2) = 0. Therefore,

Q(0) = Q(1) =
1

2
��



178 The European Physical Journal Special Topics

4 Discussion and summary

There is now a growing amount of evidence that nodal-count sequences store information on
the geometry of the system under study, which is similar but not equivalent to the infor-
mation stored in the spectral sequence. In a recent paper [26] it was shown that the nodal
count sequence for separable Laplace - Beltrami operators can be expressed in terms of a trace
formula which consists of a smooth (Weyl - like) part, and an oscillatory part. The smooth
part depends on constants which can be derived from the geometry of the domain, and the
oscillatory part depends on the classical periodic orbits, much in the same way as the spectral
trace formula. However, what we have shown in the present paper is that the information stored
in the two sequences is not identical: For the isospectral pairs of graphs considered here, the
nodal-count sequences are different in a substantial way. In this respect, the nodal sequence
resolves isospectrality.
The methods presented here together with numerical studies on other types of graphs form

a manuscript which was recently submitted for publication [27]. Till this work was done, the
conjecture that isospectrality is resolved by counting nodal domains was substantiated by nu-
merical studies only. Here we presented for the first time a system where this fact is proved
rigorously. The main breakthrough which enabled the proof was by formulating the counting
problem in a geometrical setting. We hope that this way will pave the way to further analytical
studies, where more complex systems will be dealt with.
Finally, we would like to mention a set of open problems which naturally arise in the present

context: Can one find metrically different domains where the Laplacians have different spectra
but the nodal counting sequences are the same? A positive answer is provided for domains in
1 dimension (Sturm) or for tree graphs (Schapotschnikow). Are there other less trivial examples?
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by the Minerva Center for non-linear Physics and the Einstein (Minerva) Center at the Weizmann
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