Finding the nodal points on a quantum graph

Rami Band, Gregory Berkolaiko, Hillel Raz, Uzy Smilansky

The vibration modes of a string

Eigenvalue
Eigenfunction

Nodal Domain
Count
1

2

3

4

The nodal domain count of graphs

We are interested in the nodal count, $\left\{v_{n}\right\}_{n=1}^{\infty}$, of a quantum graph.

The nodal domain count of graphs

We are interested in the nodal count, $\left\{v_{n}\right\}_{n=1}^{\infty}$, of a quantum graph.

Eigenfunction of the graph

$$
-\frac{d^{2}}{\partial x^{2}} f_{n}=\lambda_{n} f_{n}
$$

$$
v_{8}=8
$$

$$
v_{13}=13
$$

$$
v_{16}=16
$$

The nodal domain count of graphs

We are interested in the nodal count, $\left\{v_{n}\right\}_{n=1}^{\infty}$, of a quantum graph.

Eigenfunctions of the graph

$$
-\frac{d^{2}}{\partial x^{2}} f_{n}=\lambda_{n} f_{n}
$$

Nodal count

$$
v_{3}=2
$$

$$
v_{10}=10
$$

$$
v_{24}=23
$$

The nodal domain count of drums \backslash billiards

$$
-\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f_{n}=\left.\lambda_{n} f_{n} \quad f_{n}\right|_{\text {boundary }}=0
$$

Nodal domains

Nodal domains

$$
v_{4}=3
$$

$$
v_{5}=4
$$

Metric Graphs - Introduction

- A $\boldsymbol{g r a p h} \boldsymbol{\Gamma}$ consists of a finite set of vertices $\boldsymbol{V}=\left\{\boldsymbol{v}_{i}\right\}$ and a finite set of edges $\boldsymbol{E}=\left\{\boldsymbol{e}_{\boldsymbol{j}}\right\}$.
- A metric graph has a finite length ($L_{e_{j}}$) assigned to each edge.
- A function on the graph is a vector of functions on the edges:
$f=\left(f_{e_{1}}, \ldots, f_{e_{|E|}}\right) \quad \forall e_{j}, f_{e_{j}}:\left[0, L_{e_{j}}\right] \rightarrow \mathrm{R}$

Quantum Graphs - Introduction

A quantum graph is a metric graph equipped with an operator, such as the negative Laplacian with a bounded potential:

$$
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\mathrm{v}(x)
$$

For each vertex v, we impose vertex conditions, such as:
(The delta-type conditions)

- Continuity $\forall e_{1},\left.e_{2} \in E_{v} \quad f\right|_{e_{1}}(v)=\left.f\right|_{e_{2}}(v)$
- Sum of derivatives $\quad \sum_{e \in E_{v}} f^{\prime} l_{e}(v)=\alpha_{v} f(v)$

Two special cases of vertex conditions:

- Neumann: $\alpha_{v}=0$
- Dirichlet: $\quad \alpha_{v}=\infty$

The eigenfunctions of Quantum Graphs

- A quantum graph is defined by specifying:
- Metric graph
- Operator
- Vertex conditions for each vertex

$$
-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\mathrm{v}(x)
$$

Examples of several eigenfunctions :

Nodal count:

$v_{13}=13$

$v_{16}=16$

The nodal count of Quantum Graphs - Known results

- We denote the nodal count sequence by $\left\{v_{n}\right\}_{n=1}^{\infty}$.
- The nodal count of a vibrating string is $v_{n}=n$. Sturm's oscillation theorem (1836).

- A general bound of Courant (1923) is $v_{n} \leq n$. Adapted to quantum graphs by Gnutzmann, Smilansky, Weber (2004) following a method of Pleijel (1956).
- The nodal count of a tree graph is $V_{n}=n$. Al-Obeid, Pokornyi, Pryadiev (1992), Schapotschnikow (2006).
- $V_{n} \geq n-\beta$ is a bound given by Berkolaiko (2006), - where $\beta=|E|-|V|+1$ is the minimal number of edges to remove so that the graph turns into a tree.

$$
\beta=6-4+1=3
$$

The nodal count of Quantum Graphs - Known results

- Definition: the nodal deficiency of an eigenfunction is $d_{n}=n-v_{n}$.
- Summary of the previous results: $0 \leq d_{n} \leq \beta \quad$ (where $\left.\beta=|E|-|V|+1\right)$

The current results in a nutshell

- The eigenfunctions of a quantum graph correspond to critical points of some energy function.
- The nodal deficiency of the eigenfunction equals the Morse index of the critical point.

The Morse index of a function at a critical point is
the number of negative eigenvalues of the Hessian at this point.

Partitions of a graph

- A partition of the graph a guess for zeros' locations of some eigenfunction.

- The zeros partite the graph into several sub-graphs, $\left\{\Gamma_{1}, \Gamma_{2}, \Gamma_{3}, \ldots\right\}$.

Γ_{1}

Γ_{2}

Γ_{3}

Partitions of a graph

- Properties of a partition which corresponds to an eigenfunction:
- Each subgraph corresponds to a nodal domain,
- The partition is bipartite:
we can assign a sign $\{-,+\}$ to each subgraph such that neighbouring subgraphs will have different signs.

Bipartite \& Non-bipartite partitions

A partition is called bipartite if:
we can assign a sign $\{-,+\}$ to each subgraph such that neighbouring subgraphs will have different signs.

Bipartite partition

Non-Bipartite partition

Partitions of a graph

Properties of a partition which corresponds to an eigenfunction:

- The partition is bipartite.
- The first eigenvalues of the subgraphs are equal:

$$
\lambda_{1}\left(\Gamma_{1}\right)=\lambda_{1}\left(\Gamma_{2}\right)=\lambda_{1}\left(\Gamma_{3}\right)=\ldots
$$

Such a partition is called an equipartition.

Partitions of a graph

Properties of a partition which corresponds to an eigenfunction:

- The partition is bipartite.
- The first eigenvalues of the subgraphs are equal:

$$
\lambda_{1}\left(\Gamma_{1}\right)=\lambda_{1}\left(\Gamma_{2}\right)=\lambda_{1}\left(\Gamma_{3}\right)=\ldots
$$

Such a partition is called an equipartition.

Equipartitions

- Let $Q_{n}(\Gamma)$ denote the space of all equipartitions with n zeros.
- Define the energy function as $\Lambda: Q_{n}(\Gamma) \rightarrow R$

$$
\Lambda(\mathrm{Q}):=\lambda_{1}\left(\Gamma_{1}\right)=\lambda_{1}\left(\Gamma_{2}\right)=\lambda_{1}\left(\Gamma_{3}\right)=\ldots
$$

Theorem 1
If Q is a critical point of Λ, and Q is bipartite then
Q represents the zeros' location of some eigenfunction on Γ.

The main theorems

Theorem 1

If Q is a critical point of Λ, and Q is bipartite then
Q represents the zeros' location of some eigenfunction on Γ.

Theorem 2

Let Q be a non-degenerate critical point of Λ as in Theorem 1, And let f be the corresponding eigenfunction.
Then the nodal deficiency of f equals the Morse index of Λ at Q .

Recall:

The nodal deficiency is $d_{n}=n-v_{n}$.

- The Morse index is the number of negative eigenvalues of the Hessian.

What else?

- Two-dimensional planar domains

- Helffer, Hoffmann-Ostenhof and Terracini a similar result to theorem 2, for nodal deficiency = zero. (2006).
- Analogue results for two-dimensional domains Berkolaiko, Kuchment, Smilansky (2011).
- Analogue results for Combinatorial graphs Berkolaiko, Raz, Smilansky (2011).

Finding the nodal points on a quantum graph

Rami Band, Gregory Berkolaiko, Hillel Raz, Uzy Smilansky

On the connection between the number of nodal domains on quantum graphs and the stability of graph partitions.
Comm. Math. Phys., 2011. preprint arXiv:1103.1423 [math-ph].

