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 We are interested in the nodal count,            , of a quantum graph. 
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Metric Graphs - Introduction 

 A graph Γ consists of a finite set of vertices V={vi}  

                           and a finite set of edges E={ej}. 

 A metric graph has a finite length (      )  

assigned to each edge. 

 

 A function on the graph is 

 a vector of functions on the edges: 
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 A quantum graph is a metric graph equipped with an operator,  

such as the negative Laplacian with a bounded potential: 

 

 

 For each vertex v, we impose vertex conditions, such as: 

(The delta-type conditions) 

 Continuity 

 

 Sum of derivatives 

 

 

 Two special cases of vertex conditions: 

 Neumann: 

 Dirichlet:      
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 A quantum graph is defined by specifying: 

 Metric graph 

 Operator 

 Vertex conditions for each vertex 

 

 

 

 

  

 

The eigenfunctions of Quantum Graphs 

Examples of several eigenfunctions :  
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The nodal count of Quantum Graphs – Known results 

 
1nn We denote the nodal count sequence by            . 

 

 The nodal count of a vibrating string is             . 

Sturm’s oscillation theorem (1836).  

 

 A general bound of Courant (1923) is             . 

Adapted to quantum graphs by Gnutzmann, Smilansky, Weber 

(2004) following a method of Pleijel (1956). 

 

 The nodal count of a tree graph is             . 

Al-Obeid, Pokornyi, Pryadiev (1992), Schapotschnikow (2006). 

 

 

                     is a bound given by Berkolaiko (2006),  

 where                          is the minimal number of edges to 

remove so that the graph turns into a tree. 
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 Definition: the nodal deficiency of an eigenfunction is                 . 

 

 Summary of the previous results: 
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The current results in a nutshell 

 The eigenfunctions of a quantum graph correspond to  

critical points of some energy function. 

 

 The nodal deficiency of the eigenfunction equals 

the Morse index of the critical point. 

The Morse index of a function at a critical point is 

the number of negative eigenvalues of the Hessian at this point. 

The nodal count of Quantum Graphs – Known results 



Partitions of a graph 

 A partition of the graph - 

a guess for zeros’ locations of  

some eigenfunction. 

 

 

 

 

 The zeros partite the graph into several sub-graphs,                  .                      
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Partitions of a graph 

 Properties of a partition which corresponds to an eigenfunction: 

 

 Each subgraph corresponds to a nodal domain, 

 

 The partition is bipartite:  

we can assign a sign {-,+} to each subgraph such that 

neighbouring subgraphs will have different signs. 
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Bipartite & Non-bipartite partitions 

 

A partition is called bipartite if:  

we can assign a sign {-,+} to each subgraph such that 

neighbouring subgraphs will have different signs. 
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Partitions of a graph 

 Properties of a partition which corresponds to an eigenfunction: 

 

 The partition is bipartite. 

 

 The first eigenvalues of the subgraphs are equal: 

 

 

Such a partition is called an equipartition. 
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Equipartitions 

 Let           denote the space of all equipartitions with n zeros. 

 

 Define the energy function as                

 
 

 

 

Theorem 1 

If     is a critical point of     , and      is bipartite then 

      represents the zeros’ location of some eigenfunction on     .  
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The main theorems 

Theorem 1 

If     is a critical point of     , and      is bipartite then 

      represents the zeros’ location of some eigenfunction on     .  

 

Theorem 2 

Let     be a non-degenerate critical point of     as in Theorem 1,  

And let  f  be the corresponding eigenfunction. 

Then the nodal deficiency of  f  equals 

the Morse index of     at     .     
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Recall: 

 The nodal deficiency  is                 . 

 The Morse index  is the number of  

negative eigenvalues of the Hessian. 
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What else? 

 Two-dimensional planar domains 

 

 

 

 

 Helffer, Hoffmann-Ostenhof and Terracini  

a similar result to theorem 2, for nodal deficiency = zero. (2006). 

 Analogue results for two-dimensional domains 

Berkolaiko, Kuchment, Smilansky (2011). 

 

 Analogue results for Combinatorial graphs   

Berkolaiko, Raz, Smilansky (2011). 
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