A trace formula for nodal domains on quantum graphs?

Ram Band

The Weizmann Institute of Science

Solomyak meeting, Cardiff

Joint work with Gregory Berkolaiko and Uzy Smilansky

Using scattering to count nodal domains

- Consider a graph $\Gamma = (\mathcal{V}, \mathcal{E})$.
- Assign a length L_e to each edge $e \in \mathcal{E}$.
- Local coordinate on each edge: $x_e \in [0, L_e]$.

- Consider a graph $\Gamma = (\mathcal{V}, \mathcal{E})$.
- Assign a length L_e to each edge $e \in \mathcal{E}$.
- Local coordinate on each edge: $x_e \in [0, L_e]$.

- Consider a graph $\Gamma = (\mathcal{V}, \mathcal{E})$.
- Assign a length L_e to each edge $e \in \mathcal{E}$.
- Local coordinate on each edge: $x_e \in [0, L_e]$.

- Functions take values along the edges: $f \in \bigoplus_{e \in \mathcal{E}} H^2(e)$.
- Consider $-\Delta$, which equals $-\frac{d^2}{dx_a^2}$ on each of the edges.
- Supplement vertex conditions at each vertex.

Examples of vertex conditions:

- ×

Examples of vertex conditions:

Neumann vertex conditions at a vertex v

Examples of vertex conditions:

Neumann vertex conditions at a vertex v

• f is continuous at v, i.e.,

$$e_1, e_2 \in \mathcal{E}_v$$
; $f_{e_1}(v) = f_{e_2}(v)$.

Examples of vertex conditions:

Neumann vertex conditions at a vertex v

• f is continuous at v, i.e.,

$$e_1, e_2 \in \mathcal{E}_v$$
; $f_{e_1}(v) = f_{e_2}(v)$.

• The sum of derivatives at v vanishes, i.e.,

$$\sum_{\boldsymbol{e}\in\mathcal{E}_{\boldsymbol{v}}}\frac{\mathrm{d}f_{\boldsymbol{e}}}{\mathrm{d}x_{\boldsymbol{e}}}\left(\boldsymbol{v}\right)=\boldsymbol{0},$$

where \mathcal{E}_{v} is the set of edges adjacent to v.

Examples of vertex conditions:

Neumann vertex conditions at a vertex v

• f is continuous at v, i.e.,

$$e_{1}, e_{2} \in \mathcal{E}_{v}; f_{e_{1}}(v) = f_{e_{2}}(v).$$

• The sum of derivatives at v vanishes, i.e.,

$$\sum_{\boldsymbol{e}\in\mathcal{E}_{\boldsymbol{v}}}\frac{\mathrm{d}f_{\boldsymbol{e}}}{\mathrm{d}x_{\boldsymbol{e}}}\left(\boldsymbol{v}\right)=\boldsymbol{0},$$

where \mathcal{E}_{v} is the set of edges adjacent to v.

Dirichlet vertex conditions at a vertex v

•
$$\forall e \in \mathcal{E}_v$$
; $f_e(v) = 0$.

Examples of vertex conditions:

Neumann vertex conditions at a vertex v

• f is continuous at v, i.e.,

$$e_1, e_2 \in \mathcal{E}_v$$
; $f_{e_1}(v) = f_{e_2}(v)$.

• The sum of derivatives at v vanishes, i.e.,

$$\sum_{\boldsymbol{e}\in\mathcal{E}_{\boldsymbol{v}}}\frac{\mathrm{d}f_{\boldsymbol{e}}}{\mathrm{d}x_{\boldsymbol{e}}}\left(\boldsymbol{v}\right)=\boldsymbol{0},$$

where \mathcal{E}_{v} is the set of edges adjacent to v.

Dirichlet vertex conditions at a vertex v

•
$$\forall e \in \mathcal{E}_v$$
; $f_e(v) = 0$.

Spectral trace formula of quantum graphs

Consider the eigenvalue problem $-\Delta f = k^2 f^2$

A trace formula for the spectral density

$$d(k) = \sum_{j} \delta(k - k_{j}) = \frac{L}{\pi} + C\delta(k) + \frac{1}{\pi} \operatorname{Re} \sum_{\rho \in P} A_{\rho} e^{ikL_{\rho}},$$

- *L* is the sum of all edge lengths.
- \mathcal{P} is the set of periodic orbits p of length L_p .
- A_p are certain explicitly defined factors.

Roth (1983), Kottos, Smilansky (1997)

• Denote the nodal count sequence by ν_n .

- Denote the nodal count sequence by ν_n .
- The nodal count of a vibrating *string* is $\nu_n = n$. Sturm's oscillation theorem (1836).

- Denote the nodal count sequence by ν_n.
- The nodal count of a vibrating *string* is $\nu_n = n$. Sturm's oscillation theorem (1836).
- A general upper bound of Courant is ν_n ≤ n.
 Courant (1923) → Pleijel (1956) → Gnutzmann, Smilansky, Weber (2004).

- Denote the nodal count sequence by ν_n.
- The nodal count of a vibrating *string* is $\nu_n = n$. Sturm's oscillation theorem (1836).
- A general upper bound of Courant is ν_n ≤ n.
 Courant (1923) → Pleijel (1956) → Gnutzmann, Smilansky, Weber (2004).
- The nodal count of a *tree graph* is $\nu_n = n$. Al-Obeid, Pokornyi, Pryadiev (1992), Schapotschnikow (2006).

v_n ≥ *n* − *r* is a bound given by Berkolaiko (2006), where *r* is the minimal number of edges to be removed so that the graph turns into a tree.

- *v_n* ≥ *n* − *r* is a bound given by Berkolaiko (2006), where *r* is the minimal number of edges to be removed so that the graph turns into a tree.
- One can find whether $\nu_n = c$ from the critical points of some energy function. Band, Berkolaiko, Raz, Smilansky (2010).

- *v_n* ≥ *n* − *r* is a bound given by Berkolaiko (2006), where *r* is the minimal number of edges to be removed so that the graph turns into a tree.
- One can find whether $\nu_n = c$ from the critical points of some energy function. Band, Berkolaiko, Raz, Smilansky (2010).

We attach leads at some vertices - supply Neumann conditions at those vertices.

.

We attach leads at some vertices - supply Neumann conditions at those vertices.

A solution of -Δf = k²f exists for any value of k.
 f is a generalized eigenfunction.

We attach leads at some vertices - supply Neumann conditions at those vertices.

- A solution of -Δf = k²f exists for any value of k. f is a generalized eigenfunction.
- Simple algebraic manipulations allow to find the relation

$$\left(\begin{array}{c} c_1^{out} \\ c_2^{out} \end{array}\right) = S(k) \left(\begin{array}{c} c_1^{in} \\ c_2^{in} \end{array}\right),$$

where S(k) is the scattering matrix.

We attach leads at some vertices - supply Neumann conditions at those vertices.

- A solution of -Δf = k²f exists for any value of k. f is a generalized eigenfunction.
- Simple algebraic manipulations allow to find the relation

$$\left(\begin{array}{c} c_1^{out} \\ c_2^{out} \end{array}\right) = S(k) \left(\begin{array}{c} c_1^{in} \\ c_2^{in} \end{array}\right),$$

where S(k) is the scattering matrix.

Any number of leads *L* can be attached to the graph *S*(*k*) is then of dimension *L* and it is unitary for every *k* ∈ ℝ.

• det *S*(*k*) rotates counter-clockwise on the unit circle, as *k* increases.

- det *S*(*k*) rotates counter-clockwise on the unit circle, as *k* increases.
- $S_{u,v}(k)$ has an expansion in terms of orbits from *u* to *v*.
- In particular, S(k) is symmetric for Neumann conditions.

- det S(k) rotates counter-clockwise on the unit circle, as k increases.
- $S_{u,v}(k)$ has an expansion in terms of orbits from u to v.
- In particular, S(k) is symmetric for Neumann conditions.
- The exterior-interior duality

k is an eigenvalue of Γ if and only if det $(\mathbb{I} - S(k)) = 0$.

Explanation: When $c_i^{out} = c_i^{in}$ we have that $f_i(x_i) \propto \cos(kx_i)$ and Neumann conditions at the vertex are fulfilled even if this lead is removed.

- det S(k) rotates counter-clockwise on the unit circle, as k increases.
- $S_{u,v}(k)$ has an expansion in terms of orbits from u to v.
- In particular, S(k) is symmetric for Neumann conditions.
- The exterior-interior duality

k is an eigenvalue of Γ if and only if det $(\mathbb{I} - S(k)) = 0$.

Explanation: When $c_l^{out} = c_l^{in}$ we have that $f_l(x_l) \propto \cos(kx_l)$ and Neumann conditions at the vertex are fulfilled even if this lead is removed.

 When S(k) has an eigenvalue -1, there exists a generalized eigenfunction that vanishes at all vertices.

• Connect a single lead to the graph -

there is a unique solution for every value of k.

• Connect a single lead to the graph -

there is a unique solution for every value of k.

• Nodal point reaches the graph from the lead $\Leftrightarrow S(k) = -1$. The function coincides with an eigenfunction $\Leftrightarrow S(k) = 1$.

A (10) A (10)

• Connect a single lead to the graph -

there is a unique solution for every value of k.

- Nodal point reaches the graph from the lead $\Leftrightarrow S(k) = -1$. The function coincides with an eigenfunction $\Leftrightarrow S(k) = 1$.
- From the counter-clockwise rotation of S(k) we conclude ν_n = n.
 This holds for tree graphs. What complicates the scenario?

A (10) A (10)

• Connect a single lead to the graph -

there is a unique solution for every value of k.

- Nodal point reaches the graph from the lead $\Leftrightarrow S(k) = -1$. The function coincides with an eigenfunction $\Leftrightarrow S(k) = 1$.
- From the counter-clockwise rotation of S(k) we conclude ν_n = n.
 This holds for tree graphs. What complicates the scenario?
- When a nodal point reaches a vertex -

A split or a merge may change the number of nodal points.

- ロ ト - (同 ト - (回 ト -)

A single lead - changing the technique

• When a nodal point reaches a vertex v, sign [f(v)] is changed.

A single lead - changing the technique

- When a nodal point reaches a vertex v, sign [f(v)] is changed.
- The number of nodal points on an edge e = (v, u) is given by

$$\left\lfloor \frac{\kappa L_e}{\pi} \right\rfloor + \frac{1}{2} \left(1 - (-1)^{\left\lfloor \frac{\kappa L_e}{\pi} \right\rfloor} \operatorname{sign} \left(f(v) f(u) \right) \right).$$

Gnutzmann, Smilansky, Weber (2004)

Connect a lead to a vertex v. Choose an adjacent vertex u.
 We wish to count the sign changes of f(u) and f(v).
 sign [f(v)] is easy, how about sign [f(u)]?

• When a nodal point reaches the vertex *u* (not connected to the single lead),

the two leads S-matrix is diagonal.

- When a nodal point reaches the vertex u (not connected to the single lead), the two leads S-matrix is diagonal.
- We should count the zeros of the following functions

$$\zeta(k) = \det(\mathbb{I} - S(k))$$

 $au(k) = S(k)_{1,2} = S(k)_{2,1}$

- When a nodal point reaches the vertex u (not connected to the single lead), the two leads S-matrix is diagonal.
- We should count the zeros of the following functions

$$\zeta(k) = \det(\mathbb{I} - S(k))$$

 $au(k) = S(k)_{1,2} = S(k)_{2,1}$

Definition

The sign-weighted counting function $N_{u,v}(k)$

$$N_{u,v}(k) = \#\{k_n \leq k : f_n(u)f_n(v) > 0\} - \#\{k_n \leq k : f_n(u)f_n(v) < 0\}.$$

Definition

The sign-weighted counting function $N_{u,v}(k)$

 $N_{u,v}(k) = \#\{k_n \leq k : f_n(u)f_n(v) > 0\} - \#\{k_n \leq k : f_n(u)f_n(v) < 0\}.$

< ロ > < 同 > < 三 > < 三 > -

Definition

The sign-weighted counting function $N_{u,v}(k)$

$$N_{u,v}(k) = \#\{k_n \leq k : f_n(u)f_n(v) > 0\} - \#\{k_n \leq k : f_n(u)f_n(v) < 0\}.$$

Theorem

Denote by S(k) the 2 × 2 scattering matrix obtained by attaching leads to the vertices u and v. Let \mathbb{I}_{ϵ} be the matrix

$$\mathbb{I}_{\epsilon} = \begin{pmatrix} \mathsf{1} & -\epsilon \\ -\epsilon & \mathsf{1} \end{pmatrix}$$

Then

$$N_{u,v}(k) = rac{1}{\pi} \lim_{\epsilon o 0} rg rac{\det(\mathbb{I}_{\epsilon} - \mathcal{S}(k))}{\sqrt{\det \mathcal{S}(k)}}.$$

Theorem

$$N_{u,v}(k) = \#\{k_n \le k : f_n(u)f_n(v) > 0\} - \#\{k_n \le k : f_n(u)f_n(v) < 0\}$$

= $\frac{1}{\pi} \lim_{\epsilon \to 0} \arg \frac{\det(\mathbb{I}_{\epsilon} - S(k))}{\sqrt{\det S(k)}}.$ (1)

∃ >

Theorem

$$N_{u,v}(k) = \#\{k_n \le k : f_n(u)f_n(v) > 0\} - \#\{k_n \le k : f_n(u)f_n(v) < 0\}$$

= $\frac{1}{\pi} \lim_{\epsilon \to 0} \arg \frac{\det(\mathbb{I}_{\epsilon} - S(k))}{\sqrt{\det S(k)}}.$ (1)

The (ordinary) spectral counting function is

$$N(k) = \#\{k_n \le k : f_n(u)f_n(v) > 0\} + \#\{k_n \le k : f_n(u)f_n(v) < 0\},\$$

and can be represented as

$$N(k) = \frac{1}{\pi} \lim_{\epsilon \to 0} \arg \frac{\det((1-\epsilon)\mathbb{I} - S(k))}{\sqrt{\det S(k)}}.$$
 (2)

Theorem

$$N_{u,v}(k) = \#\{k_n \le k : f_n(u)f_n(v) > 0\} - \#\{k_n \le k : f_n(u)f_n(v) < 0\}$$

= $\frac{1}{\pi} \lim_{\epsilon \to 0} \arg \frac{\det(\mathbb{I}_{\epsilon} - S(k))}{\sqrt{\det S(k)}}.$ (1)

The (ordinary) spectral counting function is

$$N(k) = \#\{k_n \le k : f_n(u)f_n(v) > 0\} + \#\{k_n \le k : f_n(u)f_n(v) < 0\},\$$

and can be represented as

$$N(k) = \frac{1}{\pi} \lim_{\epsilon \to 0} \arg \frac{\det((1-\epsilon)\mathbb{I} - S(k))}{\sqrt{\det S(k)}}.$$
 (2)

Combining (1) and (2) we obtain another counting function

$$\mathcal{N}_{u,v}^{(-)}(k) := \#\{k_n \leq k : f_n(u)f_n(v) < 0\} = \frac{1}{2\pi} \lim_{\epsilon \to 0} \arg \frac{\det((1-\epsilon)\mathbb{I} - S(k))}{\det(\mathbb{I}_{\epsilon} - S(k))}$$

• Recall that the number of nodal points on an edge e = (v, u) is given by

$$\left\lfloor \frac{kL_e}{\pi} \right\rfloor + \frac{1}{2} \left(1 - (-1)^{\left\lfloor \frac{kL_e}{\pi} \right\rfloor} \operatorname{sign}\left(f(v)f(u)\right) \right)$$

Use the sign counting functions to express the number of nodal points on e = (v, u) in terms of S(k).
 Sum over all the edges of the graph to get the total number of nodal points.

• Recall that the number of nodal points on an edge e = (v, u) is given by

$$\left\lfloor \frac{kL_e}{\pi} \right\rfloor + \frac{1}{2} \left(1 - (-1)^{\left\lfloor \frac{kL_e}{\pi} \right\rfloor} \operatorname{sign}\left(f(v)f(u)\right) \right)$$

- Use the sign counting functions to express the number of nodal points on e = (v, u) in terms of S(k).
 Sum over all the edges of the graph to get the total number of nodal points.
- Future work:
 - Expanding the above to a trace formula for ν (k).
 - Using an inversion of N(k) to express ν_n, or adopting another approach for attacking it directly.

• The two graphs below are isospectral

• The nodal count of the tree graph is trivial. The nodal count of the second graph is

$$u_n = n - 1 + \operatorname{mod}_2\left(\left\lfloor \frac{b+c}{a+b+c}n \right\rfloor\right).$$

• The two graphs below are isospectral

• The nodal count of the tree graph is trivial. The nodal count of the second graph is

$$u_n = n - 1 + \operatorname{mod}_2\left(\left\lfloor \frac{b+c}{a+b+c}n \right\rfloor\right).$$

• Denote $\alpha := \frac{b+c}{a+b+c}$, the normalized length of the loop.

We may get the following orbit expansion of the formula

$$\nu_n = n - \frac{1}{2} + \sum_{k=0}^{\infty} \frac{2}{(2k+1)\pi} \sin((2k+1)\pi\alpha n).$$

• The two graphs below are isospectral

• The nodal count of the tree graph is trivial. The nodal count of the second graph is

$$u_n = n - 1 + \operatorname{mod}_2\left(\left\lfloor \frac{b+c}{a+b+c}n \right\rfloor\right).$$

• The two graphs below are isospectral

• The nodal count of the tree graph is trivial. The nodal count of the second graph is

$$u_n = n - 1 + \operatorname{mod}_2\left(\left\lfloor \frac{b+c}{a+b+c}n \right\rfloor\right).$$

• Denote $\alpha := \frac{b+c}{a+b+c}$, the normalized length of the loop.

We may get the following orbit expansion of the formula

$$\nu_n = n - \frac{1}{2} + \sum_{k=0}^{\infty} \frac{2}{(2k+1)\pi} \sin((2k+1)\pi\alpha n).$$

Thank you!

<ロト <回ト < 回ト < 回ト :

2