How to count

Rami Band, Gregory Berkolaiko, Uzy Smilansky

$1,1,2,3,5,8,13,21$, ?

- What is the next number?
- Which formula generates this sequence?

$1,2,2,4,5,5,7,7,8, ?$

- What is the next number?
- Which formula generates this sequence?

This sequence is the nodal count, $\left\{v_{n}\right\}_{n=1}^{\infty}$, of one of the graphs above.

Metric Graphs - Introduction

- A graph $\boldsymbol{\Gamma}$ consists of a finite set of vertices $\boldsymbol{V}=\left\{\boldsymbol{v}_{i}\right\}$ and a finite set of edges $\boldsymbol{E}=\left\{\boldsymbol{e}_{\boldsymbol{j}}\right\}$.
- A metric graph has a finite length ($L_{e_{j}}$) assigned to each edge.

A function on the graph is a vector of functions on the edges:
 $f=\left(f_{e_{1}}, \ldots, f_{e_{|E|}}\right) \forall e_{j}, f_{e_{j}}:\left[0, L_{e_{j}}\right] \rightarrow$

Quantum Graphs - Introduction

A quantum graph is a metric graph equipped with an operator, such as the negative Laplacian: $-\Delta f=\left(-\left.f^{\prime \prime}\right|_{e_{1}}, \ldots,-\left.f^{\prime \prime}\right|_{e_{E \mid}}\right)$

For each vertex v, we impose boundary conditions, such as: (The Neumann boundary conditions)

- Continuity $\forall e_{1},\left.e_{2} \in E_{v} \quad f\right|_{e_{1}}(v)=\left.f\right|_{e_{2}}(v)$
- Zero sum of derivatives $\sum_{e \in E_{v}} f^{\prime} \|_{e}(v)=0$

For vertices of degree one, there are two special cases of boundary conditions, denoted

- Dirichlet: $f(v)=0$
- Neumann: $f^{\prime}(v)=0$

The eigenfunctions of Quantum Graphs

- A quantum graph is defined by specifying:
- Metric graph
- Operator
- Boundary conditions for each vertex

We are interested in the eigenfunctions of the Laplacian:

$$
-\Delta f=k^{2} f \Rightarrow\left(-\left.f^{\prime \prime}\right|_{Q_{1}}, \ldots,-\left.f^{\prime \prime}\right|_{e_{E \mid}}\right)=\left(\left.k^{2} f\right|_{Q_{1}}, \ldots,\left.k^{2} f\right|_{e_{E \mid}}\right)
$$

$$
-\Delta=-\left(\left.\frac{d^{2}}{d x^{2}}\right|_{e_{1}}, \ldots,\left.\frac{d^{2}}{d x^{2}}\right|_{e_{|E|}}\right)
$$

Examples of several eigenfunctions of
the Laplacian on the graph above:

Nodal count:

$$
v_{8}=8
$$

$$
v_{13}=13
$$

$v_{16}=16$

The nodal count of Quantum Graphs

- We denote the nodal count sequence by $\left\{v_{n}\right\}_{n=1}^{\infty}$.
- The nodal count of a vibrating string is $v_{n}=n$. Sturm's oscillation theorem (1836).

- A general bound of Courant (1923) is $v_{n} \leq n$. Adapted to quantum graphs by Gnutzmann, Smilansky, Weber (2004) following a method of Pleijel (1956).
- The nodal count of a tree graph is $V_{n}=n$. Al-Obeid, Pokornyi, Pryadiev (1992), Schapotschnikow (2006).
- $v_{n} \geq n-r$ is a bound given by Berkolaiko (2006),
- where $r=|E|-|V|+1$ is the minimal number of edges to remove so that the graph turns into a tree.

$$
r=6-4+1=3
$$

The nodal count of Quantum Graphs

- Example - We try to deal with the nodal count of the graph

- The known bounds give $n-1 \leq v_{n} \leq n \quad(r=1)$.
- We have the oscillating sequence $v_{n}-n+0.5= \pm 0.5$.
- We calculate this sequence numerically (for some a,b,c values).
- We Fourier transform it and obtain the following:
- Is there a formula for the nodal count of this graph ?

The nodal count of a string

The eigenfunctions of
$\mathrm{D} \longrightarrow \mathrm{N}$
k_{1}
k_{2}

k_{3}

The eigenfunctions of

Removing a boundary condition
The eigenfunctions of

Removing a boundary condition
The eigenfunctions of

- attaching an infinite lead

D . $\xrightarrow{\square}$

Removing a boundary condition

- attaching an infinite lead
$x_{e}=0 \longrightarrow x_{e}=L$
$x_{l}=0 \longrightarrow$

$$
\left\lceil C \sin (k L)=a^{i n}+a^{\text {out }} \quad\right. \text { (Continuity) }
$$

$$
C \cos (k L)=i k\left(-a^{\text {in }}+a^{\text {out }}\right) \quad \text { (Zero sum of derivatives - differentiability) }
$$

$a^{\text {out }}=\exp (i(2 k l+\pi)) a^{i n}=S(k) a^{i n} \quad S(k)=\exp (i \varphi(k))$ is unitary.

When $\varphi(k) \equiv 0(\bmod 2 \pi)$ we have an eigenfunction of the original graph. When $\varphi(k) \equiv \pi(\bmod 2 \pi)$ a nodal point enters the original graph.

Removing a boundary condition

- attaching an infinite lead
$x_{e}=0 \longrightarrow x_{e}=L$
$x_{l}=0 \longrightarrow$

$a^{o u t}=\exp (i(2 k l+\pi)) a^{i n}=S(k) a^{\text {in }} \quad S(k)=\exp (i \varphi(k))$ is unitary.
 Whitweref(o)e thessodeseyt to hodellapeiationterk the quipinahgraph.

Removing two boundary conditions

- attaching two infinite leads

$$
\begin{array}{cc}
a_{1}^{\text {in }} \exp \left(-i k x_{l_{1}}\right)+a_{1}^{\text {out }} \exp \left(i k x_{l_{1}}\right) & a_{2}^{\text {in }} \exp \left(-i k x_{l_{2}}\right)+a_{2}^{\text {out }} \exp \left(i k x_{l_{2}}\right) \\
=C_{1} \sin \left(k x_{l_{1}}+\theta_{1}(k)\right) & =C_{2} \sin \left(k x_{l_{2}}+\theta_{2}(k)\right)
\end{array}
$$

For each k we have a two-dimensional space of possible functions.

- In order to have a single valued movie we need to add a restriction.
- We choose the restriction $\theta_{1}(k)=\pi / 2+\theta_{2}(k)$ and get the movie:

Removing two boundary conditions

- attaching two infinite leads
$=C_{1} \sin \left(k x_{1_{1}}+\theta_{1}(k)\right)$

$$
=C_{2} \sin \left(k x_{l_{2}}+\theta_{2}(k)\right)
$$

The interesting events are
FArkdach k onodas point enters from the lift:

- In order to have a single valued movie we need to add a restriction.

We choose the restriction
$\theta_{1}(k)=\pi / 2 ; \theta_{2}(k)=0(\bmod \pi)$ $\&$ nodal point enters from the right.

- We can check that $\theta_{1}{ }^{\prime}(k)>0$ and $\theta_{2}{ }^{\prime}(k)>0$ and deduce that $\nu_{n}=n$.

Back to the nodal count of

$$
C_{1} \sin \left(k x_{l_{1}}+\theta_{1}(k)\right) \quad C_{2} \sin \left(k x_{l_{2}}+\theta_{2}(k)\right)
$$

- The same restriction, $\theta_{1}(k)=\pi / 2+\theta_{2}(k)$, gives the following movie:

- Conclusions from the movie:
- Nodal points enter the graph from the leads (as before).
- An eigenvalue occur when a nodal point enters the graph (as before).
- However, this time we also have splits and merges of nodal points.

Back to the nodal count of

Analyzing the movie gives the formula:

$$
\begin{aligned}
& \text { Iormula: } \\
& \left.v_{n}=n-0.5-0.5 \cdot(-1)^{\left\lfloor\frac{b+c}{a+b+c+c}\right\rfloor} \right\rvert\,
\end{aligned}
$$

The nice Fourier transform is due to $(-1)^{-x\rfloor}=\sum_{k=0}^{\infty} \frac{4}{(2 k+1) \pi} \sin ((2 k+1) \pi x)$ which gives

$$
v_{n}=n-0.5-\sum_{k=0}^{\infty} \frac{2}{(2 k+1) \pi} \sin \left((2 k+1) \frac{b+c}{a+b+c} \pi n\right)
$$

What's next?

$1,1,2,3,5,8,13,21$, ?

- What is the next number?
- Which formula generates this sequence?

$1,2,2,4,5,5,7,7,8, ?$

- What is the next number?
- Which formula generates this sequence?

This sequence is the nodal count, $\left\{v_{n}\right\}_{n=1}^{\infty}$, of one of the graphs above.

How to count

 nodal domains of quantum graphsRami Band, Gregory Berkolaiko, Uzy Smilansky

$\underset{\text { AN }}{\text { G }}$
עכון

