How to count ?

Rami Band, Gregory Berkolaiko, Uzy Smilansky

1, 1, 2, 3, 5, 8, 13, 21, ?

- What is the next number?
- Which formula generates this sequence?

1, 2, 2, 4, 5, 5, 7, 7, 8, ?

- What is the next number?
- Which formula generates this sequence?

• This sequence is the *nodal count*, $\{v_n\}_{n=1}^{\infty}$, of one of the graphs above.

Metric Graphs - Introduction

- A graph Γ consists of a finite set of vertices $V = \{v_i\}$ and a finite set of edges $E = \{e_i\}$.
- A *metric graph* has a finite length (L_{e_j}) assigned to each edge.
- A *function* on the graph is a vector of functions on the edges:

Quantum Graphs - Introduction

• A *quantum graph* is a metric graph equipped with an operator, such as the negative *Laplacian*: $-\Delta f = (-f''|_{e_1}, ..., -f''|_{e_{|E|}})$

 For each vertex v, we impose *boundary conditions*, such as: (The *Neumann* boundary conditions)

• Continuity $\forall e_1, e_2 \in E_v$ $f|_{e_1}(v) = f|_{e_2}(v)$

Zero sum of derivatives

$$\sum_{e \in E_{v}} f'_{e}(v) = 0$$

- For vertices of degree one, there are two special cases of boundary conditions, denoted
 - **Dirichlet**: f(v) = 0
 - **Neumann**: f'(v) = 0

The eigenfunctions of Quantum Graphs

- A quantum graph is defined by specifying:
 - Metric graph
 - Operator
 - Boundary conditions for each vertex

We are interested in the *eigenfunctions* of the Laplacian:

$$-\Delta f = k^{2} f \implies \left(-f''|_{e_{1}}, ..., -f''|_{e_{|E|}}\right) = \left(k^{2} f|_{e_{1}}, ..., k^{2} f|_{e_{|E|}}\right)$$

Examples of several eigenfunctions of the Laplacian on the graph above:

The nodal count of Quantum Graphs

- We denote the nodal count sequence by $\{v_n\}_{n=1}^{\infty}$.
- The nodal count of a <u>vibrating string</u> is $V_n = n$. Sturm's oscillation theorem (1836).
- A <u>general bound</u> of Courant (1923) is V_n ≤ n. Adapted to quantum graphs by Gnutzmann, Smilansky, Weber (2004) following a method of Pleijel (1956).
- The nodal count of a <u>tree graph</u> is $V_n = n$. Al-Obeid, Pokornyi, Pryadiev (1992), Schapotschnikow (2006).

V_n ≥ n − r is a bound given by Berkolaiko (2006),
where r = |E| − |V| +1 is the minimal number of edges to remove so that the graph turns into a tree.

r = 6 - 4 + 1 = 3

The nodal count of Quantum Graphs

 <u>Example</u> - We try to deal with the nodal count of the graph

- The known bounds give $n-1 \le v_n \le n$ (r=1).
- We have the oscillating sequence $v_n n + 0.5 = \pm 0.5$.
 - We calculate this sequence *numerically* (for some a,b,c values).
 - We Fourier transform it and obtain the following:

Is there a formula for the nodal count of this graph ?

The nodal count of a string

The eigenfunctions of

- attaching an infinite lead

The eigenfunctions of

- attaching an infinite lead

 $\begin{bmatrix} C \sin(kL) = a^{in} + a^{out} & (Continuity) \\ C \cos(kL) = ik(-a^{in} + a^{out}) & (Zero sum of derivatives - differentiability) \end{bmatrix}$

$$a^{out} = \exp(i(2kl + \pi)) a^{in} = S(k) a^{in}$$
 $S(k) = \exp(i\varphi(k))$ is unitary.

When $\varphi(k) \equiv 0 \pmod{2\pi}$ we have an eigenfunction of the original graph. When $\varphi(k) \equiv \pi \pmod{2\pi}$ a nodal point enters the original graph.

- attaching an infinite lead

$$a^{out} = \exp(i(2kl + \pi)) a^{in} = S(k) a^{in}$$
 $S(k) = \exp(i\varphi(k))$ is unitary.

When $\mu(k) = ha(mod(k))$, we have an eigenfunction of the original graph. Whenere the society of the indeal application dense original graph.

attaching two infinite leads

$$\begin{pmatrix} a_{1}^{(out)} \\ a_{2}^{(out)} \\ a_{2}^{(out)} \\ a_{2}^{(out)} \end{pmatrix} = S(k) \cdot \begin{pmatrix} a_{1}^{in}(k) \\ a_{1}^{in}(k) \\ a_{2}^{in}(k) \end{pmatrix}$$

- For each k we have a two-dimensional space of possible functions.
 - In order to have a single valued movie we need to add a restriction.
 - We choose the restriction $\theta_1(k) = \frac{\pi}{2} + \theta_2(k)$ and get the movie:

- attaching two infinite leads

$$= C_1 \sin\left(kx_{l_1} + \theta_1(k)\right) \qquad \qquad = C_2 \sin\left(kx_{l_2} + \theta_2(k)\right)$$

The interesting events are

Eigenfunction of the original graph Eigenfunction of the original graph wordthe ensional space of possible functions. A nodal point enters from the left. In order to have a single valued movie we need to add a restriction. We choose the restriction $\theta_1(k) = \pi/2$; $\theta_2(k) = 0 \pmod{\pi}^{\theta_1}(k) = \pi/2$ and $\theta_1(k) = \pi/2$; $\theta_2(k) = 0 \pmod{\pi}^{\theta_1}(k) = \pi/2$.

• We can check that $\theta_1'(k) > 0$ and $\theta_2'(k) > 0$ and deduce that $V_n = n$.

- Conclusions from the movie:
 - Nodal points enter the graph from the leads (as before).
 - An eigenvalue occur when a nodal point enters the graph (as before).
 - However, this time we also have splits and merges of nodal points.

Back to the nodal count of

Analyzing the movie gives the formula:

$$v_n = n - 0.5 - 0.5 \cdot (-1)^{\left\lfloor \frac{b+c}{a+b+c}n \right\rfloor}$$

• The nice Fourier transform is due to $(-1)^{\lfloor x \rfloor} = \sum_{k=0}^{\infty} \frac{4}{(2k+1)\pi} \sin((2k+1)\pi x)$

which gives

$$\nu_n = n - 0.5 - \sum_{k=0}^{\infty} \frac{2}{(2k+1)\pi} \sin\left((2k+1)\frac{b+c}{a+b+c}\pi n\right)$$

What's next?

1, 1, 2, 3, 5, 8, 13, 21, ?

- What is the next number?
- Which formula generates this sequence?

1, 2, 2, 4, 5, 5, 7, 7, 8, ?

- What is the next number?
- Which formula generates this sequence?

This sequence is the **nodal count**, $\{V_n\}_{n=1}^{\infty}$, of one of the graphs above.

Rami Band, Gregory Berkolaiko, Uzy Smilansky

