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Abstract We present a method for constructing families of isospectral systems, us-
ing linear representations of finite groups. We focus on quantum graphs, for which
we give a complete treatment. However, the method presented can be applied to other
systems such as manifolds and two-dimensional drums. This is demonstrated by re-
producing some known isospectral drums, and new examples are obtained as well. In
particular, Sunada’s method (Ann. Math. 121, 169–186, 1985) is a special case of the
one presented.
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1 Introduction

“Can one hear the shape of a drum?”—This question was posed by Marc Kac in
1966 [2]. In other words, is it possible to determine the shape of a planar Euclidean
domain from the spectrum of the Laplace operator on it? Though, as Kac accounts
in his paper, related questions were raised before, this explicit formulation of the
problem inspired a fertile research, investigating it from various aspects. Two main
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approaches were, on the one hand, attempts to deal with the inverse question of recon-
structing the shape from the spectrum, and on the other hand, trying to find systems
whose shapes are different, yet have the same spectrum. Such examples are called
isospectral. Although Kac’s original problem regards two dimensional planar drums,
the research on isospectrality expanded with time to encompass many types of sys-
tems. We will not go into detail here but refer the interested reader to [1–10] for a
broader view of the field. However, we will mention here two milestones in the field
of isospectrality. A theorem by Sunada gave an important machinery for the con-
struction of isospectral Riemannian manifolds [1]. Later, this method was used by
Gordon, Webb and Wolpert to construct the first pair of isospectral planar Euclidean
domains [3, 4] thus negatively answering Kac’s original question.

This paper starts with a presentation of the basic theory of quantum graphs and
existing results on quantum graph isospectrality. We then present the algebraic part
of our theory and its main theorem. This is followed by a section which explains the
construction of the so called quotient graphs that lie in the heart of the theory. After
the theory is fully presented, we apply it to obtain various examples of isospectral
quantum graphs. We then demonstrate how to apply the method to other systems, ex-
plaining some known results, as well as obtaining new ones. In particular we discuss
the relation to Sunada’s method. We conclude by pointing out key elements of the
theory that are to be investigated further and by presenting open questions.

2 Quantum Graphs

A graph � consists of a finite set of vertices V = {vi} and a finite set E = {ej } of
edges connecting the vertices. We assume that there are no parallel edges (differ-
ent edges with the same endpoints) or loops (edges connecting a vertex to itself),
but we shall see that this inflicts only a small loss of generality. We denote by Ev

the set of all edges incident to the vertex v. The degree (valency) of the vertex v

is dv = |Ev|. � becomes a metric graph if each edge e ∈ E is assigned a finite
length le > 0. It is then possible to identify the edge e with a finite segment [0, le]
of the real line, having the natural coordinate xe along it. A function on the graph
is a vector f = (f |e1, . . . , f |e|E|) of functions f |ej

: [0, lej
] → C on the edges. In

general, it is not required that for v ∈ V and e, e′ ∈ Ev the functions f |e and f |e′
agree on v. Endowing the space of functions on the graph with the inner product
〈f,g〉 =∑e∈E

∫ le
0 f |e · g|e dxe, we obtain the Hilbert space L2(�) =⊕e∈E L2(e).

The additional ingredients needed to define a quantum graph are a differential opera-
tor, by default the negative Laplacian: −�f = (−f ′′|e1 , . . . ,−f ′′|e|E|), and boundary
conditions which define the domain of this operator. For each vertex v ∈ V , we con-
sider homogeneous boundary conditions involving the values and derivatives of the
function at the vertex, of the form Av · f |v + Bv · f ′|v = 0. Here Av and Bv are
dv × dv complex matrices, f |v is the vector (f |en1

(v) . . . f |endv
(v))T of the values

of f on the edges in Ev at v, and f ′|v = (f ′|en1
(v) . . . f ′|endv

(v))T is the vector of
outgoing derivatives of f taken at the vertex. The domain of the Laplacian consists
of all functions in the Sobolev space

⊕
e∈E H 2(e) which in addition obey the chosen
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boundary conditions. We shall denote this space, as is customary, by H 2(�). We re-
mark that upon moving to generalized functions one must use Sobolev traces in order
to consider the values and derivatives at the vertices (see [13]). The reader interested
in more information about quantum graphs is referred to the reviews [11–13].

A common choice of boundary conditions which we use is the so called Neumann
boundary condition1:

• f agrees on the vertices: ∀v ∈ V ∀e, e′ ∈ Ev : f |e(v) = f |e′(v).
• The sum of outgoing derivatives at each vertex is zero: ∀v ∈ V :

∑
e∈Ev

f ′|e(v) = 0.

The Neumann boundary condition can thus be represented by the matrices

Av =

⎛

⎜
⎜
⎜
⎝

1 −1
. . .

. . .

1 −1

0 · · · 0 0

⎞

⎟
⎟
⎟
⎠

, Bv =

⎛

⎜
⎜
⎜
⎝

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

1 1 · · · 1

⎞

⎟
⎟
⎟
⎠

.

For a vertex of degree one the Neumann condition is expressed by the matrices
Av = (0), Bv = (1), and means that the derivative of the function is zero at the leaf v.
Another natural boundary condition for leaves is the Dirichlet boundary condition:
Av = (1), Bv = (0), which means that the function vanishes at the vertex. Notice that
before stating the boundary conditions, the graph is merely a collection of indepen-
dent edges with functions defined separately on each edge. The connectivity of the
graph is manifested through the boundary conditions.

Neumann vertices of degree two deserve a special attention. They can be thought
of as inner points along a single edge—the concatenation of the two edges incident
to the vertex—and one can add or remove such inner points along �’s edges without
changing L2(�) and H 2(�) (see [12]). For example, loops and parallel edges can be
eliminated by the introduction of such “dummy” vertices, so that as mentioned, we
shall assume that we are dealing with graphs with no such nuisances.

If for every v ∈ V the dv ×2dv matrix (Av | Bv) is of full rank, we shall say that the
quantum graph is exact. Non-exact quantum graphs are not very interesting from the
spectral point of view, as their eigenvalue spectrum is all of C. On the other hand, we
shall later be led to consider the opposite phenomenon, i.e., vertices at which there are
“too many” boundary conditions. In this case we shall admit Av and Bv to be of size
m×dv , possibly with m > dv , and we shall call the corresponding graphs generalized
quantum graphs. From the spectral perspective these are much more interesting than
non-exact quantum graphs. Consider for example a Y-shaped graph, with a Neumann
condition at the center, Dirichlet conditions at two of the leaves, and the condition
Av = ( 1

0

)
, Bv = ( 0

1

)
at the third; its eigenvalue spectrum is nonempty if and only if

the lengths of the two edges with Dirichlet leaves are commensurable.
Kostrykin and Schrader [14] provide necessary and sufficient conditions for the

Laplacian to be self-adjoint. These can be stated in a number of equivalent forms
[13], of which we list two:

1This condition is also widely encountered under the name of Kirchhoff condition.
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(1) � is exact, and Av · B†
v is self-adjoint for every v ∈ V .

(2) For every v ∈ V there exist a unitary matrix U such that (Av | Bv) is row-
equivalent to (i(U − I ) | U + I ).

In particular, Neumann and Dirichlet conditions satisfy these requirements. When the
Laplacian is self-adjoint, the spectrum is real, discrete and bounded from below [12].
In particular, it consists entirely of eigenvalues. In the general case (i.e., non self-
adjoint Laplacian) one has to make the distinction between the eigenvalue spectrum
and the general spectrum of �, i.e., the values of λ for which −λI − � is not invert-
ible. In this paper we shall consider only the eigenvalue spectrum, with the exception
of Sect. 4.3.2.

There are several known results concerning isospectrality of quantum graphs.
Gutkin and Smilansky [16] show that under certain conditions a quantum graph can
be heard, meaning that it can be recovered from the spectrum of its Laplacian. On
the other hand, constructions of isospectral graphs were also established, by various
means: by a trace formula for the heat kernel [17], by turning isospectral discrete
graphs into equilateral quantum graphs [6], and weighted discrete graphs into non-
equilateral ones [18]; in [16, 19] a wealth of examples is given by an analogy to the
isospectral drums obtained by Buser et al. [5], and in [20] is presented an example,
whose generalization has led to the theory presented in this paper.

3 Algebra

For a quantum graph � and λ ∈ C we denote by ��(λ) the λ-eigenspace of �’s
Laplacian, i.e.,

��(λ) = kerH 2�(−λI − �) = {f ∈ H 2(�) | −�f = λf }.
The (eigenvalue, or point) spectrum of � is the function

σ� : λ �→ dimC ��(λ),

which assigns to each eigenvalue of �’s Laplacian its multiplicity.2 We say that the
quantum graphs � and �′ are isospectral when their eigenvalue spectra coincide, that
is σ� ≡ σ�′ . In Sect. 4.3.2 we shall say a word about isospectrality in the stronger
sense (i.e., not only of the eigenvalue spectrum).

A symmetry σ of a quantum graph � is a graph automorphism which preserves
both the lengths of edges and the boundary conditions at the vertices. Formally, the
latter means that for every vertex v, if Ev = (en1 , . . . , enr ) and Eσv = (em1, . . . , emr ),
then (Aσv | Bσv) is row-equivalent to (Av | Bv)

(
P 0
0 P

)
, where P is the permuta-

tion matrix defined by Pij = 1 ⇔ σeni
= emj

. The group of all such symmetries
is denoted Aut�. A left action of a group G on � is equivalent to a group ho-
momorphism G → Aut�. Such action induces a left action of G on H 2(�) (by

2In effect we have σ� : C → {0, . . . ,2|E|}, as the eigenvalue of a Laplacian eigenfunction, together with
the values {f |e(0), f ′|e(0)}e∈E , determine the function.
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(gf )(x) = f (g−1x)—the inversion accounts for the contravariantness of H 2), which
gives H 2(�) the structure of a CG-module, i.e., a complex representation. As the ac-
tions of G and � commute, the eigenspaces ��(λ) are subrepresentations of H 2(�).
Assuming that G is finite, with irreducible complex representations S1, . . . , Sr , we
can decompose each eigenspace to its isotypic components:

��(λ) =
r⊕

i=1

�
Si

� (λ), (3.1)

where �
Si

� (λ) ∼= Si ⊕ · · · ⊕ Si as CG-modules.
We start by counting separately, for each irreducible representation S of G, only

the λ-eigenfunctions which reside in �S
�(λ). This means that we are restricting our

attention to functions which under the action of CG span a space that is isomorphic,
as a representation of G, to S. However, since dimS always divides dim�S

�(λ), we
can already normalize by it. We thus define the S-spectrum of � as

σS
� : λ �→ dimC �S

�(λ)/dimC S. (3.2)

By the orthogonality relations of irreducible characters, we can rewrite this as
σS

� (λ) = 〈χS,χ��(λ)〉G, and expanding this linearly, we define the R-spectrum of �,
for every representation R of G, to be

σR
� : λ �→ 〈χR,χ��(λ)〉G. (3.3)

σS
� (λ) has an algebraic significance: it reflects the size of the S-isotypic part of

��(λ). Looking for a parallel algebraic interpretation of σR
� (λ), we find that

σR
� (λ) = dimC HomCG(R,��(λ)).

The Laplacian is naturally defined on H 2(�)S , the S-isotypic component of H 2(�).
A parallel definition for HomCG(R,H 2(�)), with R a general representation, would
be (�f )(r) = �(f (r)) (r ∈ R, f ∈ HomCG(R,H 2(�)). In the language of category
theory, this “Laplacian” is simply the functor HomCG(R,_) applied to �’s Lapla-
cian, i.e., HomCG(R,�). The spectrum of � = HomCG(R,�) corresponds to the
R-spectrum of �, in the sense that

kerHomCG(R,H 2(�))(−λI − �) = HomCG (R,��(λ))

gives σR
� (λ) = dimC kerHomCG(R,H 2(�))(−λI − �). This motivates our central defin-

ition:

Definition 1 Let R be a representation of a group G which acts on a quantum
graph �. A �/R-graph is any quantum graph �′ such that there is an isomorphism
L2(�

′) ∼= HomCG(R,L2(�)) which restricts to an isomorphism of H 2, and com-
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mutes with the Laplacian, i.e.:

H 2
(
�′)

∼=

��′

HomCG(R,H 2(�))

�=HomCG(R,��)

L2
(
�′)

∼=
HomCG (R,L2(�)) .

(3.4)

Applying ker(−λI − �) to (3.4) we obtain ��′(λ) ∼= HomCG(R,��(λ)), which by
taking dimensions translates to an equality of spectra:

σ�′ ≡ σR
� . (3.5)

Since σR
� is not a spectrum of a graph, we cannot really call this isospectrality.

However we do have from this that all �/R-graphs are isospectral to one another, and
we will use this to speak non-rigorously about “the spectrum of �/R”, σ�/R ≡ σR

� .
The following proposition exhibits another manifestation of isospectrality.

Proposition 2 All �/CG-graphs are isospectral to �.

Proof By (3.1), (3.2), and linearity, the classical spectrum of � coincides with its
CG-spectrum:

σCG
� ≡

r∑

i=1

dimSi · σSi

� ≡ σ�. (3.6)

This can also be deduced from the fact that for every R-module M there is an isomor-
phism HomR(R,M) ∼= M , so that we have HomCG(CG,��(λ)) ∼= ��(λ) for every
eigenvalue λ. �

We can say even more:

Theorem 3 Let � be a quantum graph equipped with an action of G, H a subgroup
of G, and R a representation of H . Then �/R is isospectral to �/IndG

H R.

Proof The Laplacians of �/R and �/IndG
H R are conjugate, by the following dia-

gram:

H 2 (�/R)

��/R

∼=
HomCH

(
R,H 2(�)

) ∼=
HomCG

(
IndG

H
R,H 2(�)

) ∼=
H 2
(
�/IndG

H
R
)

�
�/IndG

H
R

L2 (�/R)

∼=
HomCH (R,L2(�))

∼=
HomCG

(
IndG

H
R,L2(�)

) ∼=
L2

(
�/IndG

H
R
)

.
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The isomorphisms in the middle square are given by the Frobenius Reciprocity the-
orem, and this square is commutative by the naturality of the Frobenius Isomor-
phism. Note that from the formal point of view, we have actually shown that �/R

and �/IndG
H R are identical (as classes of quantum graphs). �

Remark This gives yet another explanation for the equality of the classical spectrum
with that of the regular representation (Proposition 2): for H = {id} and 1H its trivial
representation, it is clear by the isotypic component perspective that H 2(�)1H =
H 2(�), so that (3.6) follows from IndG

H 1H
∼= CG.

Corollary 4 If G acts on � and H1, H2 are subgroups of G with corresponding
representations R1, R2, such that IndG

H1
R1 ∼= IndG

H2
R2, then �/R1 and �/R2 are

isospectral.

Remark This corollary is in fact equivalent to the theorem, which follows by taking
H2 = G, R2 = IndG

H1
R1. It is presented for being of practical usefulness (it allows one

to work with representations of lower dimension, as can be seen in Sect. 5), but also
since it indicates the bridge connecting our method with the classical one of Sunada.
In Sect. 6.3, we shall cross it.

The observations made in this section would be mere algebraic tautologies, unless
we can show that �/R-graphs do exist. The next section is devoted to this purpose.

4 Building �/R-Graphs

In this section we prove the existence of the quotient graphs �/R. This is done by
describing an explicit construction of �/R, given a graph �, a representation R of
some group G acting on the graph, and various choices of bases for this representa-
tion. As the lengthy technical details of the construction might encloud the essence
of the method, the reader may prefer to go over Sect. 5 first, and obtain an intuition
for the construction of the quotient graph from the examples presented there. More
intuition for the construction can be gained from the examples in [15].

We summarize the main conclusions of this section in the following theorem:

Theorem 5 For any representation R of a finite group G, which acts upon a quan-
tum graph �, there exists a generalized �/R quantum graph. Furthermore, if �’s
Laplacian is self-adjoint, then there exists a proper �/R quantum graph, and it is
exact.

4.1 Intuition

A motivation for the construction of our quotient graphs is given by thinking about
it as an “encoding scheme”.3 An element f̃ in HomCG(R,H 2(�)) can be thought

3In Sect. 6 we show that the same construction and motivation can be applied analogously to other geo-
metric systems.
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of as a family of functions on �, parametrized by R. To emphasize this view, we
shall write f̃r instead of f̃ (r) (where r ∈ R). Our goal is to build a new graph,
each of whose H 2-functions encodes exactly one such family. The desired map
� : HomCG(R,H 2(�)) → H 2(�/R) (see Definition 1) is in fact this encoding. An
encoding scheme should always be injective (in order to allow decoding), but we
have also required � to be surjective: this can be translated to the idea that the en-
coding must be “as efficient as possible”4—that �/R is to be a “minimal” graph
allowing such an encoding, since it admits no functions apart from the ones used by
the scheme.

First, we reduce the infinite family f̃ to a finite one by choosing a basis B =
{bj }dj=1 for R, and restricting our attention to {f̃bj

}dj=1. From these “basis functions”

we can reconstruct f̃ , since the CG-linearity of f̃ implies in particular C-linearity
(i.e., f̃	αj bj

=∑αj f̃bj
). As a first encoding attempt we could take a graph with d

times each edge in �, and let the j th copy of the edge e carry the j th basis function
restricted to e. That is, define (�f̃ )|ej

≡ f̃bj
|e . However, this encoding is not efficient

enough, since we have used only C-linearity. For each g ∈ G, CG-linearity implies
that {f̃r |e}r∈R determines {f̃r |ge}r∈R , specifically by

f̃r

∣
∣
ge

≡ (g−1f̃r )
∣
∣
e
≡ f̃g−1r

∣
∣
e

(4.1)

(the inversion occurs since G acts on H 2(�) by g · f = f ◦ g−1). Thus, it suffices to
encode the basis functions on only one edge from each G-orbit of �’s edges.

It turns out that if the action of G on E is free, then apart from determining the
appropriate boundary conditions at the vertices we are done: for {ei}, a choice of
representatives for E/G, setting (�f̃ )|ei

j
≡ f̃bj

|ei (where 1 ≤ j ≤ d) is indeed a

“good” encoding (i.e., once the boundary conditions are correctly stated, � is an
isomorphism.)

If, however, some edge e = {v, v′} has a non-trivial stabilizer Ge = Gv ∩Gv′ , then
greater efficiency can (and therefore must) be achieved. For example, assume that
dimR = 1 and that for some g ∈ Ge we have g /∈ kerρR , where ρR is the structure
homomorphism G → GL1(C). We then have

f̃r

∣
∣
e
≡ f̃r

∣
∣
g−1e

≡ f̃gr

∣
∣
e
≡ f̃ρR(g)·r

∣
∣
e
≡ ρR(g) · f̃r

∣
∣
e

which implies that f̃r |e ≡ 0 for all r , and as a result, the edge e need not have any
representative in the quotient. We can “decode f̃r |e from thin air”, since we know in
advance that it can only be the zero function. The generalization of this observation
is that for each edge e, the information in {f̃r |e}r∈R is encapsulated in RGe 5: if r be-
longs to a nontrivial component of ResG

Ge
R, then f̃r |e ≡ 0. Therefore, we need only

di = dimRG
ei copies of the representative ei in the quotient.6 This further “com-

4In a suitable sense, since better encoding may exist, but we want the encoding to be by another quantum
graph, in a manner which intertwines the corresponding Laplacians.
5RH is the trivial component of ResG

H
R, i.e. RH = {r ∈ R | ∀h ∈ H : hr = r}.

6However, we shall later find it convenient to think about d = dimR copies, where the di + 1 . . . d copies
are “dead”, meaning that whenever a function on them appears in a formula it is to be understood as zero.
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pression” slightly complicates the determination of the boundary conditions. When
G acted freely on the edges, we had d functions, f̃bj

, each satisfying the bound-
ary conditions at the vertices of �, and we could have translated this quite easily to
boundary conditions on the quotient. Now, however, for each edge ei we need to en-
code a “function basis” {f̃bi

j
|ei }, where {bi

j } is a basis for RG
ei . Since for different

ei ’s the spaces RG
ei need not even overlap, we now have only function-chunks, in-

dexed by different R-elements for each edge, and no function on the whole of � to
extract boundary conditions from. Fortunately, algebra is generous and this compli-
cation turns out to be solvable.

4.2 Method

We now present the actual construction procedure. Assume we have a representation
R of a group G acting on the quantum graph � = (E,V ), and we have chosen rep-
resentatives {ẽi}Ii=1 for the orbits E/G, and likewise {ṽk}Kk=1 for V/G. We have also
chosen an ordered basis B = (bj )

d
j=1 for R, and for each i = 1..I another ordered

basis for R, Bi = (bi
j )

d
j=1, such that {bi

j }di

j=1 is a basis for RG
ẽi and each bi

j with

j > di = dimRG
ẽi lies in a nontrivial component of ResG

G
ẽi
R.

The quotient graph �/R obtained from these choices is defined to have {vk}Kk=1
as its set of vertices, and {ei

j }i=1..I
j=1..di

for edges, where each ei
j is of length lẽi . If ẽi

connects gṽk to g′ṽk′ in �, then, for all j , ei
j connects vk to vk′ in �/R. We shall

assume, by adding “dummy” vertices if needed, that G does not carry any vertex in
V to one of its neighbors. This serves two purposes:

(1) It means that �/R has no loops; i.e., that k �= k′ in the notation above. This allows
us to speak of f |ei

j
(v), the value of ei

j at v, without confusion regarding which

end of ei
j is meant.

(2) It assures that an edge is not transformed onto itself in the opposite direction, in
which case we would have had to take only half of the edge as a representative
for its orbit. Differently put, it assures that the fixed points set of each g ∈ G is a
subgraph.

Note that in order that G still act on the graph, the dummy vertices are to be intro-
duced in accordance with its action, i.e., if a vertex is placed at x ∈ (0, lẽ) along ẽ,
one should also be placed at x along gẽ, for every g ∈ G.

We can now define � on HomCG(R,L2(�)):

(
�f̃
)∣
∣
ei
j

def≡ f̃bi
j

∣
∣
ẽi ,

and it is clear that � restricts to a homomorphism from HomCG(R,
⊕

ẽ∈E�
H 2(ẽ))

to
⊕

e∈E�/R
H 2(e), which intertwines the corresponding Laplacians. We shall later

determine vertex conditions for �/R that will ensure that � further restricts to an
isomorphism HomCG(R,H 2(�)) ∼= H 2(�/R), but first we establish some properties
of � which are independent of the boundary conditions. We start by rephrasing (4.1)
basis-wise, and we make the following convention: an expression in bold is to be



448 O. Parzanchevski, R. Band

understood as a row vector of length d , where the #-symbol indicates the place of the
index; e.g., f̃b# |e stands for (f̃b1 |e, . . . , f̃bd

|e).
Consider f̃r |gẽi , an arbitrary function in the family f̃ evaluated on an arbitrary

edge. Write r ∈ R as b · α, where b = (b1, . . . , bd) ∈ M1×d(R) and α ∈ Md×1(C).
r = b · α implies gr = bi

# · [ρR(g)]B
Bi · α, and therefore, by (4.1) we have f̃r |gẽi =

f̃bi
#[ρR(g−1)]B

Bi α
|ẽi . Linearity now implies

f̃r

∣
∣
gẽi ≡ f̃bi

#[g−1]B
Bi α

∣
∣
ẽi ≡ f̃bi

#

∣
∣
ẽi · [g−1]B

Bi · α ≡ (�f̃ )
∣
∣
ei

#
· [g−1]B

Bi · α,

where ρR is understood, f̃bi
#
|ẽi = (f̃bi

1
|ẽi , . . . , f̃bi

d
|ẽi ), and

(�f̃ )
∣
∣
ei

#
= ((�f̃ )

∣
∣
ei

1
, . . . , (�f̃ )

∣
∣
ei
di

,0, . . . ,0
)
,

since for j > di we have seen that f̃bi
j
|ẽi ≡ 0, and we therefore did not include the

corresponding ei
j edge in �/R (it is “dead”—see footnote 6). We now see that for

any f ∈ L2(�/R) the inverse of � must be given by:

(�−1f )b·α
∣
∣
gẽi ≡ f

∣
∣
ei

#
· [g−1]B

Bi · α,

(again [g−1]B
Bi stands for [ρR(g−1)]B

Bi ), so we need to establish that the r.h.s does not
depend on the choice of g. We observe that if g and g′ are two possible choices then
g−1g′ ∈ Gẽi , and by the construction of Bi we have [g−1g′]Bi = ( Idi

0

0 ∗
)
. As we have

agreed that f |ei
#
= (f |ei

1
, . . . , f |ei

di

,0, . . . ,0), we have f |ei
#
· [g−1g′]Bi = f |ei

#
and

thus

f
∣
∣
ei

#
· [g′−1]B

Bi = f
∣
∣
ei

#
· [g−1g′]Bi · [g′−1]B

Bi = f
∣
∣
ei

#
· [g−1]B

Bi ,

so that �−1 is well defined. We thus have an isomorphism � : HomCG(R,L2(�)) ∼=
L2(�/R), which clearly restricts to HomCG(R,

⊕
ẽ∈E�

H 2(ẽ)) ∼=⊕e∈E�/R
H 2(e),

and we are left to handle the boundary conditions.
We now determine matrices Avk

and Bvk
for the vertex vk from the matrices Aṽk

,
Bṽk

of the vertex ṽk . Assume that the edges entering ṽk are g1ẽ
ν1, . . . , gnẽ

νn (where
n = dṽk

), so that a function f on � satisfies the vertex conditions at ṽk when

Aṽk
· f ∣∣

ṽk
+ Bṽk

· f ′∣∣
ṽk

= 0,

where we recall from Sect. 2 that

f
∣
∣
ṽk

= (f ∣∣
g1ẽ

ν1 (ṽk) . . . f
∣
∣
gnẽνn (ṽk)

)T
,

f ′∣∣
ṽk

= (f ′∣∣
g1ẽ

ν1 (ṽk) . . . f ′∣∣
gnẽνn (ṽk)

)T
.

f̃ ∈ HomCG(R,H 2(�)) means that f̃r satisfies the conditions at ṽk for all r ∈ R,
which happens iff the basis functions {f̃bj

}dj=1 satisfy them. Thus, if we define the
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n × d matrix

f̃b|ṽk
=
⎛

⎜
⎝

f̃b1 |g1ẽ
ν1 (ṽk) · · · f̃bd

|g1ẽ
ν1 (ṽk)

...
. . .

...

f̃b1 |gnẽνn (ṽk) · · · f̃bd
|gnẽνn (ṽk)

⎞

⎟
⎠

= ( f̃b1 |ṽk
· · · f̃bd

|ṽk
) =
⎛

⎜
⎝

f̃b# |g1 ẽ
ν1 (ṽk)

...

f̃b# |gnẽνn (ṽk)

⎞

⎟
⎠ ,

and analogously f̃ ′
b|ṽk

, then we need only check that

Aṽk
· f̃b

∣
∣
ṽk

+ Bṽk
· f̃ ′

b

∣
∣
ṽk

= 0n×d . (4.2)

In addition, we note that if the boundary conditions are met by f̃ at ṽk , then they are
also met at any vertex in the orbit G · ṽk , since G’s elements are assumed to preserve
boundary conditions (see Sect. 3).

For a n × m matrix X = ((xij )) we define its row-wise-vectorization to be the
nm × 1 matrix

rvX
def=
⎛

⎜
⎝

(x11, . . . , x1m)T

...

(xn1, . . . , xnm)T

⎞

⎟
⎠= (x11, x12, . . . , x1m,x21, . . . . . . , xnm)T .

Vectorization is linear, and it behaves quite nicely under matrix multiplication.
Specifically, rv(X · Y · Z) = (X ⊗ ZT ) · rvY whenever X · Y · Z is defined. This
allows us to write (4.2) as

(Aṽk
⊗ Id) · rv f̃b

∣
∣
ṽk

+ (Bṽk
⊗ Id) · rv f̃ ′

b

∣
∣
ṽk

= 0nd×1. (4.3)

Recalling that f̃b# |gi ẽ
νi = �f̃ |

e
νi
#

· [g−1
i ]B

Bνi , we have

rv f̃b

∣
∣
ṽk

=
⎛

⎜
⎝

f̃b# |g1 ẽ
ν1 (ṽk)

T

...

f̃b# |gnẽνn (ṽk)
T

⎞

⎟
⎠=

⎛

⎜
⎜
⎝

([g−1
1 ]B

Bν1 )
T · (�f̃ |

e
ν1
#

(vk))
T

...

([g−1
n ]BBνn )T · (�f̃ |eνn

#
(vk))

T

⎞

⎟
⎟
⎠

= diag
([g−1

1 ]BBν1 , . . . , [g−1
n ]BBνn

)T · rv

⎛

⎜
⎜
⎝

�f̃ |
e
ν1
#

(vk)

...

�f̃ |eνn
#

(vk)

⎞

⎟
⎟
⎠

and likewise for rv f̃ ′
b|ṽk

. But now, the last vector is almost �f̃ |vk
, the vector of val-

ues of �f̃ at vk! Only two changes need to be made: first, if the edges entering vk
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are e
μ1
1 , . . . , e

μ1
dμ1

, e
μ2
1 , . . . , e

μm

dμm
, then by definition {μi}mi=1 = {νi}ni=1 as sets; how-

ever, the μi are distinct, whereas in general, repetitions can occur among the νi (i.e.,
two edges in Eṽk

might belong to the same G-orbit). Second, as in all our expres-
sions there might be “dead” edges, e

μi

j with j > dμi
, which do not really appear in

the quotient graph (note, however, that neither of the problems can occur when the
action of G is free). We shall deal with these two inconveniences at once: we de-

fine the n × m matrix (′)ij =
{

1 νi = μj

0 otherwise
, and then take  to be the nd × dvk

matrix obtained by removing from (′ ⊗ Id) the columns {(i − 1) · d + j} 1≤i≤m
dμi

<j≤d
;

these are the columns which would have been multiplied by a “dead” edge in
(�f̃ |

e
μ1
1

. . .�f̃ |
e
μ1
d

�f̃ |
e
μ2
1

. . . . . .�f̃ |eμm
d

)T . We now have

rv

⎛

⎜
⎜
⎝

�f̃ |
e
ν1
#

(vk)

...

�f̃ |eνn
#

(vk)

⎞

⎟
⎟
⎠ =  · (�f̃ |

e
μ1
1

(vk) . . .�f̃ |
e
μ1
dμ1

(vk) . . . . . .�f̃ |eμm
dμm

(vk)
)T

=  · �f̃ |vk
,

and we can thus define

Avk
= (Aṽk

⊗ Id) · G · , (4.4)

Bvk
= (Bṽk

⊗ Id) · G · , (4.5)

where G = diag([g−1
1 ]B

Bν1 , . . . , [g−1
n ]BBνn )T , and finally rewrite (4.3) as

Avk
· �f̃

∣
∣
vk

+ Bvk
· �f̃ ′∣∣

vk
= 0.

These vertex conditions on �f̃ at vk are equivalent to f̃r satisfying the vertex con-
ditions at ṽk for all r ∈ R, and therefore also on the entire orbit G · ṽk . If we re-
peat this process for each k = 1 . . .K , we indeed obtain boundary conditions on
�/R which are satisfied by �f̃ , for f̃ ∈ HomCG(R,

⊕
ẽ∈E�

H 2(ẽ)), exactly when

f̃ ∈ HomCG(R,H 2(�)).
If the action of G is free, then  is just a permutation matrix (we can even order

Evk
so that  = I ), but in the general case  might be non-square (explicitly, it is

of size nd × dvk
, where dvk

=∑m
i=1 dμi

≤ md ≤ nd). When this occurs, the matrices
Avk

and Bvk
we have obtained are not square matrices, and we therefore obtain a quo-

tient which is only a generalized quantum graph. Nevertheless, as the matrices Avk

and Bvk
serve only to represent the system of equations Avk

· f |vk
+ Bvk

· f ′|vk
= 0,

we can perform elementary row operations on the nd × 2dvk
matrix (Avk

| Bvk
) with-

out changing the boundary conditions at vk , and thus perhaps reduce the number of
rows of (Avk

| Bvk
). In the case that rank(Avk

| Bvk
) ≤ dvk

, we can reduce the ma-
trices Avk

and Bvk
to squares ones, and if this holds for all k then we actually have
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a proper quantum graph. If it further happens that rank(Avk
| Bvk

) = dvk
for all k,

then the quotient graph is also exact. We now show sufficient conditions for this to
happen.

Proposition 6 If there exist ω ∈ C
× and M ∈ GLdṽk

(C) such that (Aṽk
| Bṽk

) is
row-equivalent to (ω(M − I ) | M + I ), then rank(Avk

| Bvk
) = dvk

.

Remark We recall from Sect. 2 that this holds for all k when �’s Laplacian is self-
adjoint. Therefore, in this case �/R is exact, as stated in Theorem 5.

Proof Denote ṽ = ṽk , v = vk , and recall that Eṽ = {gi ẽ
νi }ni=1 is the set of edges en-

tering ṽ. Assume, by reordering if necessary, that νi = μi for 1 ≤ i ≤ m, i.e., that
{gi ẽ

νi }mi=1 are representatives for the Gṽ-orbits in Eṽ . Denote ε̃i = gi ẽ
νi = gi ẽ

μi

(where 1 ≤ i ≤ m), and note that Gε̃i is conjugate to Gẽμi . The action of Gṽ

on Eṽ gives rise to a representation C[Eṽ] of Gṽ , and the Gṽ-set isomorphism
Eṽ =∐m

i=1 Gṽ · ε̃i ∼=∐m
i=1

Gṽ//G
ε̃i

(where G//H is the G-set of left H -cosets in G)
translates to an isomorphism of Gṽ-representations:

C[Eṽ] ∼=
m⊕

i=1

C[Gṽ//G
ε̃i
] ∼=

m⊕

i=1

IndGṽ

G
ε̃i

1G
ε̃i
.

Here 1G denotes the trivial representation of a group G, but we shall also use it to
denote its character. We now see that

〈χC[Eṽ], χR〉Gṽ
=
〈
χ⊕m

i=1 Ind
Gṽ
G

ε̃i
1G

ε̃i

, χR

〉

Gṽ

=
m∑

i=1

〈
IndGṽ

G
ε̃i

1G
ε̃i
, χR

〉

Gṽ

=
m∑

i=1

〈1G
ε̃i
, χR〉G

ε̃i
=

m∑

i=1

dimRG
ε̃i

=
m∑

i=1

dimRGẽμi =
m∑

i=1

dμi
= dv. (4.6)

We return to the matrices (Av | Bv) ∈ Mnd×2dv (C) and (Aṽ | Bṽ) ∈ Mn×2n(C). For
f ∈ H 2(�), the action of Gṽ on Eṽ induces a permutation action of Gṽ on the en-
tries of f |ṽ = (f |ẽ(ṽ))ẽ∈Eṽ

, and exactly the same action is induced on the entries
of f ′|ṽ . Thus, the space C

2n of possible values and derivatives at ṽ has naturally the
structure of the Gṽ-representation C[Eṽ] ⊕ C[Eṽ]. Furthermore, as by assumption
G preserves the boundary conditions, ker(Aṽ | Bṽ) ⊆ C

2n is a sub-Gṽ-representation
of C

2n ∼= C[Eṽ] ⊕ C[Eṽ]. We observe that the encoding and decoding processes are
“rigid”, in the sense that for x ∈ [0, lẽi ] it suffices to know {f̃r |ẽi (x)}r∈R to determine
{�f̃ |ei

j
(x)}j=1..di

, and vice versa. Likewise, {f̃r |ṽ}r∈R and �f̃ |v determine one an-

other, and the same goes for the corresponding derivatives. This means that in the
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commutative diagram

HomCG(R,H 2(�))

�

HomCGṽ
(R,ker(Aṽ | Bṽ))

ψ

f̃ (r �→(f̃r |ṽ ,f̃ ′
r |ṽ ))

�f̃ (�f̃ |v,(�f̃ )′|v)

H 2(�/R) ker(Av | Bv)

the map ψ , which is this “local” encoding, is in fact an isomorphism. This gives us

null(Av | Bv) = 〈χR,χker(Aṽ |Bṽ)〉Gṽ
, (4.7)

so that by (4.6)

rank(Av | Bv) = 〈2χC[Eṽ] − χker(Aṽ |Bṽ), χR〉Gṽ
.

We therefore have

rank(Av | Bv) = dv ⇔ 〈χC[Eṽ] − χker(Aṽ |Bṽ), χR〉Gṽ
= 0,

and the last equality holds for all representations R of G if and only if IndG
Gṽ

C[Eṽ] ∼=
IndG

Gṽ
ker(Aṽ | Bṽ). In particular, this happens if C[Eṽ] and ker(Aṽ | Bṽ) are isomor-

phic Gṽ-representations, which we now show to follow from our assumptions.
Observe that ξ : C[Eṽ]⊕C[Eṽ] → C[Eṽ], defined by ξ(a, b) = ωa−b is a homo-

morphism of Gṽ-representations, and recall that ker(Aṽ | Bṽ) is naturally embedded
in C[Eṽ] ⊕ C[Eṽ]. When restricting ξ to ker(Aṽ | Bṽ) we obtain the desired iso-
morphism onto C[Eṽ], since dim ker(Aṽ | Bṽ) = null(ω(M − I ) | (M + I )) = dṽ =
dim C[Eṽ], and

(a, b) ∈ ker

(

ξ

∣
∣
∣
ker(Aṽ |Bṽ)

)

⇒
{

ω(M − I )a + (M + I )b = 0

ωa − b = 0

}

⇒ (a, b) = 0.

�

4.3 Remarks

4.3.1

If G acts on � and R is a representation of H ≤ G, we can consider the composition
of isomorphisms

H 2(�/R)
�−1−→ HomCH (R,H 2(�))

F−→ HomCG(IndG
H R,H 2(�))

ϒ−→ H 2(�/IndG
H R)
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where � and ϒ are the “encoding maps” defined during the constructions of �/R

and �/IndG
H R, respectively, and F is the Frobenius isomorphism.7 We obtain what

is known as a transplantation (see [23, 24]) between �/R and �/IndG
H R, an operator

which constructs functions on one graph as linear combinations of segments of func-
tions on the second graph. Note that the case of two quotients obtained from a single
representation using different bases for the construction is covered as well, by taking
H = G, and F = id . This is developed in more details in [15].

4.3.2

If �′ and �′′ are two �/R-graphs, with corresponding encoding maps � and ϒ , then
the commutative diagram

H 2(�′)

��′

HomCG(R,H 2(�))

∼=
�|HomCG(R,H2(�))

�

ϒ |HomCG(R,H2(�))

∼=
H 2(�′′)

��′′

L2(�
′) HomCG(R,L2(�))

∼=
� ϒ

∼=
L2(�

′′)

gives eigenvalue-isospectrality of �′ and �′′. However, as ϒ ◦ �−1 need not be uni-
tary, in general ��′ and ��′′ are not unitarily equivalent operators. Thus, their general
spectra might differ, and it can also happen that one of them is a self-adjoint operator
and the other is not.

Assume, however, that these graphs are constructed by the method presented
above, with respect to the bases Bi = (bi

j )
d
j=1 for �′ and Bi = (bi

j )
d
j=1 for �′′ (1 ≤

i ≤ I ). Recall that (bi
j )

di

j=1 and (bi
j )

di

j=1 are each a basis for RG
ẽi . Let Pi ∈ GLdi

(C)

be the corresponding change of basis matrix, i.e., (bi
1 . . . bi

di
) · Pi = (bi

1 . . .bi
di

). We

have for any f̃ ∈ HomCG(R,L2(�))

�f̃
∣
∣
ei

#
· Pi ≡ f̃bi

#

∣
∣
ẽi · Pi ≡ f̃

bi
#

∣
∣
ẽi ≡ ϒf̃

∣
∣
ei

#
,

so that ϒ ◦ �−1 is given by diag(P1, . . . ,PI ), where we have identified both L2(�
′)

and L2(�
′′) with

⊕I
i=1(

⊕di

j=1 L2([0, lẽi ])). Thus, the transplantation map ϒ ◦ �−1

is unitary if and only if Pi ∈ U(di) for all i, i.e., the RG
ẽi -bases we have chosen for

the two quotients are unitarily equivalent themselves. When this is so, ��′ and ��′′
are indeed unitarily equivalent operators.

By analyzing the transplantations arising from different representatives for the
action of G on �, or from inducing R to some supergroup in Aut�, one can arrive at
similar criteria for unitary-equivalence of the corresponding Laplacians. In particular,
in [15] is presented an extremely simple transplantation between �/R and �/IndG

H R,
which is unitary.

7Taking the induction to be the scalar extension IndG
H

R = CG ⊗CH R, F : HomCH (R,R′) →
HomCG(IndG

H
R,R′) is defined by linearly extending (F f̃ )g⊗r = g · f̃r .
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Fig. 1 A graph that obeys the
dihedral symmetry of the
square. The lengths of some
edges are marked

4.3.3

It is natural to ask, for a graph � whose Laplacian is self-adjoint, whether the Lapla-
cian on �/R is self-adjoint. This turns out to depend on both the action of G and the
choices of bases in the construction, and it is addressed for some special cases in [15].

4.3.4

Another interesting question is the following: for a quantum graph � acted upon by
G, when does an irreducible representation S of G appear in some eigenspace of
�?8 It is known that every quantum graph with edges whose Laplacian is self-adjoint
has a nonempty spectrum (see for example [22]). Therefore, if �/S’s Laplacian is
self-adjoint then S appears in some eigenspace of � iff �/S has edges, and by the
construction method this happens iff for at least one edge e in � the representation
ResG

Ge
S has a nonempty trivial component, i.e., 〈χS,1〉Ge �= 0. In particular, if �’s

Laplacian is self adjoint, and G acts freely on �, then a self-adjoint quotient can
always be obtained [15], and each stabilizer has only the trivial irreducible repre-
sentation. Thus, every irreducible representation of G appears in some eigenspace
of �.

5 Examples of Isospectral Quantum Graphs

We now demonstrate several applications of the theory presented above which yield
isospectral graphs. All the examples below are direct consequences of the theorem or
the corollary presented in Sect. 3.

Let � be the graph given in Fig. 1. The lengths of the edges are determined by the
parameters a, b, c and it has Neumann boundary conditions at all vertices. G = D4,
the dihedral group of the square, is a symmetry group of �. Denote by τ the reflection
of � along the horizontal axis and by σ the rotation of � counterclockwise by π/2.
Then we can describe G and some of its subgroups H1, H2, H3 ≤ G by:

G = {e, σ, σ 2, σ 3, τ, τσ, τσ 2, τσ 3},
H1 = {e, τ, τσ 2, σ 2},

8This question, in the context of compact Lie groups acting on Riemannian manifolds, is addressed in [21].
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Fig. 2 The three isospectral graphs �/R1,�/R2,�/R3. Neumann boundary conditions are assumed if
nothing else is specified. D stands for Dirichlet boundary conditions and N for Neumann

H2 = {e, τσ, τσ 3, σ 2},
H3 = {e, σ, σ 2, σ 3}.

Consider the following one-dimensional representations of H1, H2 and H3 respec-
tively:

R1 : {e �→ (1), τ �→ (−1), τσ 2 �→ (1), σ 2 �→ (−1) }, (5.1)

R2 : {e �→ (1), τσ �→ (1), τσ 3 �→ (−1), σ 2 �→ (−1) }, (5.2)

R3 : {e �→ (1), σ �→ (i), σ 2 �→ (−1), σ 3 �→ (−i) }. (5.3)

These representations fulfill the condition in Corollary 4: IndG
H1

R1 ∼= IndG
H2

R2 ∼=
IndG

H3
R3 and thus we obtain that �/R1, �/R2 and �/R3 are isospectral (Fig. 2).

We now explain the process of building the graph �/R1. First we give an intuition
which suffices to obtain the quotient in this case, and afterwards we strictly implement
the method that is described in Sect. 4.2. Going back to (3.4), we observe that its
upper-right corner is in our example

HomCH1(R1,H
2(�)) ∼= H 2(�)R1 , (5.4)

where H 2(�)R1 is the R1-isotypic component of H 2(�) (considered as a CH1-
module); the isomorphism is due to the fact that R1 is one-dimensional, and can
be realized by f̃ �→ f̃b , where b is a fixed nonzero vector in R1. In order to construct
�/R1 and have the upper isomorphism H 2(�/R1) ∼= HomCH1(R1,H

2(�)) of (3.4),
we now study the properties of f̃ ∈ H 2(�)R1 . We know (see (5.1)) that τ f̃ = −f̃ ,
which means that f̃ is an anti-symmetric function with respect to the horizontal re-
flection. We deduce that f̃ vanishes on the fixed points of τ (marked with diamonds
in Fig. 3(a)).

In a similar manner, we see that f̃ is symmetric with respect to the vertical reflec-
tion since τσ 2f̃ = f̃ , and therefore the derivative of f̃ must vanish at the correspond-
ing points (the squares in Fig. 3(a)). Furthermore, it is enough to know the values of
f̃ restricted to the first quadrant (the bold subgraph in Fig. 3(a)) in order to deduce
f̃ on the whole graph, using the known action of the reflections, which follows from
f̃ ∈ H 2(�)R1 :

τ f̃ = −f̃ , τσ 2f̃ = f̃ . (5.5)
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Fig. 3 (a) The information we
have on f̃ ∈ H 2(�)R1 .
Diamonds mark the vertices on
which the function vanishes and
squares the vertices with zero
derivative. (b) The quotient
graph �/R1 which encodes this
information. D stands for
Dirichlet boundary conditions
and N for Neumann

Fig. 4 (a) The graph � with the
representatives of E/H1,V/H1
marked in bold (the corners are
not vertices). (b) The resulting
quotient graph �/R1

Our encoding is now complete and the quotient �/R1 is the subgraph which lies
in the first quadrant, with the boundary conditions of Dirichlet and Neumann in the
appropriate locations as was found for f̃ (Fig. 3(b)). The encoding is described by
the map � : HomCH1(R1,H

2(�)) → H 2(�/R1) which is just the restriction map of
functions in H 2(�)R1 ∼= HomCH1(R1,H

2(�)) to the mentioned subgraph. An im-
portant observation is that given f ∈ H 2(�/R1) it is possible to construct a function
f̃ ∈ H 2(�)R1 (using (5.5)), whose restriction to the first quadrant subgraph is f . As
mentioned above, such f̃ is unique, and it follows that � is invertible and thus is an
isomorphism. It is easy to see (by removing all boundary conditions, and admitting all
L2-functions) that this isomorphism extends to L2(�/R1) ∼= HomCH1(R1,L2(�)),
which is the lower edge of (3.4). This ends the intuitive approach and we now pro-
ceed to the rigorous derivation.

First, we add “dummy” vertices to the graph � so that no vertex is carried by
the action of H1 to one of its neighbors, and choose representatives {ẽi}5

i=1 for the
orbits E/H1, and {ṽk}6

k=1 for the orbits V/H1. These representatives are marked in
Fig. 4(a) by bold lines and points. The dummy vertices amongst the representatives
are ṽ1, ṽ2, ṽ5, ṽ6. R1 is one-dimensional, and di = 1 for all i since the stabilizers of all
edges are trivial. Therefore, the quotient graph is formed by taking one copy of each
of the representative edges (Fig. 4(b)). Now, let us determine the boundary conditions
using (4.4), (4.5). For all vertices we have d = 1 and therefore Aṽk

⊗ Id = Aṽk
and
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Bṽk
⊗ Id = Bṽk

. Consider the vertex vk = v3 for which

n = 3, m = 3, dv3 = 3,

g1 = e, ν1 = μ1 = 1, g2 = e, ν2 = μ2 = 2, g3 = e, ν3 = μ3 = 3,

G = I3,  = (′ ⊗ Id) = ′ = I3.

Plugging all this into (4.4), (4.5) and using the boundary conditions on ṽ3 which are

given by Aṽ3 =
( 1 −1 0

0 1 −1
0 0 0

)
, Bṽ3 =

( 0 0 0
0 0 0
1 1 1

)
gives Neumann boundary conditions for

v3 as well: Av3 = Aṽ3, Bv3 = Bṽ3 . Exactly the same treatment can be done for the
vertex v4 and the same boundary conditions are obtained. The case is different for the
vertex v5:

n = 2, m = 1, dv5 = 1,

g1 = e, ν1 = μ1 = 4, g2 = τ, ν2 = μ1 = 4

G =
(

1 0

0 −1

)

,  = (′ ⊗ Id) = ′ =
(

1

1

)

.

The boundary conditions on ṽ5 are of Neumann type as well: Aṽ5 = ( 1 −1
0 0

)
, Bṽ5 =

( 0 0
1 1

)
. This time we obtain

Av5 =
(

1 −1

0 0

)

·
(

1 0

0 −1

)

·
(

1

1

)

=
(

2

0

)

,

Bv5 =
(

0 0

1 1

)

·
(

1 0

0 −1

)

·
(

1

1

)

=
(

0

0

)

.

Av5 and Bv5 are then reduced to square one-dimensional matrices as expected, by
removing the second row in both of them. We remain with Av5 = (2), Bv5 = (0)

which means Dirichlet boundary conditions on the vertex v5. The same boundary
conditions are obtained for v6. Similar derivation for vertices v1, v2 gives Neumann
boundary conditions for each one of them. The rigorous construction thus gives us
the same quotient graph that was obtained by the intuitive method (Figs. 2(a), 3(b)).

The quotient �/R2 can be constructed in a similar manner, and is shown in
Fig. 2(b). We proceed to demonstrate the construction method for the quotient �/R3.9

We first add the corners of the square as dummy vertices to � (ṽ1 in Fig. 5(a) is one
of them). We are not obliged to do so, but it yields a quotient with simpler boundary
conditions. The choice of representatives for the edges and the vertices is shown in
Fig. 5(a) and the resulting quotient in Fig. 5(b).

9This result was obtained with G. Ben-Shach.
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Fig. 5 (a) The graph � with the representatives of E/H3,V/H3 marked in bold. (b) The resulting quotient
�/R3. v2, v3 possess Neumann boundary conditions

The vertices v2 and v3 have Neumann boundary conditions exactly as their prede-
cessors, ṽ2 and ṽ3. For v1 we obtain more interesting boundary conditions:

Aṽ1 =
(

1 −1

0 0

)

, Bṽ1 =
(

0 0

1 1

)

,

n = 2, m = 2, dv1 = 2,

g1 = e, ν1 = μ1 = 1, g2 = σ, ν2 = μ2 = 4,

G =
(

1 0

0 −i

)

,  = (′ ⊗ Id) = ′ = I2,

which gives

Av1 =
(

1 i

0 0

)

, Bv1 =
(

0 0

1 −i

)

. (5.6)

Non-formally speaking, the vertex v1 “applies a factor of i” to the functions that cross
it. The resulting graph is the one that was shown in Fig. 2(c).

In order to exhaust this example, we observe that IndG
H1

R1 ∼= IndG
H2

R2 ∼= IndG
H3

R3

is the two-dimensional irreducible representation of D4, which we denote by R. By
Theorem 3, the isospectral family of the three graphs given in Fig. 2 can be ex-
tended by adding any �/R-graph. We therefore construct now such a graph. Let us
use the intuitive approach first. Recall that (5.4) was the key for the intuitive con-
struction of �/R1. Analogously to (5.4), we make the observation that encoding
HomCG(R,H 2(�)), the upper-right corner of (3.4), is similar in nature to encod-
ing H 2(�)R , the R-isotypic component of H 2(�), due to the simplicity of R as a
CG-module. This can be understood as follows: making a choice of a basis {b1, b2}
for R, and given a function f̃ ∈ HomCG(R,H 2(�)), we have that f̃b1, f̃b2 ∈ H 2(�)R

and furthermore {f̃b1, f̃b2} spans over C a CG-module isomorphic to R. In order to
exhibit the general behavior we avoid sparse matrices, and pick a basis {b1, b2} for
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Fig. 6 (a) Two copies of the graph � with the representatives of E/D4,V/D4 marked in bold. These two
copies are merely a visualization of the “basis functions” f̃b1 , f̃b2 on �. (b) The first stage in the formation
of �/R is the gluing of both copies in the vertex v4, with the boundary conditions given in (5.14)

which the matrix representation of R is
{

τσ 2 �→ 1
2

( −1 −√
3

−√
3 1

)

, τσ 3 �→ 1
2

(√
3 −1

−1 −√
3

)}

. (5.7)

It is enough to consider only the matrices of these two elements for the construction
of the quotient.

Examine the properties of f̃b1 , f̃b2 that follow from the above matrix represen-
tation (Fig. 6(a)). Since f̃ ∈ HomCG(R,H 2(�)) we have τσ 3f̃b1 = f̃(τσ 3)−1b1

=
f̃τσ 3b1

, and thus the first column of the matrix representing τσ 3 tells us that

τσ 3f̃b1 =
√

3

2
f̃b1 − 1

2
f̃b2, (5.8)

τσ 3f̃ ′
b1

=
√

3

2
f̃ ′

b1
− 1

2
f̃ ′

b2
(5.9)

and enables us to relate the values and the derivatives of f̃b1, f̃b2 on the vertex ṽ4.
Since ṽ4 is a fixed point under the action of τσ 3 and there are Neumann boundary
conditions on it, we have that

(
τσ 3f̃b1

)∣
∣
ẽ3

(ṽ4) = f̃b1

∣
∣
ẽ3

(ṽ4), (5.10)

(
τσ 3f̃ ′

b1

)∣
∣
ẽ3

(ṽ4) = −f̃ ′
b1

∣
∣
ẽ3

(ṽ4). (5.11)

Evaluating (5.8) on v4 and combining this with (5.10) gives

(

1 −
√

3

2

)

f̃b1

∣
∣
ẽ3

(ṽ4) + 1

2
f̃b2

∣
∣
ẽ3

(ṽ4) = 0. (5.12)

Similarly, from (5.9) and (5.11) we obtain

(

−1 −
√

3

2

)

f̃ ′
b1

∣
∣
ẽ3

(ṽ4) + 1

2
f̃ ′

b2

∣
∣
ẽ3

(ṽ4) = 0. (5.13)
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Fig. 7 The quotient graph �/R

which is isospectral to the
graphs in Fig. 2. The boundary
conditions are as described in
(5.14), (5.15)

Fig. 8 (a) The graph � with the representatives of E/D4,V/D4 marked in bold. (b) The resulting quo-
tient �/R

We may therefore think of two copies of the graphs. Each of the basis functions
f̃b1, f̃b2 resides on one of the copies, and the relations between the values and the
derivatives of the functions allow us to take a subgraph out of each copy (marked
in bold in Fig. 6(a)) and glue both of them together with the appropriate boundary
conditions. The first stage in this gluing process, visualized in Fig. 6(b), is to identify
the vertex ṽ4 in the two copies and turn it into the vertex v4 of the quotient with the
boundary conditions that were derived in (5.12), (5.13):

Av4 =
(

1 − √
3/2 1/2

0 0

)

, Bv4 =
(

0 0

−1 − √
3/2 1/2

)

. (5.14)

After treating similarly vertices ṽ1, ṽ2 we get the quotient �/R (Fig. 7) whose re-
maining boundary conditions are given by:

Av1 = Av2 =
(

3/2
√

3/2

0 0

)

, Bv1 = Bv2 =
(

0 0

−1/2
√

3/2

)

. (5.15)

We now use the rigorous approach for the same quotient, �/R. The representatives
of the orbits E/G are {ẽi}3

i=1 and the representatives of V/G are {ṽk}4
k=1 (Fig. 8(a)).

This time the representation is not one-dimensional (d = 2) so there are additional
details to consider. First, note that we have two copies of each representative of E/G

in the quotient and both of the copies “survive” since all edges have trivial stabilizers
(Fig. 8(b)). This last observation ensures that we can take Bi = B for all i (i.e.,
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the same basis for all edges). We again take B to be the basis for which the matrix
representation of R is (5.7).

We treat the boundary conditions at the vertices one by one:

• v4 has the following data:

n = 2, m = 1, dv4 = 2, g1 = e, ν1 = μ1 = 3, g2 = τσ 3, ν2 = μ1 = 3,

 = (′ ⊗ Id) =
(

1

1

)

⊗ I2 =

⎛

⎜
⎜
⎜
⎝

1 0

0 1

1 0

0 1

⎞

⎟
⎟
⎟
⎠

.

Aṽ4,Bṽ4 are the regular Neumann matrices and we therefore obtain

Av4 =

⎛

⎜
⎜
⎜
⎝

1 0 −1 0

0 1 0 −1

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0
√

3
2 − 1

2

0 0 − 1
2 −

√
3

2

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

1 0

0 1

1 0

0 1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

1 −
√

3
2

1
2

1
2 1 +

√
3

2

0 0

0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

Bv4 =

⎛

⎜
⎜
⎜
⎝

0 0 0 0

0 0 0 0

1 0 1 0

0 1 0 1

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0
√

3
2 − 1

2

0 0 − 1
2 −

√
3

2

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

1 0

0 1

1 0

0 1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0 0

0 0

1 +
√

3
2 − 1

2

− 1
2 1 −

√
3

2

⎞

⎟
⎟
⎟
⎠

.

Noting that both Av4 and Bv4 are of rank one, we see that they express the same
boundary conditions as given in (5.14).

• v1 obviously has the same boundary conditions as v2. We examine v1:

n = 2, m = 1, dv1 = 2, g1 = e, ν1 = μ1 = 1, g2 = τσ 2, ν2 = μ1 = 1,

 = (′ ⊗ Id) =
(

1

1

)

⊗ I2 =

⎛

⎜
⎜
⎜
⎝

1 0

0 1

1 0

0 1

⎞

⎟
⎟
⎟
⎠

.

Again, Aṽ1 and Bṽ1 are the regular Neumann matrices and we get:

Av1 =

⎛

⎜
⎜
⎜
⎝

1 0 −1 0

0 1 0 −1

0 0 0 0

0 0 0 0

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 − 1
2 −

√
3

2

0 0 −
√

3
2

1
2

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

1 0

0 1

1 0

0 1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

3
2

√
3

2√
3

2
1
2

0 0

0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

Bv1 =

⎛

⎜
⎜
⎜
⎝

0 0 0 0

0 0 0 0

1 0 1 0

0 1 0 1

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 − 1
2 −

√
3

2

0 0 −
√

3
2

1
2

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

1 0

0 1

1 0

0 1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

0 0

0 0
1
2 −

√
3

2

−
√

3
2

3
2

⎞

⎟
⎟
⎟
⎠
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which are matrices of rank one and again we may reduce these matrices into two
dimensional ones which are exactly those given in (5.15).

• The case of v3 is a bit more interesting:

n = 3, m = 3, dv3 = 6,

g1 = e, ν1 = μ1 = 1, g2 = e, ν2 = μ2 = 2, g3 = e, ν3 = μ3 = 3,

 = (′ ⊗ Id) = I3 ⊗ I2 = I6.

As Aṽ3 and Bṽ3 are Neumann matrices, we have

Av3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 1 0 −1 0

0 0 0 1 0 −1

0 0 0 0 0 0

0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

· I6 · I6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 −1 0 0 0

0 1 0 −1 0 0

0 0 1 0 −1 0

0 0 0 1 0 −1

0 0 0 0 0 0

0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Bv3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 1 0 1 0

0 1 0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

· I6 · I6 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 1 0 1 0

0 1 0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and we see that the above boundary conditions separate the edges into two sets,
{e1

1, e
2
1, e

3
1} and {e1

2, e
2
2, e

3
2}, each dominated by a regular Neumann condition.

This enables us to split the vertex v3 into two distinct vertices of degree 3, each
connected to a different set of edges and possessing Neumann boundary condi-
tions. We remark that this would happen for any choice of basis for R, as here
g1 = g2 = g3 = e.

Note that the resulting quotient is the same as was obtained previously (Fig. 7).
Finally, we repeat the construction for an arbitrary choice of basis which yields an

orthogonal matrix representation for R. We can parametrize such a representation in
the following way:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τσ 2 �→
(

cos2 θ − sin2 θ −2 cos θ sin θ

−2 cos θ sin θ − cos2 θ + sin2 θ

)

,

τσ 3 �→
(

2 cos θ sin θ cos2 θ − sin2 θ

cos2 θ − sin2 θ −2 cos θ sin θ

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

For example, the basis we chose in (5.7) is obtained by θ = π/3. As remarked, v3
always splits into two vertices with Neumann conditions, so that Fig. 7 can describe
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the quotient with respect to any basis. For the parametrization above, we obtain the
following boundary conditions:

Av1 = Av2 =

⎛

⎜
⎜
⎜
⎝

2 sin2 θ sin 2θ

sin 2θ 2 − 2 sin2 θ

0 0

0 0

⎞

⎟
⎟
⎟
⎠

, Av4 =

⎛

⎜
⎜
⎜
⎝

1 − sin 2θ 2 sin2 θ − 1

2 sin2 θ − 1 1 + sin 2θ

0 0

0 0

⎞

⎟
⎟
⎟
⎠

,

Bv1 = Bv2 =

⎛

⎜
⎜
⎜
⎝

0 0

0 0

2 − 2 sin2 θ − sin 2θ

− sin 2θ 2 sin2 θ

⎞

⎟
⎟
⎟
⎠

, Bv4 =

⎛

⎜
⎜
⎜
⎝

0 0

0 0

1 + sin 2θ 1 − 2 sin2 θ

1 − 2 sin2 θ 1 − sin 2θ

⎞

⎟
⎟
⎟
⎠

.

All of these matrices are of rank one, and can therefore be reduced to square ones
by deleting the appropriate rows.10 We thus get a continuous family of isospectral
graphs. Examine two members of this family: θ = 0 and θ = 3π/4. The boundary
conditions for the case θ = 0 are:

Av1 = Av2 =
(

0 2

0 0

)

, Av4 =
(

1 −1

0 0

)

,

Bv1 = Bv2 =
(

2 0

0 0

)

, Bv4 =
(

0 0

1 1

)

.

When applying this to Fig. 7, we notice that the vertices v1, v2 do not stay vertices of
degree two, but rather, each of them splits into two vertices of degree one, one with
Dirichlet boundary condition, and the other with Neumann. The vertex v4, however,
stays connected and obtains Neumann boundary conditions. Observe that the result-
ing quotient is the one that we have already obtained as �/R1 (Fig. 2(a)). In a similar
manner, the quotient �/R2 (Fig. 2(b)) is obtained from the choice θ = 3π/4. We con-
clude by pointing out that the graph described in Fig. 7 is a good prototype for the
mentioned isospectral family, yet it might also be misleading, since there are mem-
bers of the family whose boundary conditions tear apart the edges connected to some
of the vertices and thus change the connectivity of the graph (boundary conditions
with this property are called “decoupling” in [12, 13]). One should also pay attention
to the fact that we have treated only orthogonal representations of D4. These are not
the most general ones, and we may extend the isospectral family presented above
by considering the broader case of all matrix representations of R. In particular, the
quotient �/R3 (Fig. 2(c)) is obtained from the unitary representation

{

σ �→
(

i 0

0 −i

)

, τ �→
(

0 −1

−1 0

)}

.

10However, there is no a priori reduction which is valid for all θ !
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6 Isospectral Manifolds and Complexes

We now take � to be a Riemannian manifold, possibly with a boundary, at which
differential boundary conditions are imposed. If � admits an action of a finite group
G, we can retrace the definitions and results of Sect. 3: the eigenspaces ��(λ) =
ker(λI −�) are again representations of G, where � is the Laplace-Beltrami operator
(or any differential operator, for that matter), and again we define �’s R-spectrum by
σR

� : λ �→ 〈χR,χ��(λ)〉G.
In order to simplify the presentation, we limit our attention to

⊕
λ∈C

��(λ), the
space spanned by the Laplacian’s eigenfunctions, which we denote by H(�). For a
representation R of G, we define a �/R-manifold to be any Riemannian manifold �′
such that there is an isomorphism

H(�′) ∼= HomCG(R, H(�)) (6.1)

intertwining the Laplacian (which is again defined on HomCG(R, H(�)) by (�f )(r)

= �(f (r))). Note that (6.1) is simply what one gets from (3.4) upon restricting one’s
attention to H. As before, the eigenvalue spectrum of �/R is well-defined and equals
the R-spectrum of �, as from

HomCG(R,��(λ)) = kerHomCG(R,H(�))(λI − �) ∼= kerH(�/R)(λI − �)

we obtain

σ�/R(λ) = dim HomCG(R,��(λ)) = 〈χR,χ��(λ)〉G = σR
� (λ).

The algebra underlying the rest of Sect. 3 remains valid in the new settings, and gives
us that �/CG is isospectral to �, and that for a representation R of H ≤ G, �/R

and �/IndG
H R are isospectral, from which follows that for representations R1,R2 of

H1,H2 ≤ G satisfying IndG
H1

R1 ∼= IndG
H2

R2, �/R1 and �/R2 are isospectral.
The reader might thus wonder why have we focused on quantum graphs, until

now. The main reason is that under fairly moderate assumptions (e.g., self-adjoint
Laplacian or a free action) one can actually produce a quotient graph for every repre-
sentation, as is demonstrated in Sect. 4. Graphs are one-dimensional manifolds with
singularities (at the vertices), and it is these singularities that we exploit, by endowing
them with the appropriate boundary conditions, to encapsulate the restrictions arising
from a choice of a representation. In higher dimensions, manifolds with a boundary,
carrying Neumann, Dirichlet, or a more complicated boundary condition, are a gener-
alization of this idea, and one goal of this section is to demonstrate that some known
examples of isospectral manifolds can be understood by our theory. That is, we show
that for some known isospectral pairs the manifolds and their boundary conditions are
such that they are quotients (in the sense of (6.1)) of a common covering manifold by
two representations with isomorphic inductions in some supergroup of symmetries.

It turns out, however, that in order to form a quotient by a general representa-
tion we need more singularities than just boundaries (at least via our construction).
A graph is a one-dimensional manifold when all of its vertices are of degree two, and
a manifold with boundary when all vertices are of degree at most two. Unfortunately,
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Fig. 9 The two isospectral
domains presented in [26],
obtained as quotients of the
square S (Fig. 10) by the
representations (5.1), (5.2).
Solid lines indicate Dirichlet
boundary conditions and dotted
ones Neumann

even if a graph has one of these properties, its quotient by a multidimensional rep-
resentation (as constructed in Sect. 4) need not have either, since the degrees of the
vertices are multiplied, in general, by the dimension of the representation (they can
decrease due to nontrivial stabilizers and decoupling).

Carrying over the construction method of Sect. 4 to general Riemannian mani-
folds (e.g., by replacing graphs with higher dimensional simplicial structures) yields
objects we might call “quantum-complexes”. In general, these consist of several Rie-
mannian manifolds of the same dimension “glued” along their boundaries by homo-
geneous boundary conditions (so in dimension one, we obtain the notion of quantum
graphs). When a boundary condition involves the boundaries of more than two man-
ifolds, the result is no longer a manifold.11 We remark that this gives Corollary 4 an
additional significance, as it shows that working with representations of lower dimen-
sion is not only a computational convenience, but also leads to quotients with simpler
singularities, or none at all.

6.1 Isospectral Drums

In [25, 26], Jakobson et al., and Levitin et al., respectively, obtain several examples
of isospectral domains with mixed Dirichlet-Neumann boundary conditions, all of
which can be interpreted as quotients with respect to representations sharing a com-
mon induction. As a basic demonstration of the generalization of our theory to higher
dimensions, we reconstruct an isospectral pair consisting of a square and a triangle
with mixed boundary conditions (Fig. 1 in [26], 9 here).

This example rests upon our acquaintance D4, so that we can reuse the defini-
tions and results of Sect. 5. In place of the graph in Fig. 1, we now consider the full
square S, with Dirichlet boundary conditions, and with G = D4 acting as one would
expect (Fig. 10).

The domains in Fig. 9 are quotients of the square S (Fig. 10) by the representa-
tions R1 and R2 of H1,H2 ≤ G, which are defined in (5.1), (5.2). Since IndG

H1
R1 ∼=

IndG
H2

R2, the two domains are isospectral.
We demonstrate the construction of S/R1. As before, HomCH1(R1, H(S)) ∼=

H(S)R1 (since R1 is one-dimensional), hence H(S/R1) should encode the R1-
isotypic component of H(S). T, the first quadrant of S (Fig. 11(a)), is a fundamental
domain for the action of H1, so that given f ∈ H(T) it is possible to construct at

11But even though this is in general the case, by choosing an appropriate action, representation and bases,
it is possible to obtain manifolds even when taking a quotient by a multidimensional representation, due
to the mentioned phenomena of stabilizers and decoupling.
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Fig. 10 The square S, and the
axes of reflection elements
in D4

Fig. 11 (a) The fundamental
domain T for S/H1; every
f̃ ∈ H(S)R1 vanishes along the
dashed line and has zero normal
derivative at the dotted line.
(b) The quotient planar domain
S/R1 which encodes this
information. The solid lines
represent Dirichlet boundary
conditions and the dotted one
Neumann

most one function in H(S)R1 whose restriction to T is f . Thus, the restriction map
� : H(S)R1 → H(T) is injective. In order for it to be surjective, we must impose suit-
able boundary conditions on T. From (5.1) we obtain information on f̃ ∈ H(S)R1 .
Since such f̃ is anti-symmetric with respect to the action of τ , it must vanish at the
horizontal axis of reflection, and therefore every f ∈ im� vanishes at the lower edge
of T. Similarly, every f̃ ∈ H(S)R1 is symmetric with respect to τσ 2, so that its nor-
mal derivative at the vertical axis of reflection is zero, and thus all functions in im�

have vanishing normal derivatives at the left edge of T. This information, summa-
rized in Fig. 11(a), suggests the domain presented in Fig. 11(b) as the quotient S/R1:
a square identical to T, three of whose edges have Dirichlet boundary condition and
one Neumann.

Once these boundary conditions are imposed on S/R1, � is indeed onto: for
f ∈ H(S/R1) which obeys them, we define a function f̃ on S by f̃ |T = f , τ f̃ = −f̃ ,
τσ 2f̃ = f̃ , σ 2f̃ = −f̃ . While f̃ is well defined on the vertical τσ 2-axis even if f

does not obey any boundary conditions, it is the requisition that f vanish on the
lower edge of S/R1 that guarantees that f̃ is well defined on the horizontal τ -axis.
In a similar manner, while at the τ -axis the two one-sided normal derivatives of f̃

agree a priori, it is the Neumann condition at the left edge of S/R1 which ensures
this at the τσ 2-axis. The boundary conditions thus assure that f̃ is well defined
and continuously differentiable, and being piecewise smooth and a sum of Lapla-
cian eigenfunctions, it is smooth, and therefore in H(S), so that f = �f̃ ∈ im� . As
� and its inverse are linear and commute with the Laplacian, we have established
HomCH1(R1, H(S)) ∼= H(S)R1 ∼= H(S/R1), as the definition of a S/R1-domain in
(6.1) calls for.

Analogously, from the properties of f̃ ∈ H(S)R2 we can deduce the corresponding
quotient S/R2. This process is summarized in the two parts of Fig. 12.
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Fig. 12 (a) The information we
have on f̃ ∈ H(S)R2 : it
vanishes along the dashed line
and has zero normal derivative
at the dotted line. (b) The
quotient planar domain S/R2
which encodes this information.
The solid lines represent
Dirichlet boundary conditions
and the dotted one Neumann

We remark that the various constructions demonstrated in Sect. 5 can be applied
analogously to S, enriching the isospectral pair in Fig. 9. For example, S/R3 would
be an orbifold with a line that applies a factor of i to functions crossing it. The other
isospectral families in [25, 26] can be obtained from various representations of the
general dihedral groups Dn, and of the product D4 × D4. The interested reader will
find some of these constructions in [15].

6.2 The Gordon-Webb-Wolpert Drums

In a similar fashion, we can apply our method to the Gordon-Webb-Wolpert construc-
tion [3, 4], obtaining their isospectral planar domains with new boundary conditions.
We follow the exposition of Buser et al. [5], who obtain the mentioned drums as
follows: they consider G0, a group of motions of the hyperbolic plane H (∗444 in
Conway’s orbifold notation), and an epimorphism π : G0 � G = PSL3(2). In G

they exhibit two subgroups A and B , each isomorphic to S4, that satisfy the Sunada
condition [1] with respect to G. The quotients of H by π−1(A) and π−1(B) are iso-
metric domains. Both are composed of seven copies of a hyperbolic triangle (which
is a fundamental domain for the action of G0), assembled in different configurations
(which are determined by the coset structure of the pre-images). Finally, by replacing
the fundamental hyperbolic triangle with a suitable Euclidean one, the non-isometric
isospectral drums of Gordon et al. are obtained.

An elegant formulation of the Sunada condition for H1 and H2 in G is that the
inductions of the trivial representations 1H1 and 1H2 to G are isomorphic, i.e.

IndG
H1

1H1
∼= IndG

H2
1H2 . (6.2)

In fact, the connection between A and B is stronger than this (reflecting a line-
point duality in the Fano plane): it turns out that for every representation R of S4,
IndG

AR ∼= IndG
BR. For each such R, we can thus construct an isospectral pair by tak-

ing the quotient of H by the pullbacks of R to π−1(A) and π−1(B). Taking R = 1S4

will produce once again the planar drums of Gordon et al. In fact, we shall see in
Sect. 6.3 that taking quotient (in our sense) by the trivial representation of a group is
equal to taking quotient (in the classical sense) by the group. Taking R to be the sign
representation of S4, and again replacing the fundamental hyperbolic triangles with
Euclidean ones, we obtain the same drums but with different boundary conditions
(Fig. 13).
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Fig. 13 The isospectral drums
of Gordon et al. with new
boundary conditions

We conclude this example by pointing out that in [5] a wide variety of isospectral
pairs is presented, using various symmetry groups of H. All these examples can be
exploited to construct other isospectral pairs, as isomorphic inductions may be found
either from Sunada triples or by taking appropriate sums of irreducible representa-
tions.

6.3 The Sunada Method

We recall the classical theorem of Sunada [1]:

If G acts freely on a Riemannian manifold �, and H1,H2 ≤ G satisfy (6.2),
then �/H1 and �/H2 are isospectral manifolds.

Sunada’s theorem follows from our theory, once we show that for a finite group G

acting freely on a manifold �, the quotient manifold �/G is a �/1G-manifold, that
is,

H(�/G) ∼= HomCG(1G, H(�)). (6.3)

This follows from the observation that HomCG(1G,L2(�)) corresponds naturally
to L2(�)1G = L2(�)G, the trivial component of L2(�), and this is the space of L2-
functions on � which are stable under all elements of G. But these are exactly the
functions which factor through �/G, hence L2(�/G) ∼= HomCG(1G,L2(�)), and in
particular (6.3) follows.

Remark We can view the preceding argument as yet another proof for Sunada’s theo-
rem, but this would be presumptuous. In fact, Pesce [27] uses Frobenius Reciprocity
in exactly the same manner to reprove Sunada’s theorem. A survey of different proofs
for Sunada’s theorem, among them Pesce’s, can be found in [10].

7 Summary and Open Questions

The main construction presented in this paper is that of objects denoted �/R, where
R is a complex representation of a finite group acting on a geometric object �. For
such � and R there can be, in general, many objects so denoted, and they are all
isospectral to one another. Furthermore, these objects are defined so that whenever
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HomCH1(R1,_) ∼= HomCH2(R2,_), where each Ri is a representation of a group Hi

acting on �, there is also isospectrality between �/R1 and �/R2. The consequences
of this are explored in Sect. 3, and in particular we find two convenient means for the
construction of isospectral objects:

Starting with a group G: take subgroups H1,H2 ≤ G and corresponding repre-
sentations R1,R2 sharing a common induction in G.12 For any object � on which G

acts by symmetries, �/R1 and �/R2 are isospectral.
Starting with an object �: find a group G acting on � and construct �/CG (by

some choice of representatives and bases, as explained in Sect. 4.2). Any quotient
thus obtained is isospectral to � itself, by the analogue of Proposition 2 for arbitrary
geometric objects.

It is natural to ask to what extent the various methods for obtaining isospectral
objects overlap. For example, in Sect. 5, three isospectral graphs (Fig. 2) are obtained
from representations with isomorphic inductions. However, at the end of the same
section it is demonstrated that all of them (together with others) could have also been
obtained as �/R for a single R, their induction, by different choices of bases. Can
one expect that given a basis for R, there is always a basis for IndG

H R with respect to
which �/R and �/IndG

H R are isometric?
Even when limiting to the basic quotient construction, questions arise. For R and

� as above, we have a family of isospectral objects �/R, varying as one moves be-
tween different choices of bases in the construction, as explained in Sect. 4.2 and
demonstrated in the last part of Sect. 5. This family has the topology of a manifold,
being parametrized by the action of a general linear group on the space of possible
bases. Surveying this continuum of quotient objects, one might ask where along it do
changes occur in the shape of the objects (in contrast with only boundary condition
changes), in the number of connected components, etc. One can look for certain types
of objects in this continuum, such as manifolds, billiards, objects with real bound-
ary conditions, or ones with a self-adjoint Laplacian. Such questions seem to lead
to a deeper research in differential and algebraic geometry, investigating the critical
points at which changes occur or the algebraic varieties at which certain conditions
are fulfilled. Except for the basic demonstration of these phenomena in Sect. 5, we
have not treated these questions.

We list some more questions that seem interesting, and which we have not re-
garded:

• � is naturally a �/CG-graph. Does it occur by our construction? It seems that the
answer is yes, by taking G as a basis for CG, but we have not shown this.

• Given two isospectral objects, can it be decided algorithmically whether they are
representation-quotients of a common object? Can it be done given a transplanta-
tion between the two?

12This resembles the Sunada condition, but is dramatically easier to achieve, since we are free to take
any representations of the subgroups (instead of only the trivial ones). A systematic approach would be
to take all irreducible characters of subgroups of G, induce them to G, find linear dependencies, and sum
the corresponding representations accordingly. Also, any H1 and R1 are usable with H2 = G, by taking
R2 = IndG

H1
R1.
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• What are the necessary and sufficient conditions for the quotients constructed in
Sect. 4.2 to be proper quotient graphs (in contrast with generalized ones)? Exact
quantum graphs? Graphs with a self-adjoint Laplacian?

• Can the isomorphism (3.4) be understood as natural, in a suitable category? This
can be interpreted both as (contravariant) functoriality in R, or as functoriality in
�, which would require a definition of quantum graph morphisms.

• Can the theory presented in this paper be applied to discrete graphs? To represen-
tations of Lie groups acting on Riemannian manifolds?

• It is clear that H(� � �′) = H(�) ⊕ H(�′), so that σ���′ ≡ σ� + σ�′ , and given
bases for R and R′, their union is a basis for R⊕R′ with respect to which �/R⊕R′
is isometric to �/R � �/R′ (see [15], 9.3 for an example). Is there an operation ⊗
on graphs, or general geometric object, which gives H(� ⊗ �′) = H(�) ⊗ H(�′),
so that σ�⊗�′ ≡ σ� · σ�′? What about convolution: σ���′ ≡ σ� � σ�′?

• A classical conjecture, originally aimed at Riemannian manifolds13 [28]: for G =
Aut�, and R =⊕r

i=1 Si , where {Si}ri=1 are the irreducible representations of G, is
σR

� ≤ 1?

Acknowledgements It is an honor to acknowledge U. Smilansky, who is the initiator of this work and
an enthusiastic promoter of it, and a pleasure to thank Z. Sela for his support and encouragement. We
are grateful to M. Sieber for sharing with us his notes, which led to the construction of the isospectral
pair of dihedral graphs. We are indebted to I. Yaakov whose wise remark has led us to examine induc-
tions of representations. It is a pleasure to acknowledge G. Ben-Shach for the fruitful discussions which
promoted the research. We thank D. Schüth for the patient examination of the work and the generous
support, and P. Kuchment for his essential help with analysis over quantum graphs. The comments and
suggestions offered by J. Brüning, L. Friedlander, S. Gnutzmann, O. Post, Z. Rudnick, and M. Solomyak
are highly appreciated. The work was supported by the Minerva Center for non-linear Physics and the
Einstein (Minerva) Center at the Weizmann Institute, by an ISF fellowship, and by grants from the GIF
(grant I-808-228.14/2003), and BSF (grant 2006065).

References

1. Sunada, T.: Riemannian coverings and isospectral manifolds. Ann. Math. 121, 169–186 (1985)
2. Kac, M.: Can one hear the shape of a drum? Am. Math. Mon. 73, 1–23 (1966)
3. Gordon, C., Webb, D., Wolpert, S.: One cannot hear the shape of a drum. Bull. Am. Math. Soc. 27,

134–138 (1992)
4. Gordon, C., Webb, D., Wolpert, S.: Isospectral plane domains and surfaces via Riemannian orbifolds.

Invent. Math. 110, 1–22 (1992)
5. Buser, P., Conway, J., Doyle, P., Semmler, K.-D.: Some planar isospectral domains. Int. Math. Res.

Not. 9, 391–400 (1994)
6. von Below, J.: Can one hear the shape of a network. In: Partial Differential Equations on Multi-

structures. Lecture Notes in Pure and Applied Mathematics, vol. 219, pp. 19–36. Dekker, New York
(2000)

7. Milnor, J.: Eigenvalues of the Laplace operator on certain manifolds. Proc. Natl. Acad. Sci. USA 51,
542 (1964)

8. Gordon, C., Perry, P., Schueth, D.: Isospectral and isoscattering manifolds: A survey of techniques
and examples. Contemp. Math. 387, 157–179 (2005)

9. Brooks, R.: Constructing isospectral manifolds. Am. Math. Mon. 95, 823–839 (1988)
10. Brooks, R.: The Sunada method. Contemp. Math. 231, 25–35 (1999)

13This question, in the context of quantum graphs, was suggested to us by L. Friedlander.



Linear Representations and Isospectrality with Boundary Conditions 471

11. Gnutzmann, S., Smilansky, U.: Quantum graphs: Applications to quantum chaos and universal spec-
tral statistics. Adv. Phys. 55, 527–625 (2006)

12. Kuchment, P.: Quantum graphs: I. Some basic structures. Waves Random Media 14, S107 (2004)
13. Kuchment, P.: Quantum graphs: An introduction and a brief survey. In: Proc. Symp. Pure Math.,

pp. 291–314. AMS, Providence (2008)
14. Kostrykin, V., Schrader, R.: Neumann’s rule for quantum wires. J. Phys. A 32, 595–630 (1999)
15. Band, R., Parzanchevski, O., Ben-Shach, G.: The isospectral fruits of representation theory: Quantum

graphs and drums. J. Phys. A 42, 175202 (2009)
16. Gutkin, B., Smilansky, U.: Can one hear the shape of a graph? J. Phys. A 31, 6061–6068 (2001)
17. Roth, J.P.: Le spectre du Laplacien sur un graphe. In: Proceedings of the Colloque J. Deny Orsay

1983, Lect. Not. Math., vol. 1096, pp. 521–539 (1984)
18. Oren, I.: Private communication (2008)
19. Shapira, T., Smilansky, U.: Quantum graphs which sound the same. In: Khanna, F., Matrasulov, D.

(eds.) Nonlinear Dynamics and Fundamental Interactions. NATO Science Series II: Mathematics,
Physics and Chemistry, vol. 213, pp. 17–29 (2005)
The updated reference for item 19 (Tashkent) is: Shapira, T., Smilansky U.: Quantum graphs which
sound the same. In:

20. Band, R., Shapira, T., Smilansky, U.: Nodal domains on isospectral quantum graphs: The resolution
of isospectrality? J. Phys. A, Math. Gen. 39, 13999–14014 (2006)

21. Brüning, J., Heintze, E.: Représentations des groupes d’isométries dans les sous-espaces propres du
laplacien. C. R. Acad. Sci. Paris 286, 921–923 (1978)

22. Bolte, J., Endres, S.: The trace formula for quantum graphs with general self-adjoint boundary condi-
tions. Ann. Henri Poincaré 10(1), 189–223 (2009)

23. Buser, P.: Isospectral Riemann surfaces. Ann. Inst. Fourier 36, 167–192 (1986)
24. Berard, P.: Transplantation et isospectralité I. Math. Ann. 292, 547–559 (1992)
25. Jakobson, D., Levitin, M., Nadirashvili, N., Polterovich, I.: Spectral problems with mixed Dirichlet-

Neumann boundary conditions: Isospectrality and beyond. J. Comput. Appl. Math. 194, 141–155
(2004)

26. Levitin, M., Parnovski, L., Polterovich, I.: Isospectral domains with mixed boundary conditions.
J. Phys. A, Math. Gen. 39, 2073–2082 (2005)

27. Pesce, H.: Variétés isospectrales et représentations des groupes. Contemp. Math. 173, 231–240 (1994)
28. Wigner, E.P.: Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra. Aca-

demic Press, New York (1959)


	Linear Representations and Isospectrality with Boundary Conditions
	Abstract
	Introduction
	Quantum Graphs
	Algebra
	Building Gamma/R-Graphs
	Intuition
	Method
	Remarks

	Examples of Isospectral Quantum Graphs
	Isospectral Manifolds and Complexes
	Isospectral Drums
	The Gordon-Webb-Wolpert Drums
	The Sunada Method

	Summary and Open Questions
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


