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Count on a Family of Quantum Graphs
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Abstract. We investigate the properties of the zeros of the eigenfunctions
on quantum graphs (metric graphs with a Schrödinger-type differential
operator). Using tools such as scattering approach and eigenvalue inter-
lacing inequalities we derive several formulas relating the number of the
zeros of the n-th eigenfunction to the spectrum of the graph and of some
of its subgraphs. In a special case of the so-called dihedral graph we
prove an explicit formula that only uses the lengths of the edges, entirely
bypassing the information about the graph’s eigenvalues. The results are
explained from the point of view of the dynamics of zeros of the solutions
to the scattering problem.

1. Introduction

Spectral properties of differential operators on graphs have recently arisen as
models for such diverse areas of research as quantum chaos, photonic crys-
tals, quantum wires and nanostructures. We refer the interested reader to
the reviews [1,2] as well as to collections of recent results [3,4]. As a part of
this research program, the study of eigenfunctions, and in particular, their
nodal domains is an exciting and rapidly developing research direction. It is
an extension to graphs of the investigations of nodal domains on manifolds,
which started already in the nineteenth century by the pioneering work of
Chladni on the nodal structures of vibrating plates. Counting nodal domains
started with Sturm’s oscillation theorem which states that a vibrating string
is divided into exactly n nodal intervals by the zeros of its n-th vibrational
mode. In an attempt to generalize Sturm’s theorem to manifolds in more than
one dimension, Courant formulated his nodal domains theorem for vibrating
membranes, which bounds the number of nodal domains of the n-th eigenfunc-
tion by n [5]. Pleijel has shown later that Courant’s bound can be realized only
for finitely many eigenfunctions [6]. The study of nodal domains counts was
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revived after Blum et al. have shown that nodal count statistics can be used
as a criterion for quantum chaos [7]. A subsequent paper by Bogomolny and
Schmit illuminated the fascinating connection between nodal statistics and
percolation theory [8]. A recent paper by Nazarov and Sodin addresses the
counting of nodal domains of eigenfunctions of the Laplacian on S

2 [9]. They
prove that on average the number of nodal domains increases linearly with n
and that the variance about the mean is bounded. At the same time, it was
shown that the nodal sequence—the sequence of numbers of nodal domains
ordered by the corresponding spectral parameters—stores geometrical infor-
mation about the domain [10]. Moreover, there is a growing body of numerical
and theoretical evidence which shows that the nodal sequence can be used to
distinguish between isospectral manifolds [11–13].

As far as counting nodal domains on graphs is concerned, it has been
shown that trees behave as one-dimensional manifolds, and the analogue of
Sturm’s oscillation theory applies [14–17], as long as the eigenfunction does
not vanish at any vertex. Thus, denoting by νn the number of nodal domains
of the n’th eigenfunction, one has νn = n for tree graphs. Courant’s theorem
applies for the eigenfunctions on a generic graph: νn ≤ n, [18]. It should be
noted that there is a correction due to multiplicity of the n-th eigenvalue
and the upper bound becomes n + m − 1, where m is the multiplicity [19].
In addition, a lower bound for the number of nodal domains was discovered
recently. It is shown in [20] that the nodal domain count of the n-th eigen-
function has no less than n − β nodal domains, where β is the number of
independent cycles in the graph. Again, this result is valid for generic eigen-
functions, namely, the eigenfunctions that have no zeros on the vertices and
belong to a simple eigenvalue. In a few cases, the nodal counts of isospectral
quantum graphs were shown to be different and thus provided further support
to the conjecture that nodal count resolves isospectrality [21]. A recent review
entitled “Nodal domains on graphs—How to count them and why?” [22] pro-
vides a detailed answer to the question which appears in its title (as it was
known when the article was written). In particular, this manuscript contains
a numerically established formula for the nodal count of a specific quantum
graph, expressed in terms of the lengths of its edges. This was the first, and
to this date the only, explicit nodal count formula for a non-trivial graph and
in this manuscript we succeed in rigorously proving it.

This leads us to focus on the study of nodal domains on quantum graphs
from a new point of view. Namely, we shall show that one can count the num-
ber of nodal domains using scattering data obtained by attaching semi-infinite
leads to the graph. Scattering on graphs was proposed as a paradigm for cha-
otic scattering in [23,24] with new applications and further developments in
the field described in [25–27]. The work presented here is based on the concepts
and ideas developed in these studies.

The paper is organized in the following way: The current section provides
the necessary definitions and background from the theory of quantum graphs.
The conversion of finite graphs to scattering systems by adding leads will be
discussed in the next section and the expression for the scattering matrix will
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be derived and studied in detail. The connection of the scattering data with
nodal domains and the counting methods it yields will be presented in Sect. 3.
Section 4 applies the above counting methods in order to derive a formula for
the nodal count of graphs with disjoint cycles. This formula relates the nodal
count to the spectra of the graph and some of its subgraphs. Thus, information
about the eigenfunctions is exclusively obtained from the eigenvalue spectrum.
The last section relates the different ways of counting and discusses possible
future developments.

1.1. Quantum Graphs

In this section we describe the quantum graph which is a metric graph with a
Shrödinger-type self-adjoint operator defined on it. Let Γ = (V, E) be a con-
nected graph with vertices V = {vj} and edges E = {ej}. The sets V and E
are required to be finite.

We are interested in metric graphs, i.e., the edges of Γ are 1-dimensional
segments with finite positive lengths {Le}e∈E . On the edge e = (u, v) we use
two coordinates, xe,v and xe,u. The coordinate xe,v measures the distance
along the edge starting from the vertex v; xe,u is defined similarly. The two
coordinates are connected by xe,v + xe,u = Le. Sometimes, when the precise
nature of the coordinate is unimportant, we will simply write xe or even x.

A metric graph becomes quantum after being equipped with an additional
structure: a self-adjoint differential operator. This operator will be often called
the Hamiltonian. In this paper we study the zeros of the eigenfunctions of the
negative second derivative operator (x is the coordinate along an edge)

H : f(x) �→ −d2f

dx2
. (1.1)

or the more general Schrödinger operator

H : f(x) �→ −d2f

dx2
+ V (x)f(x), (1.2)

where V (x) is a potential. Note that the value of a function or the second
derivative of a function at a point on the edge is well defined; thus it is not
important which coordinate, xe,v or xe,u is used. This is in contrast to the
first derivative which changes sign according to the direction of the chosen
coordinate.

To complete the definition of the operator we need to specify its domain.

Definition 1.1. We denote by ˜H2(Γ) the space

˜H2(Γ) :=
⊕

e∈E
H2(e),

which consists of the functions f on Γ that on each edge e belong to the Sobolev
space H2(e). The restriction of f to the edge e is denoted by fe. The norm in
the space ˜H2(Γ) is

‖f‖
˜H2(Γ)

:=
∑

e∈E
‖fe‖2

H2(e).
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Note that in the definition of ˜H2(Γ) the smoothness is enforced along
edges only, without any junction conditions at the vertices at all. However,
the standard Sobolev trace theorem (e.g., [28]) implies that each function fe

and its first derivative have well-defined values at the endpoints of the edge e.
Since the direction is important for the first derivative, we will henceforth
adopt the convention that, at an end-vertex of an edge e, the derivative is
calculated into the edge and away from the vertex. That is, the coordinate x
is chosen so that the vertex corresponds to x = 0.

To complete the definition of the operator we need to specify its domain.
All conditions that lead to the operator (1.1) being self-adjoint have been clas-
sified in [29–31]. We will only be interested in the so-called extended δ-type
conditions, since they are the only conditions that guarantee continuity of the
eigenfunctions, something that is essential if one wants to study changes of
sign of the said eigenfunctions.

Definition 1.2. The domain H of the operator (1.2) consists of the functions
f ∈ ˜H2(Γ) such that
1. f is continuous on every vertex:

fe1(v) = fe2(v), (1.3)

for every vertex v and edges e1 and e2 that have v as an endpoint.
2. the derivatives of f at each vertex v satisfy

∑

e∈Ev

df

dxe
(v) = αvf(v), αv ∈ R, (1.4)

where Ev is the set of edges incident to v.

Sometimes the condition (1.4) is written in a more robust form

cos(γv)
∑

e∈Ev

df

dxe
(v) = sin(γv)f(v), (1.5)

which is also meaningful for infinite values of αv = tan(γv). Henceforth, we
will understand αv = ∞ as the Dirichlet condition f(v) = 0. Note that impos-
ing the Dirichlet condition at a vertex of degree dv larger than one effectively
disconnects the vertex into dv vertices of degree 1. This affects the topology of
the graph. To avoid ambiguity, we will consider Dirichlet conditions only on
vertices of degree 1. The other special case αv = 0 is often referred to as the
Neumann–Kirchhoff condition and plays a prominent role in our discussion.

Finally, we will assume that the potential V (x) is bounded and piecewise
continuous. To summarize our discussion, the operator (1.2) with the domain
H is self-adjoint for any choice of real αv. Since we only consider compact
graphs, the spectrum is real, discrete and with no accumulation points. Thus
the spectrum consists only of the eigenvalues, i.e., the values of λ for which
the equation

− d2f

dx2
+ V (x)f(x) = λf(x) (1.6)
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has a non-zero solution. We will slightly abuse notation and denote by σ(Γ)
the spectrum of an operator H defined on the graph Γ. It will be clear from
the context which operator H we mean and what are the vertex conditions.

It can be shown that under the conditions specified above the operator
H is bounded from below [31]. Thus, we can number the eigenvalues in the
ascending order, starting with 1. Sometimes we abuse the notation further and
also call k, such that λ = k2, an eigenvalue of the graph Γ. If λ > 0 we take
positive k and if λ < 0 we take Im(k) > 0.

1.2. Nodal Count

The main purpose of this article is to investigate the number of zeros and
the number of nodal domains of the eigenfunctions of a connected quantum
graph. We aim to give formulas linking these quantities to the geometry of the
graphs and to the eigenvalues of the graph and its subgraphs, but avoiding
any reference to the values of the eigenfunctions themselves.

The number of internal zeros or nodal points of the function f will be
denoted by μ(f). We will use the shorthand μn to denote μ(fn) where fn

is the n-th eigenfunction of the graph in question. The sequence {μn} will
be called the nodal point count sequence. A positive (negative) domain with
respect to f is a maximal connected subset in Γ where f is positive (corre-
spondingly, negative). The total number of positive and negative domains will
be called the nodal domain count of f and denoted by ν(f). Similarly to μn,
we use νn as a shorthand for ν(fn) and refer to {νn} as the nodal domain count
sequence.

The two quantities μn and νn are closely related, although, due to the
graph topology, the relationship is more complex than on a line, where ν =μ+1.
Namely, one can easily establish the bound

μ − βΓ + 1 ≤ ν ≤ μ + 1, (1.7)

where βΓ is the cyclomatic number of Γ. The cyclomatic number can be com-
puted as

βΓ = |E| − |V| + 1. (1.8)

The cyclomatic number has several related interpretations: it counts the num-
ber of independent cycles in the graph (hence the name) and therefore it is
the first Betti number of Γ (hence the notation β). It also counts the mini-
mal number of edges that need to be removed from Γ to turn it into a tree.
Correspondingly, βΓ = 0 if and only if Γ is a tree.

There is another simple but useful observation relating the cycles on the
graph and the number of zeros: if the eigenfunction of the graph does not
vanish on the vertices of the graph, the number of zeros on any cycle of the
graph is even. Indeed, an eigenfunction of a second-order operator can only
have simple zeros, thus at every zero f changes sign. On a cycle there must be
an even number of sign changes.

As mentioned earlier, we will be interested in the number of zeros and
nodal domains of the eigenfunctions of operators (1.1) and (1.2) on graphs.
According to the well-known ODE theorem by Sturm [32–34], the zeros of
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the n-th eigenfunction of the operator of type (1.2) on an interval divide the
interval into n nodal domains. By contrast, in the corresponding question in
R

2 only an upper bound is possible, given by the Courant’s nodal line theorem
[5], νn ≤ n. In a series of papers [14,15,17,18,20], it was established that a
generic eigenfunction of the quantum graph satisfies both an upper and a lower
bound. Namely, let λn be a simple eigenvalue of − d2

dx2 + V (x) on a graph Γ
and its eigenfunction fn be non-zero at all vertices of Γ. Then the number of
the nodal domains of fn satisfies

n − βΓ ≤ νn ≤ n. (1.9)

Similarly, for the number of zeros we have

n − 1 ≤ μn ≤ n − 1 + βΓ. (1.10)

Note that the upper bound in (1.10) follows from the upper bound in (1.9)
and inequality (1.7). The lower bound in (1.10) requires an independent proof
which is given in [35]. An interesting feature of quantum graphs is that, unlike
the R

d case, the upper bound νn ≤ n is in general not valid for degenerate
eigenvalues.

In the present paper we combine these a priori bounds with scattering
properties of a certain family of graphs to derive formulas for the nodal counts
μn and νn.

1.3. Quantum Evolution Map

When the potential V (x) is equal to zero, the eigenvalue equation

− d2f

dx2
= k2f(x), (1.11)

has, on each edge, a solution that is a linear combination of the two exponents
e±ikx if k �= 0. We will write it in the form

fe(xe,v) = ain
e,v exp(−ikxe,v) + aout

e,v exp(ikxe,v), (1.12)

where the variable xe,v measures the distance from the vertex v of the edge e.
The coefficient ain

e,v is the incoming amplitude on the edge e (with respect
to the vertex v) and aout

e,v is correspondingly the outgoing amplitude. However,
the same function can be expressed using the coordinate xe,u as

fe(xe,u) = ain
e,u exp(−ikxe,u) + aout

e,u exp(ikxe,u). (1.13)

Since these two expressions should define the same function and since the two
coordinates are connected, through the identity xe,v + xe,u = Le, we arrive at
the following relations:

ain
e,v = eikLeaout

e,u ain
e,u = eikLeaout

e,v (1.14)

Fixing a vertex v of degree dv and using (1.12) to describe the solution
on the edges Ev adjacent to v, we obtain from (1.3) and (1.4) dv equations on
the 2dv variables aout

e,v and ain
e,v. These equations can be rearranged as

	aout
v = σ(v)(k)	ain

v , (1.15)
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where 	aout
v and 	ain

v are the vectors of the corresponding coefficients and σ(v)(k)
is a dv × dv unitary matrix. The matrix σ(v)(k) is called the vertex-scattering
matrix; it depends on k for values of αv other than 0 or ∞ and its entries have
been calculated in [36].

Collect all coefficients ain
e,v into a vector 	a of size 2|E| and define the matrix

J acting on 	a by requiring that it swaps around ain
e,v and ain

e,u for all e = (u, v).
Then, collecting Eqs. (1.15) into one system and using connection (1.14) and
the matrix J to rewrite everything in terms of 	a, we have

Je−ikL	a = Σ(k)	a.

Here all matrices have the dimension equal to double the number of edges, 2|E|.
The matrix L is the diagonal matrix of edge lengths, each length appearing
twice and Σ is the block-diagonalizable matrix with individual σ(v) as blocks,
namely

Σ(e1,v1),(e2,v2) = δv1,v2σ
(v1)
e1,e2

.

Noting that J−1 = J , the condition on 	a can be rewritten as

	a = eikLJΣ(k)	a, (1.16)

The unitary matrix U(k) := eikLJΣ(k) is variously called the bond scattering
matrix [36] or the quantum evolution map [2]. The matrix JΣ(k) describes the
scattering of the waves on the vertices of the graph and eikL gives the phase
shift acquired by the waves while traveling along the edges. The quantum
evolution map can be used to compute the non-zero eigenvalues of the graph
through the equation

det (I − U(k)) = 0. (1.17)

We stress that U(k) is not a scattering matrix in the conventional sense, since
the graph is not open. Turning graph into a scattering system is the subject
of the next section.

2. Attaching Infinite Leads to the Graph

A quantum graph may be turned into a scattering system by attaching any
number of infinite leads to some or all of its vertices. This idea was already
discussed in [24,36,37]. We repeat it here and further investigate the analytic
and spectral properties of the graph’s scattering matrix, which would enable
the connection to the nodal count.

Let Γ = (V, E) be a quantum graph. We choose some M ≤ |V| out of its
vertices and attach to each of them an infinite lead. We call these M vertices,
the marked vertices, and supply them with the same vertex conditions as they
had in Γ. Namely, each marked vertex v retains its δ-type condition with the
same parameter αv (recall (1.4)). We denote the extended graph that contains
the leads by Γ̃ and investigate its generalized eigenfunctions.



152 R. Band et al. Ann. Henri Poincaré

The solution of the eigenvalue equation, (1.11), on a lead l which is
attached to the vertex v, can be written in the form

fl(xl,v) = cin
l,v exp(−ikxl,v) + cout

l,v exp(ikxl,v). (2.1)

The variable xl,v ∈ [0,∞) measures the distance from the vertex v along the
lead l and the coefficients cin

l,v, cout
l,v are the incoming and outgoing amplitudes

on the lead l (compare with (1.12)). We use the notation 	c out,	c in for the
vectors of the corresponding coefficients and follow the derivation that led to
(1.16) in order to obtain

(

	c out

	a

)

= eikLoJoΣ(k)
(

	c in

	a

)

. (2.2)

All the matrices above are square matrices of dimension 2 |E| + M . There are
two differences from Eq. (1.16). First, in the matrix Lo each lead is repre-
sented by a single zero on the diagonal, in contrast to the positive lengths of
the graph edges, appearing twice each. The matrix Jo swaps around the coef-
ficients a corresponding to opposite directions on internal edges, but acts as
an identity on the leads. These differences arise because for an infinite lead we
do not have two representations (1.12) and (1.13) and therefore no connection
formulas (1.14) allowing to eliminate outgoing coefficients. Writing the matrix
eikLJΣ(k) in blocks corresponding to the edge coefficients and lead coefficients
results in

(

	c out

	a

)

=
(

R(k) To(k)
Ti(k) Ũ(k)

)(

	c in

	a

)

, (2.3)

where the dimensions of the matrices R, To, Ti and Ũ are M × M,M × 2|E|,
2|E|× M and 2|E| × 2|E| correspondingly. We stress that the matrix Ũ(k)
describes the evolution of the waves inside the compact graph and has eigen-
values that can now lie inside the unit circle due to the “leaking” of the waves
into the leads.

Equation (2.3) can be used to define a unitary scattering matrix S such
that 	c out = S 	c in, as described in the following theorem:

Theorem 2.1. Let
(

	c out

	a

)

= Q

(

	c in

	a

)

, where Q =
(

R To

Ti Ũ

)

(2.4)

is a unitary matrix with the blocks R, To, Ti and Ũ of sizes M × M,M × 2|E|,
2|E|× M and 2|E|× 2|E| correspondingly. For every choice of 	c in ∈ C

M , con-
sider relation (2.4) as a set of linear equations in the variables 	c out ∈ C

M and
	a ∈ C

2|E|. Then,
1. There exists at least one 2|E| × M matrix C such that

(

I − Ũ
)

C = Ti, (2.5)

2. Let

S = R + ToC. (2.6)
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Then, S is a unitary matrix independent of the particular choice of C in
Eq. (2.5).

3. The solutions of (2.3) are given by

	c out = S	c in, (2.7)

	a ∈ {C	c in + Ker(I − Ũ)}. (2.8)

In particular, 	c out is defined uniquely by 	c in.

The proof of the theorem distinguishes between the case of a trivial
Ker(I − Ũ) and the case of singular I − Ũ . The following lemma makes the
treatment of the latter case easier:

Lemma 2.2. Let Q be as in Theorem 2.1. Then the following hold:

Range Ti ⊆ Range (I − Ũ), (2.9)

Ker (I − Ũ) ⊆ Ker To (2.10)

Proof. Since in a finite-dimensional space Range A = (Ker A∗)⊥, Eq. (2.9) is
equivalent to

(Ker T ∗
i )⊥ ⊆

(

Ker (I − Ũ∗)
)⊥

,

which is in turn equivalent to

Ker (I − Ũ∗) ⊆ Ker T ∗
i .

Let 	v ∈ Ker(I − Ũ∗). Using the unitarity of Q∗ we get
∥

∥

∥

∥

(

0
	v

)∥

∥

∥

∥

=
∥

∥

∥

∥

(

R∗ T ∗
i

T ∗
o Ũ∗

)(

0
	v

)∥

∥

∥

∥

=
∥

∥

∥

∥

(

T ∗
i 	v

Ũ∗	v

)∥

∥

∥

∥

=
∥

∥

∥

∥

(

T ∗
i 	v
	v

)∥

∥

∥

∥

. (2.11)

Equating the left-hand side to the right-hand side of the equation above, we
get T ∗

i 	v = 0. Equation (2.10) is proved in a similar manner by replacing Q∗

with Q in the above. �

Proof of Theorem 2.1. Case 1: det(I − Ũ) �= 0.
To show part (1) we simply set C = (I − Ũ)−1 Ti. Furthermore, Eq. (2.3)

has a unique solution, given by

	a =
(

I − Ũ
)−1

Ti	c
in (2.12)

	c out =
(

R + To

(

I − Ũ
)−1

Ti

)

	c in, (2.13)

which proves part (3).
The unique definition of C guarantees the uniqueness of S = R + ToC.

To finish the proof of part (2) we use the unitarity of Q, which provides the
identities

R∗R + T ∗
i Ti = T ∗

o To + Ũ∗Ũ = I

R∗To + T ∗
i Ũ = T ∗

o R + Ũ∗Ti = 0.
(2.14)
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From here we get

S∗S = R∗R + R∗ToC + C∗T ∗
o R + C∗T ∗

o ToC

= I − T ∗
i Ti − T ∗

i ŨC − C∗Ũ∗Ti + C∗
(

I − Ũ∗Ũ
)

C.

Expanding, factorizing and using the definition of C in the form Ti + ŨC = C,
we arrive at

S∗S = I + C∗C − (T ∗
i + C∗Ũ∗)(Ti + ŨC) = I

Case 2: det(I − Ũ) = 0.
Existence of a solution C to the equation (I − Ũ)C = Ti is guaranteed by
Eq. (2.9) of Lemma 2.2.

The columns of C are defined up to addition of arbitrary vectors from
Ker (I − Ũ). However, Lemma 2.2, Eq. (2.10) implies that these vectors are in
the null-space of To; therefore, the product ToC has unique value independent
of the particular choice of the solution C. The proof of the unitarity of S has
already been given in case 1 and did not rely on the invertibility of I− Ũ . This
proves part (2).

The last 2|E| equations of (2.3) are (I − Ũ)	a = Ti	c
in. From (2.5), all

solutions 	a of this equation are given by C	c in + Ker(I − Ũ). On the other
hand, the first M equations of (2.3) are 	c out = R	c in + To	a and substituting
the already obtained expression for 	a and using (2.10), we finally arrive at
	cout = (R + ToC)	c in. This finished the proof of the theorem. �

We would like to study the unitary scattering matrices, S(k) as a one-
parameter family in k ∈ R. The matrix Q(k) is a meromorphic function of k in
the entire complex plane [29]. For all k values which satisfy det(I−Ũ) �= 0, S(k)
is given explicitly by

S(k) = R + To

(

I − Ũ
)−1

Ti, (2.15)

and S(k) is therefore also a meromorphic function in k at these values. The
significance of the values of k for which det(I − Ũ) = 0 is explained in the
following lemma:

Lemma 2.3. Let Γ∗ be the quantum graph obtained from the original compact
quantum graph, Γ, by imposing the condition f(v) = 0 at all of its M marked
vertices, in addition to the conditions already imposed there. Then, the spec-
trum σ (Γ∗) coincides with the set

Δ =
{

k2 ∈ R

∣

∣

∣det
(

I − Ũ
)

= 0
}

. (2.16)

Proof. We mention that imposition of the additional vertex conditions makes
the problem overdetermined. In most circumstances the set Δ will be empty.
The operator H is still symmetric but no longer self-adjoint, because its domain
is too narrow.

Denote by Γ̃ the graph with the leads attached. Let k2 ∈ σ (Γ∗) and let
f be the corresponding eigenfunction on Γ∗. Then, f can be extended to the
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leads by zero. It will still satisfy the vertex conditions of Γ̃ and will therefore
satisfy (2.3) with 	c in = 	c out = 0 and 	a �= 0. The last 2|E| equations of (2.3)
imply det(I − Ũ) = 0.

In the other direction, let k2 ∈ Δ. Choose 	a ∈ Ker(I − Ũ). We see that
Eq. (2.3) is satisfied with the chosen 	a and with 	c in = 	c out = 0. These coef-
ficients describe a function on Γ̃ which vanishes completely on the leads and
therefore its restriction to Γ satisfies Dirichlet boundary conditions on the
marked vertices by continuity. This implies k2 ∈ σ (Γ∗). �

Corollary 2.4. The set Δ is discrete.

Proof. The corollary is immediate since Δ ⊂ σ (Γ), which is discrete. �

Remark 2.5. Another interpretation of the set Δ is the set of eigenvalues
embedded in the continuous spectrum of the infinite graph with leads.

Lemma 2.6. S (k) is a meromorphic function which is analytic on the real line.

Proof. The blocks of the matrix Σ(k) in Eq. (2.2) are meromorphic (see [29],
Theorem 2.1 and the discussion following it); therefore, all the blocks of the
matrix Q are meromorphic on the entire complex plane. Since the set Δ on
which the matrix I − Ũ is singular is discrete, Eq. (2.15) defines a meromor-
phic function. To show that S(k) in fact does not have singularities on the
real line, we observe, that, for k ∈ R\Δ we have shown that S(k) defined by
(2.15) is unitary. Therefore, S(k) remains bounded as we approach the “bad”
set Δ and the singularities are removable. Theorem 2.1 gives a prescription
for computing the correct value of S(k) for k ∈ Δ. �

We now examine the k-dependence of the eigenvalues of S(k). To avoid
technical difficulties, we restrict our attention to the case when only α = 0
(Neumann) or α = ∞ (Dirichlet) are allowed as coefficients of the δ-type ver-
tex conditions, Eq. (1.4). As mentioned in the discussion after Eq. (1.5), we
only impose Dirichlet conditions on vertices of degree 1. In this case the matrix
Σ(k) described in Sect. 1.3 is independent of k making calculations easier. The
general case can be treated using methods of [38]; however, we will not need
it for applications.

Lemma 2.7. Let every vertex of the graph Γ have either Neumann or Dirichlet
condition imposed on it. Then, the eigenvalues of S(k) move counterclockwise
on the unit circle, as k increases.

Proof. Let eiϕ be an eigenvalue of S with the normalized eigenvector v. Dif-
ferentiating the normalization condition v∗v = 1 with respect to k we get

v∗v̇ = 0. (2.17)

Now we take the derivative of Sv = eiϕv with respect to k to get
(

d
dk

S

)

v + Sv̇ = iϕ̇eiϕv + eiϕv̇.
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We multiply the above equation on the left with v∗S∗ = e−iϕv∗ and use
v∗v = 1 and Eq. (2.17) to obtain

v∗S∗
(

d
dk

S

)

v = iϕ̇.

Thus we need to show that 1
i S

∗ d
dkS is positive definite. Comparing Eqs. (2.2)

and (2.3) and using that Σ is k-independent, we obtain that

R(k) = R(0), To(k) = To(0), Ti(k) = eikLTi(0), Ũ(k) = eikLŨ(0).

Differentiating the latter two matrices with respect to k produces

˙̃U = iLŨ , Ṫi = iLTi.

We can now differentiate Eq. (2.5) to obtain

(1 − Ũ)Ċ = Ṫi + ˙̃UC = iL(Ti + ŨC) = iLC, (2.18)

where we used (2.5) again in the final step.
For the matrix in question we now obtain

S∗ d
dk

S = (R∗ + C∗T ∗
o ) ToĊ = −T ∗

i Ũ Ċ + C∗
(

I − Ũ∗Ũ
)

Ċ,

where Eqs. (2.14) have been used in the second step. Using −T ∗
i = C∗(Ũ∗ − I)

which is a conjugate of (2.5), we obtain

S∗ d
dk

S = C∗
(

Ũ∗Ũ − Ũ + I − Ũ∗Ũ
)

Ċ.

Using (2.18) this simplifies to

S∗ d
dk

S = iC∗LC.

Since L is diagonal with positive entries we conclude that 1
i S

∗ d
dkS is positive

definite. �

We end this section by stating a result known as the inside–outside
duality, which relates the spectrum of the compact graph, Γ, to the eigen-
values of its scattering matrix, S(k). This is a well-known result, mentioned
already in [36]. We bring it here with a small modification, related to the
already mentioned set, Δ.

Proposition 2.8. The spectrum of Γ is Δ ∪ {k | det (I − S) = 0}.
Proof. We remind the reader that when a lead is attached to a (marked)
vertex, the new vertex conditions are also of δ-type with the same value of
the constant αv. The conditions at the vertices that are not marked remain
unchanged.

Let k be such that det (I − S) = 0. Let 	c be the corresponding eigenvector,
S	c = 	c. Letting 	c in = 	c we find 	c out = 	c and 	a according to Theorem 2.1. The
corresponding generalized eigenfunction f̃ satisfies correct vertex conditions at
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all the non-marked vertices. It is also continuous at the marked vertices and
satisfies

∑

e∈Ev

df̃

dxe
(v) +

∑

l∈E∞
v

df̃

dxl
(v) = αv f̃(v), (2.19)

where Ev is the set of the finite edges incident to v and E∞
v is the set of the infi-

nite leads attached to it. Referring to (2.1), we notice that cin
v,l = cout

l,v implies
that the derivative of f̃ on the lead is zero. Therefore, Eq. (2.19) reduces to
the corresponding equation on the compact graph. Thus, the restriction of f̃
to the compact graph satisfies vertex conditions at all vertices and k2 is an
eigenvalue of Γ. Inclusion Δ ⊆ σ(Γ) has already been shown in Lemma 2.3.

Conversely, let k2 be an eigenvalue of the compact graph Γ and let f be
the corresponding eigenfunction. Then, f can be continued onto the leads as
f(v) cos(kx), where f(v) is the value of f at the vertex v where the lead is
attached to the graph. Comparing with (2.1) we see that cin

l,v = cout
l,v = f(v)/2.

Therefore, the resulting extended function is characterized by vectors 	a,	c in

and 	c out such that 	c in = 	c out = S	c in. If the function f was non-zero on at
least one of the marked vertices, 	c in �= 0 is a valid eigenvector of S(k) with
eigenvalue 1. If f is zero on all marked vertices, k ∈ Δ by Lemma 2.3. �

3. Applications to the Nodal Domains Count

3.1. Application for a Single-Lead Case

We wish to study the nodal count sequence of a certain graph Γ by attaching
a single lead to one of its vertices. Let S(k) = eiϕ(k) be the corresponding one-
dimensional scattering matrix. For each real k > 0 there exists a generalized
eigenfunction, f(k; x), of the Laplacian with eigenvalue k2 on the extended
graph, Γ̃, as proved in Theorem 2.1. In addition, up to a multiplicative factor,
this function is uniquely determined on the lead, where it equals

flead(k; x) = cin exp(−ikx) + cout exp(ikx)

= cin [exp(−ikx) + exp (i (ϕ(k) + kx))]

= cin exp
(

i
ϕ(k)

2

)

cos
(

kx +
ϕ(k)

2

)

.

The positions of the nodal points of this function on the lead are therefore
uniquely defined for every real k > 0 and given by

Dlead (k) =
{

x ≥ 0
∣

∣

∣

∣

x ∈ −ϕ (k)
2k

+
π

2k
+

π

k
Z

}

. (3.1)

We exploit this by treating k as a continuous parameter and inspecting the
change in the positions of the nodal points as k increases. Let x = −ϕ(k)

2k +
π
2k + π

k nx be the position of a certain nodal point on the lead at some value k,
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i.e., x ∈ Dlead (k). The direction of movement of this nodal point is given by

d
dk

(

−ϕ (k)
2k

+
π

2k
+

π

k
nx

)

= −kϕ′(k) − ϕ(k) + π + 2πnx

2k2

= −1
k

(

ϕ′(k)
2

+ x

)

< 0, (3.2)

where for the last inequality we need to assume that all the vertex conditions
of Γ are either of Dirichlet or of Neumann type in order to use the conclusion
of Lemma 2.7, ϕ′ (k) > 0. From (3.2) we learn that all nodal points on the
lead move towards the graph, as k increases.

The event of a nodal point arriving to the graph from the lead occurs at
values k for which 0 ∈ Dlead (k) and will be called an entrance event. We may
use (3.1) to characterize these events in terms of the scattering matrix:

0 ∈ Dlead (k) ⇔ mod2π (ϕ(k)) = π. (3.3)

After such an event occurs, the nodal point from the lead enters the graph Γ
and may change the total number of the nodal points of f(k; x) within Γ.

Another significant type of events is described by

mod2π (ϕ(k)) = 0. (3.4)

Proposition 2.8 shows that such an event happens at a spectral point of Γ and
at this event, the restriction of f(k; x) on Γ equals the corresponding eigen-
function of Γ. These events form the whole spectrum of Γ if and only if Δ = ∅.
This is indeed the case if we choose to attach the lead to a position where none
of the graph’s eigenfunctions vanish (Lemma 2.3). In addition, we will assume
in the following discussion that Γ has a simple spectrum. This is needed for
the unique definition of the nodal count sequences and is shown in [39] to be
the generic case for quantum graphs.

The two types of events described by (3.3) and (3.4) interlace, as we know
from Lemma 2.7 (compare also with Theorem A.1). We may investigate the
nodal count of tree graphs by merely considering these two types of events and
their interlacing property. We count the number of nodal points within Γ only
at the spectral points to obtain the sequence {μn}. Between each two spectral
points we have an entrance event, during which the number of nodal points
within Γ increases by one, as a single nodal point has entered from the lead
into the regime of Γ. This interlacing between the increments of the number
of nodal points and its sampling gives μn = n − 1 and νn = μn + 1 = n.

The above conclusion is indeed true for tree graphs under certain assump-
tions (see [14,15,17]). However, when graphs with cycles are considered, there
are other interesting phenomena to take into account:
1. In the paragraph above it was taken for granted that at an entrance

event the nodal points count increases by one. This is indeed so if the
nodal point which arrives from the lead enters exactly one of the edges
of Γ without interacting with other nodal points which already exist on
the graph. However, when the lead is attached to a cycle of the graph,
the generic behavior is either a split or a merge. Assume for simplicity
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that the attachment vertex has degree 3, counting the lead. A split event
happens when a nodal point from the lead splits into two nodal points
that proceed along the two internal edges. This will increase the number
of nodal points on Γ correspondingly. In a merge event the entering nodal
point merges with another nodal point coming along one of the internal
edges. The resulting nodal point proceeds along the other internal edge.
The number of nodal points on Γ will not change during such an event.
If a lead is attached to a vertex of higher degree the variety of scenarios
can be larger.

2. Other type of events that were not considered are ones in which a nodal
point travels on the graph and reaches a vertex which is not connected
to the lead. When this vertex belongs to a cycle, the generic behavior
would be a split or a merge event and would correspondingly increase or
decrease the number of nodal points present inside the graph.

These complications are dealt with in Sect. 4.1, where we use the single-lead
approach to derive a nodal count formula for graphs which contain a single
cycle. In the following section, 3.2, we consider a modification of this method—
we attach two leads to a graph and use the corresponding scattering matrix
to express nodal count related quantities of the graph. Later, in Sect. 3.3, we
show how the two-lead approach yields an exact nodal count formula for a
specific graph.

3.2. Sign-Weighted Counting Function

The number of nodal points on a certain edge e = (u, v) at an eigenvalue kn

is given by
⌊

knLe

π

⌋

+
1
2

(

1 − (−1)� knLe
π � sign[fn(u) fn(v)]

)

, (3.5)

where �x� stands for the largest integer which is smaller than x, and fn is
the corresponding eigenfunction [18]. We infer that the relative sign of the
eigenfunction at two chosen points is of particular interest when counting nodal
domains. While the most natural candidates for the two points are end-points
of an edge, the results of this section apply to any two points on a graph.
Denoting these points x1 and x2, we are interested in the sign of the product
fn(x1)fn(x2), where fn is the n-th eigenfunction of the graph. We define the
sign-weighted counting function Nx1,x2(k) as

Nx1,x2(k) = #{kn ≤ k : fn(x1)fn(x2) > 0} − #{kn ≤ k : fn(x1)fn(x2) < 0}.

(3.6)

Using the scattering matrix formalism allows us to obtain the following elegant
formula:

Theorem 3.1. Let Γ be a graph with Neumann or Dirichlet vertex conditions
and x1 and x2 be points on the graph such that no eigenfunction turns to zero
at x1 or x2. Denote by S(k) the 2 × 2 scattering matrix obtained by attaching
leads to the points x1 and x2. Let Iε be the matrix
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Iε =
(

1 −ε
−ε 1

)

= I − εσ1, (3.7)

where σ1 is the first Pauli matrix. Then,

Nx1,x2(k) =
1
π

[

lim
ε→0

arg det(Iε − S(k)) − φ(k)
]

, (3.8)

where e2iφ(k) = det(S(k)) and a suitable continuous branch of the argument
is chosen. The convergence is pointwise everywhere except at k ∈ σ(Γ) (where
Nx1,x2 is discontinuous).

Proof. To begin, we observe that the scattering matrix of a graph with only
Neumann or Dirichlet conditions is complex symmetric: Sj,k = Sk,j . This can
be verified explicitly by using representation (2.5)–(2.6), together with (2.2)
and the fact that the matrix Σ(k) is real and symmetric under the specified
conditions.

For a moment, consider that only one lead is connected to the point x1.
Then the events that change the sign of f(x1) and f(x2), where f is the one-
lead scattering solution, are the values of k such that (A) a zero comes into the
vertex x1 from the lead (“Dirichlet events”) or (B) a zero crosses the point x2.
The former are easy to characterize: they interlace with the events when a
“Neumann point” comes into the vertex x1, which happens precisely at σ(Γ),
as discussed in Sect. 3.1.

Denote by κ the value of k when a zero crosses the point x2 where the
lead is not attached. Now consider the scattering system when both leads
are attached, at points x1 and x2. At k = κ the one-lead scattering solution
f(x) can be continued to the second lead by setting it to vanish on the entire
lead. This would create a valid two-lead solution with cin

2 = cout
2 = 0. By

inspecting (2.7) we conclude that the vector (1, 0)T is therefore an eigenvec-
tor of the two-lead scattering matrix S(κ). This happens whenever the matrix
S(k) is diagonal. We conclude that the events of type (B) happen in a one-
lead scattering scenario precisely when the two-lead scattering matrix satisfies
S(k)1,2 = S(k)2,1 = 0.

Introducing the notation,

ζ(k) = det(I − S(k)) (3.9)
τ(k) = S(k)1,2 = S(k)2,1, (3.10)

we can summarize the earlier discussion as follows. The eigenvalues of the
graph are given by the zeros of ζ(k) (see Proposition 2.8), and the relative
sign of the n-th eigenfunction, sign[fn(x1) fn(x2)], is equal to the parity of
the total number of zeros of ζ and τ that are strictly less than kn. Note that
the condition that no eigenfunction is zero on x1 or x2 implies that the set Δ
in Proposition 2.8 is empty and that the zeros of the functions ζ and τ are
distinct.

Applying complex conjugation to ζ(k), we obtain

ζ(k)∗ = det(S∗)ζ(k) = ζ(k)/det(S). (3.11)
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Similarly, using the explicit formula for the inverse of a 2 × 2 matrix together
with the unitarity of S, we obtain for τ(k)

τ(k)∗ = −det(S∗)τ(k) = −τ(k)/det(S). (3.12)

These relations allow us to represent ζ(k) = r(k)eiφ(k) and τ(k) = i
2 t(k)eiφ(k),

when recalling that e2iφ(k) = det(S(k)).
We now evaluate

det(Iε − S) = det(I − S) − ε(S1,2 + S2,1) − ε2

= ζ(k) − ετ(k) − ε2 = (r(k) − iεt(k))eiφ(k) − ε2,

and, therefore,

det(Iε − S)e−iφ(k) = (r(k) − iεt(k)) + o(ε). (3.13)

It is now clear that, when r(k) �= 0 (i.e., when k �∈ σ(Γ)), the ε → 0 limit of the
above ratio is a non-zero real number and therefore its argument is an integer
multiple of π.

To evaluate this integer we focus on the values of k when z(k) =
r(k)−iεt(k) crosses the line Re(z) = 0. When the crossing is in the counter-
clockwise direction, the integer above increases; otherwise it decreases. The
counter-clockwise versus clockwise direction of the crossing is decided exclu-
sively by the sign of the ratio r(kn − 0)/t(kn − 0), which coincides with the
parity of the total number of zeros of the two functions. This, in turn, has
been shown to coincide with the relative sign of the eigenfunction. �

Remark 3.2. It is interesting to compare the above formula for the sign-
weighted counting function with the corresponding formula for the more com-
monly used spectral counting function,

N(k) = #{kn ≤ k}. (3.14)

Under the conditions of Theorem 3.1 the counting function N(k) can be rep-
resented as

N(k) =
1
π

[

lim
ε→0

arg det(I − εI − S) − φ(k)
]

, (3.15)

Combining the two we can obtain a counting function that counts only the
eigenvalues whose eigenfunctions have differing signs at x1 and x2,

N−
x1,x2

(k) := #{kn ≤ k : fn(x1)fn(x2) < 0} =
1
2π

lim
ε→0

arg
det(I − εI − S)
det(I − εσ1 − S)

.

(3.16)

3.3. Using Two Leads to Derive an Exact Nodal Count Formula

In the current section we derive a nodal count formula for the graph, Γ, given
in Fig. 1. This graph is a member of an isospectral pair, as described in [40].
The isospectral twin of this graph is the graph shown in Fig. 2.

Examining the topology of each of the graphs according to (1.9) tells us
that the tree graph has the nodal count νn = n, and the nodal count of the
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Figure 1. The quantum graph whose nodal count we com-
pute. The lengths of the edges and the vertex conditions are
indicated. D stands for Dirichlet vertex conditions and N for
Neumann ones

Figure 2. The tree graph which is isospectral to the graph
in Fig. 1. The lengths of the edges and the vertex conditions
are indicated

graph Γ, which has a cycle, obeys the bounds n − 1 ≤ νn ≤ n. It was claimed
in [22] that the nodal count of Γ is

νn = n − 1
2

− 1
2

(−1)� b+c
a+b+c n� . (3.17)

This formula was not proved there, but rather a numerical justification was
given. We present here a proof for the following theorem:

Theorem 3.3. Let a, b, c be positive real numbers such that b
c /∈ Q and a

b+c /∈ Q.
Let Γ be the graph described in Fig. 1. Then the nodal point count sequence
of Γ is

μn = n + mod2

(⌊

b + c

a + b + c
n

⌋)

, (3.18)

and the nodal domain count sequence of Γ is

νn =

⎧

⎨

⎩

n n ≤
⌊

a
b+c

⌋

+ 1

n − 1 + mod2

(⌊

b+c
a+b+cn

⌋)

n >
⌊

a
b+c

⌋

+ 1
, (3.19)

Remark 3.4. Note that for eigenvalues high enough in the spectrum, the exact
nodal count (3.19) coincides with the previously known numeric result, (3.17).

The method of proof of the formulas (3.18), (3.19) involves attaching
leads to the graph, imposing Neumann conditions at the attachment points,
and keeping track of the nodal points dynamics as the spectral parameter
is varied. This specific example demonstrates both the ability to derive an
exact formula and the technical complications that may arise while using this
method.
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Figure 3. The graph Γ̃ and its symmetry axis (dotted). The
values of its generalized eigenfunction are specified on the
leads

3.3.1. A Brief Outline of the Proof. Define a graph with two vertices con-
nected by two edges of lengths 2b and 2c. This graph is actually a cycle of
length 2b + 2c. Connect two leads to the vertices of this graph to obtain the
graph in Fig. 3. Denote this graph by Γ̃ and notice that Γ as a metric graph
is a subgraph of Γ̃. The graph Γ̃ has a symmetry of reflection along an axis
which passes through the middle of the graph. We will exploit this symmetry
in the next section.

The Laplacian on Γ̃ possesses a continuous spectrum and each generalized
eigenvalue, k2, has a two-dimensional generalized eigenspace, characterized by
	c in ∈ C

2 (Theorem 2.1). We will describe a one-parameter (k ∈ R) family of
generalized eigenfunctions on Γ̃, f(k; x). We thus consider f(k; x) as a func-
tion on Γ̃ which changes continuously with k—this will be emphasized by
the notation f(k; ·). This k-dependent function would be chosen such that its
restriction on the subgraph Γ at k2 ∈ σ (Γ) equals the corresponding eigen-
function of Γ. The strategy of the proof is to keep track of the number of
nodal points of f(k; ·), as it changes with k, and to sample this number at
k2 ∈ σ (Γ). We will notice that the nodal points travel continuously from infin-
ity towards the cycle and we will characterize the dynamics of the nodal points
which enter the cycle. This will allow us to find the change in the number of
nodal points during such entrance events. We will then calculate the number
of eigenvalues which occur between two consequent entrance events and will
combine all those observations to deduce the nodal count formulas (3.18) and
(3.19).

3.3.2. Towards a Proof of Theorem 3.3. Let Γ̃ be the graph that is described
in Sect. 3.3.1 and appears in Fig. 3. A generalized eigenfunction of Γ̃ with
eigenvalue k2, on the jth lead, is given by

fj(k; xj) = cin
j exp(−ikxj) + cout

j exp(ikxj),

where j = 1, 2 and the coefficients

	c in =
(

cin
1

cin
2

)

, 	c out =
(

cout
1

cout
2

)

are related by

	c out = S(k)	c in. (3.20)
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The graph Γ̃ obeys a symmetry of reflection along a vertical axis which passes
through the center of the graph. This reflection symmetry exchanges the two
leads of Γ̃ and it implies that its scattering matrix, S(k), commutes with the
matrix

σ =
(

0 1
1 0

)

.

This, together with the unitarity of S(k) (Theorem 2.1) allows us to write it
in the form

S(k) =
(

cos (γ (k)) eiϕ(k) sin (γ (k)) ei(ϕ(k)+π/2)

sin (γ (k)) ei(ϕ(k)+π/2) cos (γ (k)) eiϕ(k)

)

. (3.21)

The exact form of S(k) (expressed in terms of the edge lengths parameters
a, b, c) can be calculated using (2.2), (2.3) and (2.6).

Following the approach described in Sect. 3.1 we treat k as a continuous
parameter and choose 	c in to vary continuously with k. Namely, we choose a
certain continuous vector function 	c in : (0,∞) → C

2. Relation (3.20) yields
the continuous function 	c out : (0,∞) → C

2 and both 	c in (k) and 	c out (k)
determine f(k; ·), a function on Γ̃ that changes continuously with k. We next
describe a specific choice of 	c in (k) that yields a function f(k; x) with the
following properties which are convenient for our proof:

Property 3.5. The values of the function on the leads are real, i.e.,

fj(k; xj) = fj(k; xj) for j = 1, 2.

Property 3.6. Denote the zeros of the function and of its derivative on the
leads by

Dj (k) := {xj ≥ 0 | fj(k; xj) = 0}
Nj (k) :=

{

xj ≥ 0
∣

∣

∣

∣

∂

∂xj
fj(k; xj) = 0

}

.

They obey

D1 (k) = N2 (k) and D2 (k) = N1 (k) .

The usefulness of these properties is made transparent in the following
proposition:

Proposition 3.7. Let a, b, c be positive real numbers, such that b
c /∈ Q. Let Γ

and Γ̃ the graphs defined above (with the edge lengths parameters a, b, c).

1. For each k ∈ R Properties 3.5 and 3.6 define a function f(k; ·) on Γ̃ which
is unique up to a multiplication by a scalar and a reflection along a ver-
tical axis which passes through the middle of Γ̃.

2. The above function, f(k; ·), can be chosen to be continuous in k.
3. If k2 ∈ σ (Γ), the restriction of the function f(k; ·) to the graph on Γ

coincides with the eigenfunction of Γ up to reflection.

The following lemma will aid us in proving the uniqueness of f(k; ·):
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Figure 4. The graph Γ∗, which obeys Δ = σ (Γ∗)

Lemma 3.8. Let b, c be positive real numbers, such that b
c /∈ Q. Then, the set

Δ =
{

k ∈ R

∣

∣

∣det
(

I − Ũ
)

= 0
}

,

that was defined in (2.16), Lemma 2.3, is an empty set.

Proof. Lemma 2.3 tells us that Δ = σ (Γ∗), where Γ∗ is a cycle graph with
additional Dirichlet conditions imposed on its two vertices (Fig. 4).

Assume that k is in the spectrum of Γ∗. The corresponding eigenfunction
should then be of the form sin (kx) on each of the edges (up to a multiplicative
factor). The Dirichlet boundary conditions imply that sin (2bk) = sin (2ck) = 0
and therefore b and c both belong to the set π

2k N. This means that b
c ∈ Q and

contradicts the assumption. �

Proof of Proposition 3.7. Let k ∈ R. Let f(k; ·) be a generalized eigenfunction
of Γ̃ which obeys the Properties 3.5 and 3.6. From Property 3.5 we conclude
that

cin
j = cout

j for j = 1, 2.

Thus, for a suitable cj and αj ,

cin
j = cj exp (iαj)

cout
j = cj exp (−iαj) .

(3.22)

We plug this in the expression for the values of f on the leads

fj(k; xj) = cin
j exp(−ikxj) + cout

j exp(ikxj) = 2cj cos(αj − kxj),

and obtain

Dj (k) = {xj ≥ 0 | fj(k; xj) = 0}
=
{

xj ≥ 0
∣

∣

∣xj ∈ αj

k
+

π

2k
+

π

k
Z

}

Nj (k) =
{

xj ≥ 0
∣

∣

∣

∣

∂

∂xj
fj(k; xj) = 0

}

=
{

xj ≥ 0
∣

∣

∣xj ∈ αj

k
+

π

k
Z

}

.

Property 3.6 now translates to

α2 = α1 +
π

2
. (3.23)
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We use (3.21), (3.22) and (3.23) and plug them in (3.20) to get equations
on cj , αj . There are two possible solutions, which describe two functions that
are the same up to a reflection across a vertical axis which passes through the
middle of Γ̃. One of the solutions reads

cin
1 (k) =

1
2

exp
(

−i
ϕ (k)

2

)

(3.24)

cin
2 (k) =

{

cos(γ(k))−1
2 sin(γ(k)) exp

(

−iϕ(k)−π
2

)

γ (k) /∈ 2πZ

0 γ (k) ∈ 2πZ
, (3.25)

and the corresponding function is given on the leads by

f1(k; x1) = cos
(

ϕ (k)
2

+ kx1

)

f2(k; x2) =

{

cos(γ(k))−1
sin(γ(k)) cos

(

ϕ(k)−π
2 + kx2

)

γ (k) /∈ 2πZ

0 γ (k) ∈ 2πZ
.

Note that f2(k; ·) is continuous in k. In addition, f1(k; ·) and f2(k; ·) that are
given above can be multiplied by any k-continuous scalar function to yield an
appropriate solution which is also continuous in k. This proves that f(k; ·) is
uniquely defined on the leads and also k-continuous there. Theorem 2.1 implies
that f(k; ·) may have multiple values on the cycle, but only for k2 ∈ Δ. How-
ever, since Δ = ∅ (Lemma 3.8), this cannot happen and f(k; ·) is uniquely
defined on the cycle. In addition, the values of f(k; ·) on the cycle are deter-
mined by Eq. (2.12), which shows that these values are continuous in k, due
to the reversibility of I − Ũ and the k-continuity of 	c in.

We start proving part 3 of the proposition by assuming that k2 ∈ σ (Γ).
We have that there exists a real eigenfunction with eigenvalue k2 on Γ. We
fix a function g(k; ·) on Γ̃ to equal this eigenfunction when restricted on Γ.
Then, the values of this function, g(k; ·), can be uniquely continued so that
it is defined on the whole of Γ̃. It is easy to verify that the obtained function
obeys Properties 3.5 and 3.6 and we conclude from the proof of part 1 of the
proposition that it is equal to f(k; ·) up to a multiplication by a scalar or a
reflection. �

Proposition 3.7 shows that there are only two k-continuous functions,
f(k; x), which obey the Properties 3.5 and 3.6. We call such a function a real
contra-phasal solution, due to the properties that it has. These functions will
be used to prove Theorem 3.3. We carry on by stating a few lemmas which
describe the dynamical properties of the nodal points of such a real contra-
phasal solution.

Lemma 3.9. The nodal points of a real contra-phasal solution move on the leads
towards the cycle as k increases.
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Proof. While proving Proposition 3.7 we have showed that one of the real
contra-phasal solutions has the following values on the leads:

f1(k; x1) = cos
(

ϕ (k)
2

+ kx1

)

f2(k; x2) =

{

cos(γ(k))−1
sin(γ(k)) cos

(

ϕ(k)−π
2 + kx2

)

γ (k) /∈ 2πZ

0 γ (k) ∈ 2πZ
.

(3.26)

The positions of its nodal points on the leads are therefore given by

D1 (k) =
{

x1 ≥ 0
∣

∣

∣

∣

x1 ∈ −ϕ (k)
2k

− π

2k
+

π

k
Z

}

D2 (k) =
{

x2 ≥ 0
∣

∣

∣

∣

x2 ∈ −ϕ (k)
2k

+
π

k
Z

}

.

(3.27)

Let x (k) = −ϕ(k)
2k + π

2k + π
k nx be the position of a certain nodal point on

the first lead at the value k, i.e., x (k) ∈ D1 (k). The direction in which this
nodal point travel on the first lead is given by

x′ (k) =
d
dk

(

−ϕ (k)
2k

+
π

2k
+

π

k
nx

)

= −kϕ′(k) − ϕ(k) + π + 2πnx

2k2

= −1
k

(

ϕ′(k)
2

+ x

)

. (3.28)

A simple calculation based on (3.21) gives

det S (k) = exp (i2ϕ (k)) .

Denoting the eigenvalues of S (k) by exp (iϕ1 (k)) , exp (iϕ2 (k)), we have that
ϕ (k) = ϕ1 (k) + ϕ2 (k) and can therefore conclude from Lemma 2.7 that
ϕ′ (k) > 0. Plugging this in (3.28) together with x ≥ 0 shows that x′ (k) > 0.
We thus get that all nodal points on the first lead move towards the cycle,
as k increases. A similar derivation leads to the same conclusion for the nodal
points on the second lead. The second real contra-phasal solution is a reflection
of the one mentioned above and therefore its nodal points obviously also move
towards the cycle. �
Lemma 3.10. Let k be a value at which a nodal point is positioned on a vertex
of Γ̃. The following scenarios exist for the dynamics of the mentioned nodal
point:
1. The nodal point had arrived to the vertex from a lead. Then, upon entering

the cycle the nodal point will either split into two nodal points or merge
with another nodal point arriving from the cycle. The set of k values at
which these events happen is

{

k∗
p

}∞
p=1

:=
{

π
2b+2cp

}

. The split events hap-
pen at k ∈ {k∗

1 , k∗
3 , k∗

5 , . . .} and the merge events at k ∈ {k∗
2 , k∗

4 , k∗
6 , . . .}.

2. No nodal point arrives at the vertex from the lead during this event. The
nodal point had therefore arrived at the vertex from the cycle. It will just
flow to the other edge of the cycle. These events happen at k values for
which γ (k) ∈ πZ.
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Figure 5. A description of a merge event. The nodal points
(2a) and (2b) merge and become the nodal point (2). The
signs of the nodal domains of f (k) are marked with squares

Proof. When a nodal point enters the cycle from one of the leads, say the
first one, f1(k∗

p; 0) = 0, and we have from Property 3.7 that on the second
lead ∂

∂x2
f2(k∗

p; 0) = 0. We therefore have that the restriction of f to the cycle
during such an event is equal to an eigenfunction of a single edge of length
2b+2c with Dirichlet vertex conditions at its endpoints. This implies that the
entrance events occur at k∗

p = π
2b+2cp. These events are of two types (explana-

tion follows):

1. At k∗
2m−1 = π

2b+2c (2m − 1) the entering nodal point splits into two new
nodal points which continue to move in the cycle. Hence, the total number
of nodal points increases by one.

2. At k∗
2m = π

2b+2c2m the entering nodal point merges with another nodal
point coming towards it from the cycle. Hence, the total number of nodal
points decreases by one (see Fig. 5).

During an entrance event, k = k∗
p, the nodal point is positioned on a vertex of Γ̃

and about to enter the cycle. We observe that the number of nodal points on
the cycle must be even. This implies that at the entrance event the mentioned
nodal point either merges with another nodal point from the cycle (so that the
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number of nodal points on the cycle remains unchanged), or splits into two
nodal points (which increases this number by two). The occurrence of a split
or a merge event is determined by the values of f(k∗

p; ·) restricted on the cycle.
As mentioned before, this restriction is an eigenfunction on the edge of length
2b + 2c, and it therefore equals sin

(

pπ
2b+2cx

)

up to a multiplicative scalar. For
an even value of p, this function has opposite signs in the vicinity of the end-
points of the edge. This means that when the nodal point is located exactly
on the vertex of Γ̃, the two nodal domains of f(k∗

p; ·) on the cycle which are
bounded by this nodal point have opposite signs. (see Fig. 5-during).

However, a short while before this event, the neighborhood of this vertex
was contained in a single nodal domain with a definite sign. The k-continuity
of the solution implies that this is possible only if a short while before the
event there was another nodal point in the vicinity of the vertex that has dis-
appeared while merging with the nodal point at the vertex (see Fig. 5-before).
A similar reasoning shows that split events occur for odd p values.

We have treated by now the possibility that the nodal point at the vertex
had arrived from the lead. It might also happen that f(k; ·) equals zero at a
vertex of Γ̃ when f(k; ·) vanishes on the lead which is connected to that ver-
tex. For the real contra-phasal solution given in (3.26), this happens exactly
at γ (k) = πZ. This event would happen only on vertex number two for that
solution (and on vertex number one for the reflected solution). These events
do not change the number of nodal points on the graph, and therefore we do
not need to keep track of them. �

Lemma 3.11. Let a, b, c be positive real numbers such that b
c /∈ Q and a

b+c /∈ Q

and Γ, Γ̃ be the graphs described above. The number of nodal points on Γ of a
real contra-phasal solution on Γ̃ is increased by one at k such that k2 ∈ σ (Γ).

Proof. When k equals an eigenvalue of Γ, the solution restricted on Γ equals
an eigenfunction of Γ, i.e., either f1(k; a) = 0 or f2(k; a) = 0. A nodal point
is therefore positioned on the boundary of Γ, and from Lemma 3.9 we deduce
that this nodal point moves towards the cycle, increasing by one the number of
nodal points on Γ. It is only left to verify that there is no simultaneous split or
merge events which further change the total number of nodal points. Namely,
we show that

{

k∗
p

}

and σ (Γ) are disjoint sets. Assume the contrary: k∗
p ∈ σ (Γ)

for some p. By definition, fj(k∗
p; 0) = 0 for j ∈ {1, 2}. Assume without loss of

generality that f1(k∗
p; 0) = 0. Then, since k∗

p ∈ σ (Γ) we also have that either
f1(k∗

p; a) = 0 or f ′
1(k

∗
p; a) = 0. If f1(k∗

p; a) = 0, then k∗
p ∈ π

a Z and apply-
ing Lemma 3.10 gives π

2b+2c ∈ π
a Z, which contradicts the incommensurability

assumption. Otherwise, if f ′
1(k

∗
p; a) = 0, we similarly obtain π

2b+2c ∈ π
2a + π

a Z,
and again get a contradiction. �

Lemma 3.12. Let the set
{

k∗
p

}

, as defined in Lemma 3.10, be the set of k
values at which merge and split events occur, and let k∗

0 = 0. Denote dp :=
∣

∣

{

k2 ∈ σ (Γ)
∣

∣k∗
p−1 < k < k∗

p

}∣

∣, the number of eigenvalues of Γ that occurred
between two consequent merge/split events. Then,
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Figure 6. An example of a stream of events needed to keep
track of the number of nodal points

dp =
⌊

a

b + c
p

⌋

−
⌊

a

b + c
(p − 1)

⌋

+ 1. (3.29)

Proof. The following two observations concern the set D1 (k) ∪ D2 (k), which
gives the positions of the nodal points on the leads:

The spectrum of Γ may be characterized as

σ (Γ) =
{

k2 | a ∈ D1 (k) ∪ D2 (k)
}

. (3.30)

The merge/split events happen at
{

k∗
p

}

= {k | 0 ∈ D1 (k) ∪ D2 (k)}. (3.31)

We denote Q (k) := (0, a ]∩{D1 (k) ∪ D2 (k)} and describe how it changes
with k. Lemma 3.9 implies that the values of Q (k) continuously decrease
with k. In addition, the first observation gives that |Q (k)| increases at k ∈
σ (Γ), when a nodal point enters Γ. The second observation shows that |Q (k)|
decreases by one at k ∈ {k∗

p

}

, when a nodal point enters the cycle. It is there-
fore evident that during the interval

(

k∗
p−1, k

∗
p

]

, |Q (k)| decreased a single time
(at k∗

p), and the number of times it increased is given by dp, the number of
eigenvalues in this interval. We conclude that

dp =
∣

∣Q
(

k∗
p

)∣

∣− ∣∣Q (k∗
p−1

)∣

∣+ 1. (3.32)

It is easy to see that D1

(

k∗
p

) ∪ D2

(

k∗
p

)

= π
2k∗

p
Z, and therefore

∣

∣Q(k∗
p)
∣

∣ =
∣

∣

∣

∣

(0, a ] ∩ π

2k∗
p

Z

∣

∣

∣

∣

=
⌊

2k∗
pa

π

⌋

.

Substituting k∗
p = π

2b+2cp (Lemma 3.10) and plugging this in (3.32) gives
(3.29). �

We now have all the required information to obtain an expression for μn,
the number of nodal points on Γ at k = kn.

Proof of Theorem 3.3. In order to prove (3.18) we need to keep track of all the
events which affect the number of nodal points on the graph. These include
the eigenvalues of the original graph,{kn}, and the merge/split events,

{

k∗
p

}

.
Figure 6 shows a possible scenario for such a stream of events. In this figure,
the value of μn − n is shown for each eigenvalue. The bounds on μn − n can
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be obtained from (1.10) with a slight modification due to the additional nodal
point positioned on the Dirichlet vertex of the graph: 0 ≤ μn − n ≤ 1. The
value of μn − n differs from μn−1 − (n − 1) if and only if a merge/split event
occurred in between the corresponding eigenvalues. We therefore conclude that
the value of μn −n depends on the parity of the number of merge/split events
that occurred before kn.

Namely,

μn − n = mod2 p,

where p is an integer such that

k∗
p < kn < k∗

p+1.

By the definition of dp (see Lemma 3.12) this is equivalent to

p
∑

i=1

di < n ≤
p+1
∑

i=1

di,

which by (3.29) evaluates to
⌊

a

b + c
p

⌋

+ p < n ≤
⌊

a

b + c
(p + 1)

⌋

+ (p + 1) .

Since n, p are integers and a
b+c /∈ Q,

a

b + c
p + p < n ≤ a

b + c
(p + 1) + (p + 1).

Multiplying through by b+c
a+b+c we get

p <
b + c

a + b + c
n < (p + 1),

and conclude that

p =
⌊

b + c

a + b + c
n

⌋

.

The number of nodal points on the graph is therefore given by

μn = n + mod2

(⌊

b + c

a + b + c
n

⌋)

.

We now wish to turn this into a formula for the nodal count, νn. The
relation between μn and νn depends on whether the nth eigenfunction has
nodal points on the loop as demonstrated in Fig. 7.

If it does have nodal points on the loop, then νn = μn − 1 (Fig. 7b), and
in the case it does not, νn = μn (Fig. 7a).
We therefore have that for the first d1 =

⌊

a
b+c

⌋

+ 1 eigenvalues (when there
are still no nodal points on the loop) the nodal count is

νn = n + mod2

(⌊

b + c

a + b + c
n

⌋)

= n,
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(b)(a)

Figure 7. The two possible relations between the number of
nodal points, μn, and the number of nodal domains, νn

lead

1 3

2

Figure 8. An example of a graph Γ with β = 1. We view it
as a cycle with trees grafted upon it

where the second equality is due to n ≤
⌊

a
b+c

⌋

+ 1. For the rest of the nodal

count, n >
⌊

a
b+c

⌋

+ 1, we get

νn = n − 1 + mod2

(⌊

b + c

a + b + c
n

⌋)

.

�

4. The Nodal Count of Graphs with Disjoint Cycles

4.1. Graphs with β = 1: A Dynamical Approach

In this section we will discuss the nodal dynamics on a graph with one cycle
(i.e., β = 1) and a lead attached to a general position on the cycle, see Fig. 8.
The discussion will not be formal, as we will prove the results by other methods
in Sect. 4.2.

We have seen in Sect. 3.1 that, as k increases the nodal points (zeroes)
travel along the lead in the direction of the graph. Consider the quantity
δn = μn − n + 1. This is the “surplus” of zeros due to the graph not being a
tree. Bound (1.10) implies that δn can be equal to either 0 or 1. The change in
this quantity from eigenvalue k = kn−1 to eigenvalue k = kn can be attributed
to the following three causes:
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1. The increase in the index n (the change in δ is −1).
2. A zero entering the graph from the lead. Upon entering, the zero can

either merge (M) with a zero already present on the cycle or split (S)
into two zeros.

3. A zero entering a tree. This zero can either split off a zero traveling on the
cycle or it can be a result of two zeros from the cycle merging together.

Another notable event is a zero passing through a vertex where a tree is
attached. We did not list it above since an event of this type does not affect
the nodal count. Similarly, when a zero is traveling through the tree, we know
(see [15,17,20]) that the number of zeros does not change.

As already explained in Sect. 3.1, event (2) happens exactly once between
each pair of eigenvalues kn−1 and kn, since an eigenvalue corresponds to the
Neumann condition and the entrance event corresponds to the Dirichlet con-
dition satisfied at the attachment point. If event (2) is a split, the contribution
to δ is +2; otherwise, it is 0. However, if we consider the total contribution
of events (1) and (2), we get +1 from a split and −1 from a merge. This is
the same as a contribution of a type (3) event, when the split results in +1
(number of zeros on the cycle stays the same but another zero appears on a
tree) and the merge in −1 (the number of zeros on the cycle reduces by 2,
while one zero enters a tree).

The first eigenfunction has constant sign, so δ1 = 0 and no events hap-
pen until k = k1. Since the contribution of type (1) is now absorbed in the
contributions of type (2), the value of δn is the total number of splits minus
the total number of merges up to k = kn. On the other hand, δn is restricted
by the nodal bound to be either 1 or 0, therefore it is equal to the parity of
the total number of S/M events.

There are exactly n − 1 events of type (2) happening until k = kn. To
count the number of events of type (3), we consider an auxiliary graph Γ∅,
obtained from Γ by removing all edges belonging to the cycle and imposing
Dirichlet conditions on the points where the trees were connected to the cycle.
The graph Γ∅ is a collection of trees that were grafted on the cycle. Since a
zero entering a tree signals that the Dirichlet condition is satisfied on the tree,
the corresponding value of k is in fact an eigenvalue1 of Γ∅. And the number
of events of type (3) is thus equal to the number of eigenvalues of Γ∅ that are
smaller than kn. To summarize,

δn = mod2(n − 1 + N∅(kn)),

where N∅(kn) is the spectral counting function of the graph Γ∅. Thus, we can
fully predict the nodal count using the spectra of two graphs, Γ and Γ∅. The
discussion above captures the dynamics of the zeros, but it is relatively diffi-
cult to formalize. Instead, we will prove the formula for μn by other methods,
which, although not very pictorial, allow us to extend the argument to the
case of non-zero potential V (x).

1 The corresponding eigenfunction is identically zero on all trees apart from the one with
Dirichlet condition satisfied.
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4.2. Graphs with β = 1: A Formal Proof

In this section we prove the formula that was informally derived in Sect. 4.1.

Theorem 4.1. Consider the Schrödinger operator (1.2) on a connected graph
with a single cycle. Let the n-th eigenvalue be simple and the corresponding
eigenfunction be non-zero on the vertices. Then,

μn = n − 1 + mod2 (n − 1 + N∅(λn)) , (4.1)

where N∅ is the spectral counting function of the disconnected graph obtained
by removing the cycle and putting Dirichlet conditions on the new vertices.

Proof. From the nodal bound for graphs with one cycle (i.e., with β = 1) we
know that μn is equal to n−1 or n. The first step of the proof is to observe that
the number of zeros on the edges that do not belong to the cycle is equal to
N∅(λn). We will prove this statement below. Then, μn −N∅(λn) is the number
of zeros on the cycle, and has to be even, as explained in Sect. 1.2.

First, assume that μn = n. Then, the quantity

μn − 1 − N∅(λn) = n − 1 − N∅(λn)

is odd and, therefore,

mod2 (n − 1 + N∅(λn)) = mod2 (n − 1 − N∅(λn)) = 1,

where we used the fact that

mod2(a + b) = mod2(a − b)

for any integer a and b. Thus, the right-hand side of Eq. (4.1) evaluates to n
which is the right answer.

If μn is not equal to n, then it is equal to n − 1 and we have

mod2 (n − 1 + N∅(λn)) = mod2 (μn − N∅(λn)) = 0,

since μn − N∅(λn) is even. Thus, Eq. (4.1) still holds.
Now we prove that N∅(λn) is indeed the number of zeros on the subtrees

of the graph. To shorten the formulas we introduce the following notation: We
denote the n-th eigenvalue by Λ and the corresponding eigenfunction by F .
We break up the original graph into the cycle and the trees Tj . For each tree Tj

we choose as a root the vertex that was its contact point with the cycle. We
can ensure that each root has degree 1: if necessary we can split trees that
share a root. On each tree the vertex conditions are inherited from the graph,
but we still need to specify the conditions on the root. We will consider two
versions of each tree. The first, Tj,F has the condition on the root r chosen
to be satisfied by the function F , restricted to the tree. That is, we chose the
constant α in the δ-type condition to be α = F ′(r)/F (r). The second version
of the tree, denoted Tj,∞, has the Dirichlet condition on the root.

Denote by T∞, the disjoint union of the graphs Tj,∞. We observe that

N∅(λ) = NT∞(λ) =
∑

j

NTj,∞(λ).
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(a) (b)

Figure 9. An example of a graph with four disjoint cycles.
In part a, the middle cycle is chosen and the cut-points are
labeled. In part b the graph is split up into subgraphs. The
central part Γ0 contains exactly one cycle, while the other
parts can contain more or fewer

Thus, we only need to prove that NTj,∞(Λ) gives the number of zeros of F on
the subtree Tj,∞. Since, by construction, the restriction of F is an eigenfunc-
tion of Tj,F with the eigenvalue Λ, we have Λ = λm(Tj,F ) for some m. By the
strict interlacing, Theorem A.1,

λm−1(Tj,∞) < λm(Tj,F ) < λm(Tj,∞),

and, therefore, NTj,∞(Λ) = m − 1. On the other hand, the nodal count on
trees, Eq. (1.10), gives μm(Tj,∞) = m − 1. This concludes the proof. �

4.3. Number of Zeros on a Graph with Disjoint Cycles

In fact, the formula of the previous section can be extended to β > 1 as long
as the cycles do not share any vertices.

Theorem 4.2. For a connected graph containing β disjoint cycles, let the n-th
eigenvalue be simple and the corresponding eigenfunction be non-zero on the
vertices. Then,

μn = n − 1 +
β
∑

j=1

mod2

(

n − 1 + Nj,∅(λn)
)

,

where Nj,∅ is the spectral counting function of the disconnected graph obtained
by removing the j-th cycle and putting Dirichlet conditions on the new vertices.

Proof. Denote the n-th eigenvalue by Λ and the corresponding eigenfunction
by F . Choose an arbitrary cycle and let e1, . . . , ek be the edges incident to it.
Since the cycles are disjoint, these edges do not belong to any cycle. Choose
points c1, . . . , ck, one on each edge, so that the function F is non-zero at these
points. If the graph is cut at these points, we obtain k + 1 disjoint subgraphs,
Γj , j = 0, . . . , k (the 0-th subgraph contains the chosen cycle), see Fig. 9.
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Define

αcj
=

F ′(cj)
F (cj)

,

where the derivative is taken away from the chosen loop. We impose δ-type
conditions on the newly formed vertices. The vertex cj belonging to Γj will
get the condition with coefficient αcj

and its counterpart belonging to the
subgraph Γ0 will get the condition with coefficient −αcj

. This way, the appro-
priately cut function F is still an eigenfunction on all k+1 subgraphs and Λ is
the corresponding eigenvalue. This allows us to define mj by

Λ = λmj
(Γj).

Lemma 4.3. The numbers mj are well-defined and satisfy

n − 1 =
k
∑

j=0

(mj − 1). (4.2)

Proof of the lemma. Let Γc denote the disjoint union of the graphs Γj , j =
0, . . . , k. First of all, we apply Theorem A.2 k times (for k cuts) to obtain
inequalities

λn−1(Γc) ≤ λn−1(Γ) and λn+1(Γ) ≤ λn+k+1(Γc)

On the other hand, simplicity of the eigenvalue λn(Γ) = Λ means that
λn−1(Γ) < Λ < λn+1(Γ) and, therefore,

λn−1(Γc) < Λ < λn+k+1(Γc). (4.3)

Finally, out of F we can form at least k+1 linearly independent eigenfunctions
of the graph Γc: functions that are restrictions of F on one of the parts Γj

and identically zero on all the others. All these eigenfunctions have eigen-
value Λ. Combining this observation with inequality (4.3), we conclude that
Λ has degeneracy exactly k +1 in the spectrum of Γc and therefore is a simple
eigenvalue of every part Γj . Thus, the numbers mj are well-defined.

Finally, since the spectrum of Γc is the superposition of spectra of Γj ,
Eq. (4.2) is equivalent to the statement “there are n−1 eigenvalues of Γc that
are strictly less than Λ”, which is also obvious from inequality (4.3) and the
fact that λn(Γc) = Λ. �

We now want to use Theorem 4.1 to find the number of zeros of the func-
tion F on the graph Γ0. Let R be the graph obtained from Γ0 by removing
the cycle and imposing Dirichlet conditions on the new vertices. This graph is
a disjoint union of the graphs Rj , j = 1, . . . , k, see Fig. 10. Therefore, we have

NR(Λ) =
k
∑

j=1

NRj
(Λ). (4.4)

According to Theorem 4.1 the number of zeros of F on the subgraph Γ0 is

μ(Λ,Γ0) = m0 − 1 + mod2 (m0 − 1 + NR(Λ)) .
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(a) (b)

Figure 10. The subgraph Γ0 and the graph R obtained after
removing the cycle (it appears shaded on part b of the figure).
The graph R is a disjoint union of four subgraphs Rj

(a) (b)

Figure 11. The original graph Γ and the graph G obtained
by removing the chosen cycle. The graph G is a disjoint union
of graphs Gj

Extracting m0 − 1 from Eq. (4.2) and using Eq. (4.4), we get

μ(Λ,Γ0) = m0 − 1 + mod2

⎛

⎝n − 1 +
k
∑

j=1

(

mj − 1 + NRj
(Λ)
)

⎞

⎠ , (4.5)

where we used

mod2(a + b) = mod2(a − b)

for integer a and b to change some signs. Define now the graph G by removing
the chosen cycle from the original graph Γ and imposing the Dirichlet condi-
tions on the new vertices. Similarly to the graph R, the graph G is a disjoint
union of k subgraphs Gj , see Fig. 11, and

NG(Λ) =
k
∑

j=1

NGj
(Λ). (4.6)

If we were to cut the graph Gj at the point cj the two parts would be exactly
Γj and Rj . This suggests the following lemma:

Lemma 4.4. For every j = 1, . . . , k,

NGj
(Λ) = mj − 1 + NRj

(Λ). (4.7)
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(a) (b)

Figure 12. a The quantum graph whose nodal count we
compute. b The same graph with its cycle removed (appears
shaded)

Proof of the lemma. First we observe that Λ belongs to the spectrum of the
graph Γj and does not belong to the spectrum of Rj or Gj . This can be shown
by the strict interlacing, Theorem A.1, applied to the graph Γ (corresp. G0)
by changing the condition from Neumann to Dirichlet at the vertex where Gj

(corresp. Rj) was connected to the cycle.
Denote by Gj,c the disjoint union of the graphs Γj and Rj . Let integer

q be such that

Λ = λq(Gj,c).

Since Λ = λmj
(Γj), we have that q = mj + NRj

(Λ). On the other hand, by
Theorem A.2,

λq−1(Gj) < Λ = λq(Gj,c) < λq(Gj)

Therefore, NGj
(Λ) = q − 1 which concludes the proof. �

Combining Eqs. (4.6) and (4.7) with formula (4.5) we arrive at

μ(Λ,Γ0) = m0 − 1 + mod2 (n − 1 + NG(Λ)) . (4.8)

We should also note that NG = Nj,∅, where j is the number of the cycle that
was chosen.

Since we chose an arbitrary cycle, Eq. (4.8) is valid for every cycle. The
conclusion of the theorem is just the sum of Eqs. (4.8) over all cycles with an
application of the analogue of Eq. (4.2). �

5. A Discussion

5.1. An Approximate Derivation of an Exact Nodal Count Formula

We will now present an alternative way to get the nodal points count formula
(3.18) of the graph given in Fig. 12a. The derivation is most appealing, but
involves an approximation that cannot be justified. We present it here because
it makes use of an idea which has been used in other contexts. Also we find that
an unjustifiable approximation that reproduces the exact nodal count formula
carries information about the graph in its own right.

We start by rewriting the formula (4.1) with a slight modification, due
to the nodal point which is positioned on the Dirichlet boundary vertex of the
graph:
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μn = n + mod2 (n + N∅(kn)) .

The spectra of the two edges which appear in Fig. 12b are
{

π
a n
}

n∈N
and

{

π
a

(

n + 1
2

)}

n∈N
. Their spectral counting function is, therefore,

N∅(k) =
⌊

ka

π

⌋

+
⌊

ka

π
+

1
2

⌋

.

Plugging it in and using the identities mod2

(�x� +
⌊

x + 1
2

⌋)

= mod2 (�2x�)
and mod2 (x + y) = mod2 (x − y) we obtain

μn = n + mod2

(

n −
⌊

2kna

π

⌋)

.

We can get an approximate expression for kn from the Weyl term of the spec-
tral counting function of the graph,

N (k) ≈ 2(a + b + c)
π

k,

by its inversion, i.e.,

kn ≈ π

2(a + b + c)
n.

Using this approximation gives

μn ≈ n + mod2

(

n −
⌊

a

a + b + c
n

⌋)

= n + mod2

(⌊

b + c

a + b + c
n

⌋)

,

which is the exact result, (3.18).
One should note that the last step of the derivation, which involves an

approximation of kn by inverting the Weyl term, cannot be justified. Moreover,
the floor function is a discontinuous function and it is therefore expected that
an approximation of its argument would lead to a completely wrong result for
some portion of the sequence.

From the exactness of the final result, we conclude the following property
of the spectrum

N∅(kn) = mod2

(⌊

2a

π
kn

⌋)

= mod2

(⌊

2a

π

π

2(a + b + c)
n

⌋)

.

Numeric examination reveals that the equality hold for the arguments of the
mod2 as well, namely,

⌊

2a

π
kn

⌋

=
⌊

2a

π

π

2(a + b + c)
n

⌋

. (5.1)

The above relation connects the spectrum and the lengths of the graph’s edges.
Having such a relation for our graph makes N∅(kn) expressible in terms of the
parameters a, b, c and enables to turn the nodal count formula, (4.1), into a
formula which contains geometric properties of the graph, rather than spec-
tral ones. In short, the special nodal count formula is a direct consequence of a
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purely spectral identity—a connection between the graph’s spectrum and the
spectral counting function of its subgraphs.

The novelty of this result makes one wonder to what extent it can be
generalized to other graphs. Even if such an exact result is not reproduced,
one may still use approximations of the type above and try to estimate the
errors caused by them.

5.2. Periodic Orbits Expansions

Wishing to express the nodal count formula (3.18) as a periodic orbits expan-
sion, we notice that mod2 (�x�) is an odd periodic function (of period 2), whose
Fourier transform is

mod2 (�x�) =
1
2

−
∞
∑

k=0

2
(2k + 1)π

sin ((2k + 1) πx).

Denoting α := b+c
a+b+c , the normalized length of the loop, we can rewrite

(3.18) as following:

μn = n +
1
2

−
∞
∑

k=0

2
(2k + 1)π

sin ((2k + 1) παn).

We, therefore, get that the nodal points sequence is expressed in terms
of lengths of periodic orbits on the graph. One should note that the only peri-
odic orbits that appear are odd repetitions of the graph’s cycle. They appear
with harmonically decaying amplitudes. This calls for a more direct deriva-
tion of the periodic orbits expansion which may also explain the meaning of
the amplitudes and the absence of other periodic orbits. Furthermore, the for-
mula (4.1), which holds for any graph with a single cycle, may also be turned
into an expansion of a similar type. We recall that for quantum graphs there
exist an exact periodic expansion for the spectral counting function. Therefore,
the spectral counting function of the subgraph, N∅(kn), can be expanded and
plugged in formula (4.1). This would yield an expansion which still involves the
spectral information, {kn}. Having an approximate inversion of the spectral
counting function of the whole graph then enables to further get a periodic
orbits formula which involves only geometric properties of the graph. Such
spectral inversion attempts were recently carried out with a high degree of
success [10,41]. It is therefore evident that the obtained result leads to a wide
field of further questions and open research possibilities.

Acknowledgements

It is a pleasure to acknowledge Sven Gnutzmann for fruitful discussions about
the scattering matrix properties. We are grateful to Peter Kuchment for sug-
gesting to extend Theorem 4.1 to what is now Theorem 4.2. We also wish to
thank Amit Godel for the careful examination of the proof of Theorem 3.3.
The work was supported by the Minerva Center for Nonlinear Physics, the
Einstein (Minerva) Center at the Weizmann Institute and the Wales Insti-
tute of Mathematical and Computational Sciences) (WIMCS). Grants from



Vol. 13 (2012) Nodal Count on a Family of Quantum Graphs 181

EPSRC (grant EP/G021287), ISF (grant 166/09), BSF (grant 2006065) and
NSF (DMS-0604859 and DMS-0907968) are acknowledged.

Appendix A. Interlacing Theorems for Quantum Graphs

Eigenvalue interlacing (or bracketing) is a powerful tool in spectral theory.
In particular, in the graph setting, it allows to estimate eigenvalue of a given
graph via the eigenvalues of its subgraphs, which may be easier to calculate.
Here, we quote the theorems that are used in the proofs of the formulas of the
present manuscript. The theorems are quoted in the form they appear in [35].

The first theorem deals with choosing a vertex on the graph Γ and chang-
ing the parameter αv of the extended δ-type condition at v (see Eq. (1.4)). We
remind the reader that αv = ∞ corresponds to the Dirichlet condition at the
vertex which essentially disconnects the edges meeting at the vertex.

Theorem A.1 (Interlacing when changing a parameter). Let Γα′ be the graph
obtained from the graph Γα by changing the coefficient of the condition at ver-
tex v from α to α′. If −∞ < α < α′ ≤ ∞, then

λn(Γα) ≤ λn(Γα′) ≤ λn+1(Γα). (A.1)

If the n-th eigenvalue of Γα′ is simple and the corresponding eigenfunction is
nonzero on the vertices, the inequalities are strict.

The second theorem deals with the situation when the graph Γ′ is obtained
from Γ by gluing two vertices together, or, equivalently, Γ is obtained by cut-
ting the graph Γ′ at a vertex or at a point on an edge.2 When gluing the
vertices together, their respective parameters αv0 and αv1 get added.

Theorem A.2 (Interlacing when gluing the vertices). Let Γ be a compact (not
necessarily connected) graph. Let v0 and v1 be vertices of the graph Γ endowed
with the δ-type conditions with the parameters α0 and α1 (see Definition 1.1).
Arbitrary self-adjoint conditions are allowed at all other vertices of Γ.

Let Γ′ be the graph obtained from Γ by gluing the vertices v0 and v1

together into a single vertex v, so that Ev = Ev0 ∪ Ev1 , and endowed with the
δ-type condition with the parameter αv = α0 + α1.

Then, the eigenvalues of the two graphs satisfy the inequalities

λn(Γ) ≤ λn(Γ′) ≤ λn+1(Γ). (A.2)

In addition, if λn(Γ′) is simple and the corresponding eigenfunction is
nonzero on vertices and not an eigenfunction of Γ, the inequalities are strict.

An intuitive explanation for the above result is that by gluing vertices
we impose an additional restriction: the continuity condition. This additional
restriction pushes the spectrum up.

2 Any point on an edge can be viewed as a vertex of degree 2.



182 R. Band et al. Ann. Henri Poincaré
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